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Introduction
We present a new open source library and tools for solving large sparse linear systems of equations. 
This  software is  specialy set  to solve systems of equations resulting from finite  element,  finite 
volume and finite differences discretizations.

In this work we will describe the solvers included in the library, there are three kind of solvers: 
direct,  iterative  and domain  decomposition.  Direct  and iterative  solvers  are  designed to  run  in 
parallel  in  multi-core  computers  using  OpenMP.  The  domain  decomposition  solver  has  been 
designed to run in clusters of computers using a combination of MPI (Message Passing Interface) 
and OpenMP.
Direct  solvers  implemented  are  sparse  versions  of  Cholesky  and  LU  factorizations.  We  use 
reordering and symbolic factorization to reduce and determine fill-in.

Iterative solvers are conjugate gradient and biconjugate gradient for sparse matrices. To improve 
convergence,  we  implemented  several  preconditioners  suitable  for  sparse  systems:  Jacobi, 
incomplete Cholesky and LU factorizations, and sparse approximate inverses.
The domain decomposition method included is Schur substructuring method. This method allows to 
split  a  large  system  of  equations  into  many  smaller  systems  that  can  be  solved  in  different 
processors or computers of a cluster, reducing solution times and making possible to solve systems 
that can not fit in a single computer.

The FEMSolver is  multi-platform library (Windows, GNU/Linux,  Mac OS),  released under the 
GNU Library General Public License. It has been programmed in modern standard C++, and has 
modules to access it from other languajes like Fortran, Python, C, etc.
We will show some numerical results of finite element modelation of solid deformation and heat 
difussion, with systems of equations that have from a few million, to more than one hundred million 
degrees of freedom.
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Modules

Modules

FEMT library
This is a library designed to help scientists and engineers to solve large systems of equations from 
problems of finite element, finite volume and finite difference problems. It was programmed in 
modern C++, with focus on performance and efficient resource usage. It has a simple and intuitive 
set of classes to handle meshes, systems of equations and solvers. Below is a list of its capabilities.

Containers

The following containers are available, these have been implemented to be efficient in time access 
and memory consumption, most of the code use templates to allow these containers to handle any 
data type, like float, double, integer, bool, etc.

• Sparse matrices (compress row and compress column storage), sparse vectors.

• Dense matrices and vectors.

• Upper and lower triangular matrices.

• Sets.

• Lists.

File operations

FEMT library includes routines to read/write files with several common formats:

• CSV (comma separated values).

• Matrix Market (http://math.nist.gov/MatrixMarket).

• MatLab (format v4).

Finite element routines

A group of classes to handle finite element data:

• Meshes with several kind of elements (triangular, quadrilateral, tetrahedron, hexahedron).

• Nodes for 2D and 3D geometries.

• Shape functions for, triangles (3 and 6 nodes), quadrilaterals (4, 8 and 9 nodes), tetrahedra (4 and 
10 nodes), hexahedra (8, 20 and 27 nodes).

• Jacobian and determinant calculation for all shape functions.

• Quadrature rules, gauss quadrature (1, 2, 3, 4, 5, 6 and 7 points), triangle (1, 3, 4 and 7 points), 
tetrahedron (1, 4, 5 and 11 points).

• Facet integration.

• Mesh partitioning using METIS library (http://glaros.dtc.umn.edu/gkhome/views/metis).

• Graph reordering for reducing fill-in in factorizations.

Parser

Parser for mathematical expresions. It can evaluate in run time strings.

• Suports single and double precision.

3/33

http://glaros.dtc.umn.edu/gkhome/views/metis
http://math.nist.gov/MatrixMarket


Modules

• Unlimited number of variables.

• Supports the following functions: abs, acos, asin, atan, atan2, ceil, cos, cosh, tan, exp, floor, log, 
log10, mod, pow, sin, sinh, sqrt, tan, tanh.

Solvers for sparse matrices with OpenMP

The following list enumerates all solvers implemented for sparse matrices, all have been desigened 
to run in parallel in multi-core computers using the OpenMP schema:

• Cholesky.

• Cholesky (LDL’).

• LU (Doolittle version).

• Upper triangular matrices.

• Lower triangular matrices.

• Conjugate gradient.

• Conjugate gradient + Jacobi preconditioner.

• Conjugate gradient + incomplete Cholesky factorization preconditioner.

• Conjugate gradient + incomplete Cholesky LDL’ factorization preconditioner.

• Conjugate gradient + factorized sparse approximate inverse preconditioner.

• Biconjugate gradient.

• Biconjugate gradient + Jacobi preconditioner.

• Biconjugate gradient + incomplete LU factorization preconditioner.

• Conjugate gradient + minimal residual sparse approximate inverse preconditioner.

Solvers for sparse matrices with MPI

These solvers have been designed to run in clusters of computers and solve systems of equations 
that can not fit in a single computer.

• Distributed conjugate gradient with Jacobi preconditioner. This version of the conjugate gradient 
stores the matrix in several computers that work simultaneously to obtain the solution.

• Schur substructuring method. This is a domain decomposition method that starts partitioning the 
domain, splitting a large system of equations into many small systems, each one is sent to a com-
puter of the cluster to be evaluated independently, a global solution is obained from the comtribu-
tion of all systems.

Solvers for dense matrices with OpenMP

There are  also some solvers  implemented for  dense matrices  that  run in  parallel  on multi-core 
computers.

• Cholesky.

• LU (Doolittle version).

• Upper triangular matrices.

• Lower triangular matrices.

• Conjugate gradient.

4/33



Modules

• Conjugate gradient + Jacobi preconditioner.

FEMSolver
FEMSolver is a program that solves finite element problems in parallel using the FEMT library on 
multi-core  computers.  It  uses  a  very  simple  interface  using  pipes.  A pipe  is  an  object  of  the 
operationg system that can be accessed like a file but does not write data to the disk, is a fast way to  
communicate running programs.

MeshMesh

Elemental
matrices

Elemental
matrices

Fixed
conditions
Fixed
conditions

Intependent
terms
Intependent
terms

FEMSolverFEMSolver SolutionSolution
PipePipe PipePipe

If you know how to write files, you can use FEMSolver. The user only needs to write on a pipe data  
describing the mesh, all  the elemental matrices,  fixed conditions, and the vector of intependent 
terms. FEMSolver reads these data and runs one of the solvers from the FEMT library and retuns 
the solution using other pipe, the user only has to read it like reading a normal file.

This flexible schema allows an used using any programming languaje (C/C++, Fortran, Python, C#, 
Java, etc.) to solve large systems of equations resulting from finite element discretizations.
If the matrix remains constant, FEMSolver can be used to efficiently solve multi-step problems, like 
dynamic deformations, transient heat diffusion, etc.

FEMSolver helps to focus on the solution of the problem and not in how to implement it.

FEMSolver.MPI
FEMSolver.MPI is a similar program to FEMSolver, but instead of solving the system of equations 
using a single computer, it can use a cluster of computers to distribute the workload and solve even 
larger systems of equations.
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MeshMesh

Elemental
matrices

Elemental
matrices

Fixed
conditions
Fixed
conditions

Intependent
terms
Intependent
terms

FEMSolver.MPIFEMSolver.MPI SolutionSolution
PipePipe PipePipe

Cluster of computersCluster of computers

It uses the MPI technology to handle communication between nodes in the cluster. It makes high 
performance computing (HPC) easy to use.

EqnSolver
This program was designed to solve systems of equations from finite volume and finite differences 
problems. It works in a similar way than FEMSolver, but instead of mesh and elemental matrices, it 
takes as input a sparse matrix.

Sparse
matrix

Sparse
matrix

Fixed
conditions
Fixed
conditions

Intependent
terms
Intependent
terms

EqnSolverEqnSolver SolutionSolution
PipePipe PipePipe

It can use any of the solvers of the FEMT library.

MatSolver
Another simple way to access the FEMT libary solvers is through systems of equations written in 
the MatLab file format, MatSolver reads this file, calls any of the solvers available and stores the 
result in a file with MatLab format.

MatLab
file with a
system of
equations

MatLab
file with a
system of
equations

MatSolverMatSolver
MatLab
file with
the solution

MatLab
file with
the solution
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Sparse matrices

Sparse matrices
In problems modeled with finite element or finite volume methods is common to have to solve 
linear system of equations

Ax=b.

Relation between adjacent nodes is captured as entries in a matrix. Because a node has adjacency 
with only a few others, the resulting matrix has a very sparse structure.

i j



∂

    A=
° ° ° ° ° ° ° ° ⋯
° a i i ° a j i ° ° ° ° ⋯

° ° ° ° ° ° ° ° ⋯
° a i j ° a j j ° ° ° ° ⋯

° ° ° ° ° ° ° ° ⋯
° ° ° ° ° ° ° ° ⋯
° ° ° ° ° ° ° ° ⋯
° ° ° ° ° ° ° ° ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱


Figure 1. Discretized domain (mesh) and its matrix representation.

Lets define the notation η( A), it indicates the number of non-zero entries of A.

For example, A∈ℝ556×556 has 309,136 entries, with η(A)=1810, this means that only the 0.58% of 
the entries are non zero.

Figure 2. Black dots indicates a non zero entry in the matrix

In finite element problems all matrices have symmetric structure, and depending on the problem 
symmetric values or not.

Matrix storage
An efficient method to store and operate matrices of this kind of problems is the Compressed Row 
Storage (CRS) [Saad03 p362]. This method is suitable when we want to access entries of each row 
of a matrix A sequentially.

For each row i of A we will have two vectors, a vector v i
A that will contain the non-zero values of 

the row, and a vector j i
A with their respective column indexes. For example a matrix A and its CRS 
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representation

A=(
8 4 0 0 0 0
0 0 1 3 0 0
2 0 1 0 7 0
0 9 3 0 0 1
0 0 0 0 0 5

), 
8 4
1 2
1 3
3 4
2 1
1 3

7
5

9 3
2 3

1
6

5
6

v4
A
=(9,3, 1)

j 4
A
=(2,3, 6)

The size of the row will be denoted by ∣vi
A∣ or by ∣ jiA∣. Therefore the q th non zero value of the row 

i of A will be denoted by (v i
A)q and the index of this value as ( jiA)q, with q=1,… ,∣v i

A∣.
If we do not order entries of each row, then to search an entry with certain column index will have a 
cost of O(∣vi

A∣) in the worst case. To improve it we will keep v i
A and j i

A ordered by the indexes j i
A. 

Then we could perform a binary algorithm to have an search cost of O (log 2∣v i
A∣).

The  main  advantage  of  using  Compressed  Row  Storage  is  when  data  in  each  row  is  stored 
continuously and accessed in a sequential way, this is important because we will have and efficient 
processor cache usage [Drep07].

Cholesky factorization for sparse matrices
The cost of using Cholesky factorization  A=L LT is expensive if we want to solve systems of 
equations with full matrices, but for sparse matrices we could reduce this cost significantly if we 
use reordering strategies and we store factor matrices using CRS identifying non zero entries using 
symbolic factorization. With these strategies we could maintain memory and time requirements near 
to O(n). Also Cholesky factorization could be implemented in parallel.
Formulae to calculate L entries are

L i j=
1

L j j
(Ai j−∑

k=1

j−1

L i k L j k), for i> j; (1)

L j j=√A j j−∑
k=1

j−1

L j k
2 . (2)

Reordering rows and columns
By reordering the rows and columns of a SPD matrix A  we could reduce the fill-in (the number of 
non-zero entries) of L. The next images show the non zero entries of A∈ℝ556×556  and the non zero 
entries of its Cholesky factorization L.
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Cholesky factorization for sparse matrices

 

Figure 3. Left: non-zero entries of A . Right: non-zero entries of L (Cholesky factorization of A )

The number of non zero entries of A  is η(A)=1810 , and  for L is η(L)=8729. The next images 
show A  with an efficient reordering by rows and columns.

        

Figure 4. Left: non-zero entries of reordered A . Right: non-zero entries of L .

By reordering we have a new factorization with  η(L)=3215 , reducing the fill-in to 0.368 of the 
size  of  the  not  reordered  version.  Both  factorizations  allow  us  to  solve  the  same  system  of 
equations.
The most common reordering heuristic to reduce fill-in is the minimum degree algorithm, the basic 
version is presented in  [Geor81 p116]:

Let be a matrix A and its corresponding graph G 0

i ← 1
repeat

Let node x i in Gi−1(X i−1 , E i−1) have minimum degree
Form a new elimination graph Gi(X i ,E i) as follow:

Eliminate x i and its edges from Gi−1

Add edges make adj(x1) adjacent pairs in Gi

i ← i+1
while i<∣X ∣

More advanced versions of this algorithm can be consulted in [Geor89].

There are more complex algorithms that perform better in terms of time and memory requirements, 
the nested dissection algorithm developed by Karypis and Kumar [Kary99] included in METIS 
library gives very good results.
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Cholesky factorization for sparse matrices

Symbolic Cholesky factorization
This algorithm identifies non zero entries of L, a deep explanation could be found in [Gall90 p86-
88].

For an sparse matrix A, we define
a j ≝ {k> j ∣ Ak j≠0}, j=1…n,

as the set of non zero entries of column j of the strictly lower triangular part of A.
In similar way, for matrix L we define the set

l j ≝ {k> j ∣ Lk j≠0}, j=1…n.

We also use sets define sets r j that will contain columns of L which structure will affect the column 
j of L. The algorithm is:

r j ← ∅, j ← 1…n
for j ← 1…n
l j ← a j

for i∈r j

l j ← l j∪l i ∖ { j }
end_for

p ← {min {i∈ l j} si l j≠∅

j otro caso
r p ← r p∪{ j }

end_for

For the next example matrix column 2, a2 and l 2 will be:

A=(
a1 1 a12 a16

a21 a22 a2 3 a2 4

a32 a33 a35

a42 a4 4

a53 a55 a56

a61 a65 a66

)
a2={3,4 }

  
L=(

l 1 1

l 2 1 l 2 2

l 3 2 l 3 3

l 4 2 l 4 3 l 44

l 5 3 l 54 l5 5

l 6 1 l 6 2 l 6 3 l 64 l6 5 l 66

)
l 2={3, 4,6}

Figure 5. Example matrix, showing how a2 and l 2 are formed.

This algorithm is very efficient, complexity in time and memory usage has an order of  O(η(L)). 
Symbolic factorization could be seen as a sequence of elimination graphs [Geor81 pp92-100].
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Filling entries in parallel
Once non zero entries are determined we can rewrite (1) and (2) as

L i j=
1

L j j(Ai j− ∑
k∈ ji

L
∩ j j

L

k < j

Li k L j k), for i> j;

L j j=√A j j−∑
k∈ j j

L

k < j

L j k
2

.

The resulting algorithm to fill non zero entries is [Varg10]:

for j ← 1…n
L j j ← A j j

for q ← 1…∣v j
L
∣

L j j ← L j j−(v j
L
)q(v j

L
)q

L j j ← √L j j

L j j
T
← L j j

parallel for q ← 1…∣ j j
L T

∣
i ← ( j j

LT

)q
L i j ← Ai j

r ← 1; ρ ← ( jiL)r
s ← 1; σ ← ( jiL)s
repeat

while ρ<σ

r ← r+1; ρ ← ( jiL)r
while ρ>σ

s ← s+1; σ ← ( jiL)s
while ρ=σ

if ρ= j
exit repeat

L i j ← Li j−(v i
L)r (v j

L)s
r ← r+1; ρ ← ( jiL)r
s ← s+1; σ ← ( jiL)s

L i j ←
L i j

L j j

L j i
T
← Li j

This algorithm could be parallelized if we fill column by column. Entries of each column can be 
calculated in parallel with OpenMP, because there are no dependence among them [Heat91 pp442-
445]. Calculus of each column is divided among cores.

Core 1

Core 2

Core N

Figure 6. Calculation order to parallelize the Cholesky factorization.

Cholesky solver is particularly efficient because the stiffness matrix is factorized once. The domain 
is  partitioned  in  many small  sub-domains  to  have  small  and  fast  Cholesky factorizations.  The 
paralellization was made using the OpenMP schema.
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LDL’ factorization
A similar schema can be used for this factorization, formulae to calculate L entries are

L i j=
1
D j
(Ai j−∑

k=1

j−1

Li k L j k D k), for i> j

D j=A j j−∑
k=1

j−1

L j k
2 Dk .

Using sparse matrices, we can use the following

L i j=
1
D j (Ai j− ∑

k∈( J ( i )∩ J ( j ))
k < j

Li k L j k Dk), for i> j

D j=A j j−∑
k∈J ( i )

k < j

L j k
2 D k .

LU factorization for sparse matrices
Symbolic Cholesky factorization could be use to determine the structure of the LU factorization if 
the matrix has symmetric structure, like the ones resulting of the finite element and finite volume 
methods. The minimum degree algorithm gives also a good ordering for factorization. In this case L
and U T will have the same structure.

Formulae to calculate L and U  (using Doolittle’s algorithm) are

U i j=Ai j−∑
k=1

j−1

Li k U k j  for i> j,

L j i=
1

U i i
(A j i−∑

k=1

i−1

L j k U k i) for i> j,

U i i=Ai i−∑
k=1

i−1

Li k U k i, L i i=1.

By storing these matrices using sparse compressed row, we can rewrite them as

U i j=Ai j− ∑
k∈( J (i )∩ J ( j ))

k < j

Li k U j k for i> j,

L j i=
1

U i i(A j i− ∑
k∈( J ( j)∩J (i ))

k<i

L j k U i k) for i> j,

U i i=Ai i−∑
k∈J ( i )

k <i

L i k U i k, L i i=1.

12/33



LU factorization for sparse matrices

To parallelize the algorithm, the fill of U  must be done row by row, each row filled in parallel, L 
must be filled column by column, each one in parallel. The sequence to fill  L y  U  in parallel is 
shown in the following figures.

Core 1

Core 2

Core N

        

Core 1 Core 2 Core N

Similarity to the Cholesky algorithm, to improve performance we will store L, U  and U T matrices 
using CRS. It is shown in the next algorithm [Varg10]:

For j ← 1…n
U j j ← A j j

For q ← 1…(∣V j (L )∣−1)
U j j ← U j j−V j

q (L)V j
q (U )

L j j ← 1

U j j
T
← U j j

Parallel for q ← 2…∣J j (L
T)∣

i ← J j
q (LT)

L i j ← Ai j

U j i
T
← A j i

r ← 1; ρ ← J i
r (L )

s ← 1; σ ← J j
s (L )

Repeat
While ρ<σ

r ← r+1; ρ ← J i
r (L )

While ρ>σ

s ← s+1; σ ← J j
s (L )

While ρ=σ
If ρ= j

Exit repeat loop
L i j ← Li j−V i

r (L )V j
s (U T)

U j i
T
← U j i

T
−V j

s (L )V i
r(UT)

r ← r+1; ρ ← J i
r (L )

s ← s+1; σ ← J j
s (L )

L i j ←
Li j

U j j

L j i
T
← Li j

U j i ← U i j
T

Solvers for triangular sparse matrices
Using A=LU  in Ax= y, we have

LU x= y,
let z=U x , we have to solve two triangular systems

L z= y, U x=z,
for L z= y we solve for z making a forward substitution with
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Solvers for triangular sparse matrices

z i=
1

Li , i( y i− ∑
k∈J i (L)

k <i

Li , k zk),
finally, U x=z is solved for x making a backward substitution

x i=
1

U i ,i (zi− ∑
k∈J i(U )

k>i

n

U i , k xk).

Parallel preconditioned conjugate gradient
Conjugate gradient (CG) is a natural choice to solve systems of equations with SPD matrices, we 
will discuss some strategies to improve convergence rate and make it suitable to solve large sparse 
systems using parallelization.

The condition number κ of a non singular matrix A∈ℝm×m, given a norm ∥⋅∥ is defined as

κ(A)=∥A∥⋅∥A−1
∥.

For the norm ∥⋅∥2,

κ2(A)=∥A∥2⋅∥A
−1∥2=

σmax (A)

σmin(A)
,

where σ is a singular value of A.

For a SPD matrix,

κ(A)=
λmax(A)

λmin(A)
,

where λ  is an eigenvalue of A.
A system of equations Ax=b is bad conditioned if a small change in the values of A or b results in 
a large change in x. In well conditioned systems a small change of A or b produces an small change 
in x. Matrices with a condition number near to 1 are well conditioned.

A preconditioner for a matrix A is another matrix M  such that M A has a lower condition number
κ(M A)<κ(A).

In iterative stationary methods (like Gauss-Seidel) and more general methods of Krylov subspace 
(like conjugate gradient) a preconditioner reduces the condition number and also the amount of 
steps necessary for the algorithm to converge.
Instead of solving

Ax−b=0,
with preconditioning we solve

M (A x−b)=0.

The preconditioned conjugate gradient algorithm is:
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Parallel preconditioned conjugate gradient

x0, initial approximation
r0 ← b−A x0, initial gradient
q0 ← M r 0

p0 ← q0, initial descent direction
k ← 0
while ∥rk∥>ε

αk ← −
r k

Tqk

pk
T A pk

xk+1 ← x k+αk pk

rk +1 ← rk−αk A pk

qk +1 ← M r k+1

βk ←
r k+1

T qk +1

r k
T qk

pk+1 ← qk +1+βk pk

k ← k+1

For large and sparse systems of equations it is necessary to choose preconditioners that are also 
sparse.
We used the Jacobi preconditioner, it is suitable for sparse systems with SPD matrices. The diagonal 
part of M−1 is stored as a vector,

M−1=(diag(A))−1.

Parallelization of  this  algorithm is  straightforward,  because  the calculus  of  each entry of  qk  is 
independent.

Parallelization of the preconditioned CG is done using OpenMP, operations parallelized are matrix-
vector, dot products and vector sums. To synchronize threads has a computational cost, it is possible 
to modify to CG to reduce this costs maintaining numerical stability [DAze93].

Jacobi preconditioner
The diagonal part of M−1 is stored as a vector,

M−1
=(diag(A))−1.

Parallelization of  this  algorithm is  straightforward,  because  the calculus  of  each entry of  qk  is 
independent.

Incomplete Cholesky factorization preconditioner
This preconditioner has the form

M−1
=G lGl

T,
where  G l  is  a  lower  triangular  sparse  matrix  that  have  structure  similar  to  the  Cholesky 
factorization of A.

• The structure of G0  is equal to the structure of the lower triangular form of A.

• The structure of Gm  is equal to the structure of L (complete Cholesky factorization of A).
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Parallel preconditioned conjugate gradient

• For 0< l<m the structure of G l  is creating having a number of entries between L and the lower 
triangular form of A, making easy to control the sparsity of the preconditioner.

Values of G l  are filled using (4) and (5). This preconditioner is not always stable [Golu96 p535].

The use of this  preconditioner implies to solve a system of equations in each CG step using a 
backward and a forward substitution algorithm, this operations are fast given the sparsity of  G l . 
Unfortunately the dependency of values makes these substitutions very hard to parallelize.

Factorized sparse approximate inverse preconditioner
The aim of this preconditioner is to construct M  to be an approximation of the inverse of A with 
the property of being sparse. The inverse of a sparse matrix is not necessary sparse.

        

Ejemplo de las estructuras de una matriz rala y de su inversa

A way to create an approximate inverse is to minimize the Frobenius norm of the residual I−AM ,

F (M )=∥I−AM∥F
2. (3)

The Frobenius norm is defined as

∥A∥F=√∑
i=1

m

∑
j=1

n

∣ai j∣
2=√ tr(ATA).

It is possible to separate (3) into decoupled sums of  2-norms for each column [Chow98],

F (M )=∥I−AM∥F
2=∑

j=1

n

∥e j−Am j∥2
2,

where  e j is the j-th column of  I  and  m j is the j-th column of  M . With this separation we can 
parallelize the construction of the preconditioner.
The factorized sparse approximate inverse preconditioner [Chow01] creates a preconditioner

M=G l
TGl ,

where G  is a lower triangular matrix such that

G l≈L
−1,

where L is the Cholesky factor of A. l  is a positive integer that indicates a level of sparsity of the 
matrix.

Instead of minimizing (3), we minimize ∥I−G l L∥F
2, it is noticeable that this can be done without 

knowing L, solving the equations

(G l L L
T
)i j=(L

T
)i j , (i , j)∈SL,

this is equivalent to
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(G l A)i j=(I )i j, (i , j)∈SL,
S L contains the structure of G l .

This preconditioner has these features:

• M  is SPD if there are no zeroes in the diagonal of G l .

• The algorithm to construct the preconditioner is parallelizable.

• This algorithm is stable if A is SPD.

The algorithm to calculate the entries of G l  is:

Let S l  be the structure of G l

for j ← 1…n
for ∀(i , j)∈S l

solve (AG l)i j=δi j

Entries  of  G l  are  calculated  by rows.  To solve  (AG l)i j=δi j means that,  if  m=η((G l) j) is  the 
number of non zero entries of the column j  of  G l , then we have to solve a small SPD system of 
size m×m.

A simple way to define a structure S l  for G l  is to simply take the lower triangular part of A .

Another way is to construct S l  from the structure take from
Ã, Ã2, ..., Ãl ,

where Ã is a truncated version of A,

Ãi j={1 if i= j  o ∣(D−1/2 AD−1 /2)i j∣>threshold

0 other case
,

the threshold is a non negative number and the diagonal matrix D is

D̃i i={∣Ai i∣ if ∣Ai i∣>0
1 other case

.

Powers Ãl  can be calculated combining rows of Ã. Lets denote the k-th row of Ãl  as Ãk , :
l ,

Ãk , :
l
=Ãk ,:

l−1 Ã.

The structure S l  will be the lower triangular part of Ãl . With this truncated Ãl , a G̃ l  is calculated 
using the previous algorithm to create a preconditioner M=G̃ l

T G̃l .

The vector qk ← M r k is calculated with two matrix-vector products,
M rk=G̃ l

T
(G̃ l r k ).

Parallel biconjugated gradient
The biconjugate gradient method is based on the conjugate gradient method, it solves linear systems 
of equations

Ax=b,
in this case A∈ℝm×m does not need to be symmetric.
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This method requires to calculate a pseudo-gradient g̃k and a pseudo-direction of descent p̃k. The 
algorithm construcs the pseudo-gradients  g̃k to be orthogonal to the gradients  gk,  similarly,  the 
pseudo-directorions of descent p̃k to be A-orthogonal to the descent directions pk [Meie94 pp6-7].

If the matrix A is simmetric, then this method is equivalent to the conjugate gradient.
The drawbacks are, it does not assure convergence in  n iterations as conjugate gradient does, it 
requires to do two matrix-vector multiplications.

The algorithm is [Meie92]:

ε, tolerance
x0, initial coordinate
g0 ← A x0−b, initial gradient
g̃0 ← g0, initial pseudo-gradient
p0 ← −g0, initial descent direction
p̄0 ← p0, initial pseudo-direction of descent
k ← 0
while ∥gk∥>ε
w ← A pk

w̃ ← AT p̃k

αk ← −
g̃k

T g k

p̃k
Tw

xk+1 ← x k+αk pk

gk +1 ← gk+αw
g̃k +1 ← g̃k+α w̃

βk ←
g̃ k+1

T g k+1

g̃ k
T gk

pk+1 ← −gk +1+βk+1 pk

p̃k+1 ← − g̃k +1+βk+1 p̃k

k ← k+1

This method can also be preconditioned.

ε, tolerance
x0, initial coordinate
g0 ← A x0−b, initial gradient
g̃0 ← g0

T, initial pseudo-gradient

q0 ← M−1 g0

q̃0 ← g̃0M
−1

p0 ← −q0, initial descent direction
p̄0 ← −q̃0, initial pseudo-direction of descent
k ← 0
while ∥gk∥>ε
w ← A pk

w̃ ← p̃k A

αk ← −
q̃k gk

p̃kw
xk+1 ← x k+αk pk

gk +1 ← gk+αw
g̃k +1 ← g̃k+α w̃

qk +1 ← M−1 gk +1

q̃k +1 ← g̃k+1M
−1

βk ←
g̃ k+1qk +1

g̃ k qk

pk+1 ← −qk+1+βk +1 pk

p̃k+1 ← − q̃k+1+βk +1 p̃k

k ← k+1

Preconditioning with incomplete LU factorization
This preconditioner is analog to the incomplete Cholesky preconditioner, this one is formed by two 
matrices

M=G k H k ,

where  G k is a sparse lower triangular matrix, and  H k  is an sparse upper triangular matrix. They 
have a similar structure to the factorization LU of A∈ℝn×n.

• The structure of G0 is equal to the structure of the lower triangular part of A.

• The structure of H 0 is equal to the structure of the upper triangular part of A.
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• The structure of Gm is equal to the strucure of L (from the LU factorization of A.)

• The structure of H m is equal to the strucure of U  (from the LU factorization of A.)

• For 0<k <m the structure of G k is created to have a number of entries between G 0 and Gm, mak-
ing easy to control the sparsity of the preconditioner. Similarly for H k .

Values of G k  and H k  are filled using the formulae to calculate the LU factorization,

H i j=Ai j−∑
k=1

j−1

Gi k H k j  for i> j,

G j i=
1

H i i
(A j i−∑

k=1

i−1

G j k H k i) for i> j,

H i i=Ai i−∑
k=1

i−1

Gi k H k i, Gi i=1.

Approximate inverse preconditioner
An appoximate inverse for non-simmetric matrices can be constructed using the minimal resiual 
[Chow98]. The algorithm to build M  is:

Let M=M 0

for j ← 1…n
m j ← M e j

for i ← 1…s
r j ← e j−Am j

α j ←
r j

T Ar j

(Ar j )
T
Ar j

m j ← m j+α j r j

Truncate less significative entries of m j

This is an iterative method, here s is small. If no sparse vectors are used, then this algorithm will 
have an order of O (n2).
To initialize the algorithm, we can use

M 0=αG ,

with

α=
tr (AG )

tr (AG (AG )T)
,

G  can be selected as G=I  or G=AT.
M 0=α I  is the faster to calculate, but  M 0=α A

T produces a better initial approximation in some 
cases.

The next  step is  to use sparse vectors.  Let  b be a sparse vector,  η(b ) indicates the number of 
non-zero entries in b. A technique to select the most significative entries of  m j is truncate entries in 
the descent-direction of the minimal residual. Approximate inverse via minimal residual iteration 
with dropping in the search direction algorithm is shown next.
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Let M=M 0

for j ← 1…n
Let m j ← M e j be an sparse vector
Let d j a sparse vector with the same strucure than m j

for i ← 1…s
r j ← e j−Am j

d j ← r j only take the entries of r j with index in d j

α j ←
r j

TAd j

(Ad j )
T
Ad j

m j ← m j+α jd j

if η(m j )< lfil

add max∣(r j )k∣, such that k  does not exists in the structure of m j

Cons:

• The final structure of M  is not symetric.

• M  can be singular if s is small.

Schur sustructuring method
This is a domain decomposition method with no overlapping [Krui04], the basic idea is to split a 
large  system  of  equations  into  smaller  systems  that  can  be  solved  independently  in  different 
computers in paralle.

Γ f

Γd

Ω

   
i j

Figure 7. Finite element domain (left), domain discretization (center), partitioning (right).

We start with a system of equations resulting from a finite element problem
K d=f , (4)

where K  is a symetric positive definite matrix of size n×n.

Partitioning
If we divide the geometry into p partitions, the idea is to split the workload to let each partition to 
be handled by a computer in the cluster.

20/33



Schur sustructuring method

   

Figure 8. Partitioning example.

We can arrange (reorder variables) of the system of equations to have the following form

(
K1

II 0 K1
IB

K 2
II K2

IB

0 K3
II K3

IB

⋮ ⋱ ⋮

K p
II K p

IB

K 1
BI K2

BI K3
BI
⋯ K p

BI KBB
)(
d1

I

d2
I

d3
I

⋮

d p
I

dB
)=(

f 1
I

f 2
I

f 3
I

⋮

f p
I

f B
). (5)

The superscript II denotes entries that capture the relationship between nodes inside a partition. BB 
is used to indicate entries in the matrix that relate nodes on the boundary. Finally IB and BI are used 
for entries with values dependent of nodes in de boundary and nodes inside the partition.

K 1
II

K 1
IB

K 2
II

K 2
IB

K 3
II

K 3
IB

KBB

K2
IB

    (
K1

II 0 0 K1
IB

0 K2
II 0 K2

IB

0 0 K3
II K3

IB

K1
BI K 2

BI K3
BI KBB)

Figure 9. Substructuring example with three partitions.

Thus, the sistem can be separated in p different systems,

(Ki
II K i

IB

K i
BI KBB)(d i

I

dB)=( f i
I

f B), i=1… p.

For partitioning the mesh we used the METIS library [Kary99].

Schur complement method

For each partition i the vector of unknowns d i
I as

d i
I
=(K i

II)
−1
(f i

I
−Ki

IBdB). (6)
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After applying Gaussian elimination by blocks on (5), the reduced system of equations becomes

(KBB−∑
i=1

p

Ki
BI(K i

II)
−1
Ki

IB)dB=f B−∑
i=1

p

Ki
BI(Ki

II )
−1
f i

I. (7)

Once the vector dB is computed using (7), we can calculate the internal unknowns d i
I with (6).

It is not necessary to calculate the inverse in (7). Let’s define K̄ i
BB=Ki

BI (K i
II)−1K i

IB, to calculate it 
[Sori00], we proced column by column using an extra vector t , and solving for c=1…n

K i
II t=[K i

IB ]c, (8)

note that many [K i
IB ]c are null. Next we can complete K i

BB with,

[K̄ i
BB ]c=K i

BI t.

Now lets define f̄ i
B=Ki

BI(K i
II)−1f i

I, in this case only one system has to be solved

K i
II t=f i

I, (9)

and then

f̄ i
B
=Ki

BIt .

Each K̄ i
BB and f̄ i

B holds the contribution of each partition to (7), this can be written as

(KBB−∑
i=1

p

K̄i
BB)dB=f B−∑

i=1

p

f̄ i
B, (10)

once (10) is solved, we can calculate the inner results of each partition using (6).

Since K i
II is sparse and has to be solved many times in (8), a efficient way to proceed is to use a 

Cholesky factorization  of  K i
II.  To  reduce  memory usage  and  increce  speed  a  sparse  Cholesky 

factorization has to be implemented, this method is explained below.

In case of (10), KBB is sparse, but K̄ i
BB are not. To solve this system of equations an sparse version 

of  conjugate  gradient  was  implemented,  the  matrix  (KBB−∑i=1
p K̄ i

BB) is  not  assembled,  but 
maintained distributed. In the conjugate gradient method is only important to know how to multiply 
the  matrix  by  the  descent  direction,  in  our  implementation  each  K̄ i

BB is  maintained  in  their 
respective computer and the multiplication is done in a distributed way an the resulted vector is 
formed with contributions from all partitions. To improve the convergence of the conjugate gradient 
a Jacobi preconditioner is used. This algorithm is described below.

One benefit of this method is that the condition number of the system is reduced when solving (10), 
this decreases the number of iterations needed to converge.

Parallelization

Parallelization using multi-core computers
Using domain decomposition with MPI we could have a partition assigned to each node of a cluster, 
we  can  solve  all  partitions  concurrently.  If  each  node  is  a  multi-core  computer  we  can  also 
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parallelize  the  solution  of  the  system  of  equations  of  each  partition.  To  implement  this 
parallelization we use the OpenMP model.

This parallelization model consists in compiler directives inserted in the source code to parallelize 
sections of code. All cores have access to the same memory, this model is known as shared memory 
schema.
In modern computers with shared memory architecture the processor is a lot faster than the memory 
[Wulf95].
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Figure 10. Schematic of a multi-processor and multi-core computer.

To overcome this, a high speed memory called cache exists between the processor and RAM. This 
cache reads blocks of data from RAM meanwhile the processor is busy, using an heuristic to predict 
what  the  program  will  require  to  read  next.  Modern  processor  have  several  caches  that  are 
organized by levels (L1, L2, etc), L1 cache is next to the core. It is important to considerate the 
cache when programming high performance applications, the next table indicates the number of 
clock cycles needed to access each kind of memory by a Pentium M processor:

Access to CPU cycles
CPU registers <=1

L1 cache 3
L2 cache 14

RAM 240

A big bottleneck in multi-core systems with shared memory is that only one core can access the 
RAM at the same time.
Another bottleneck is the cache consistency. If two or more cores are accessing the same RAM data 
then different copies of this data could exists in each core’s cache, if a core modifies its cache copy 
then the system will  need to  update all  caches  and RAM, to keep consistency is  complex and 
expensive [Drep07]. Also, it  is necesary to consider that cache circuits are designed to be more 
efficient when reading continuous memory data in an ascendent sequence [Drep07 p15].

To avoid lose of performance due to wait for RAM access and synchronization times due to cache 
inconsistency several strategies can be use:

• Work with continuous memory blocks.

• Access memory in sequence.

• Each core should work in an independent memory area.
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Algorithms to solve our system of equations should take care of these strategies.

Computer clusters and MPI
We developed a software program that runs in parallel in a Beowulf cluster [Ster95]. A Beowulf  
cluster consists of several multi-core computers (nodes) connected with a high speed network.

S
la

ve
 n

o
d

es

Master node

Network switch

External
network

Figure 11. Diagram of a Beowulf cluster of computers.

In our software implementation each partition is assigned to one process. To parallelize the program 
and move data among nodes we used the Message Passing Interface (MPI) schema [MPIF08], it 
contains set of tools that makes easy to start several instances  of a program (processes) and run 
them in parallel. Also, MPI has several libraries with a rich set of routines to send and receive data 
messages among processes in an efficient way. MPI can be configured to execute one or several 
processes per node.

Numerical experiments

Solutions with OpenMP
First we will show results for the parallelization of solvers with OpenMP. The next example is a 2D 
solid deformation with 501,264 elements, 502,681 nodes. A system of equations with 1’005.362 
variables is formed, the number of non zero entries are η(K )=18 ' 062,500 ,  η(L)=111 ' 873,237 . 
Tolerance used in CG methods is ∥rk∥≥1×10−5.
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Cholesky CG CG-Jacobi CG-IChol CG-FSAI
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Solver 1 core
time [s]

2 cores
time [s]

4 cores
time [s]

8 cores
time [s]

Steps Memory

Cholesky 227 131 82 65 3,051,144,550
CG 457 306 258 260 9,251 317,929,450

CG-Jacobi 369 245 212 214 6,895 325,972,366
CG-IChol 154 122 113 118 1,384 586,380,322
CG-FSAI 320 187 156 152 3,953 430,291,930

The next example is a 3D solid model of a building that sustain deformation due to self-weight. 
Basement has fixed displacements.
The  domain  was  discretized  in  264,250  elements,  326,228  nodes,  978,684  variables, 
η(K )=69 ’ 255,522.
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Solver 1 core
time [m]

2 cores
time [m]

4 cores
time [m]

6 cores
time [m]

8 cores
time [m]

Memory

Cholesky 143 74 44 34 32 19,864,132,056
CG 388 245 152 147 142 922,437,575

CG-Jacobi 160 93 57 54 55 923,360,936
CG-FSAI 74 45 27 25 24 1,440,239,572

In this model, conjugate gradient with incomplete Cholesky factorization failed to converge.

Dynamic problems

Simulation of a 18 wheels 36 metric tons truck crossing the  Infante D. Henrique Bridge. Pre and 
post-process where made using GiD (http://gid.cimne.upc.es).

Nodes 337,195

Elements 1’413,279

Element type Tetrahedron

Time steps 372

HHT alpha factor 0

Rayleigh damping a 0.5

Rayleigh damping b 0.5

Degrees of freedom 1’011,585

nnz(K) 38’104,965

Time to assemble K 4.5 s

Time to reorder K 32.4 s

Factorization time 178.8 s

Time per step 2.6 s

Total time 1205.1 s
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Peak allocated memory: 9,537’397,868 bytes
Computer: 2 x Intel(R) Xeon(R) CPU E5620, 8 cores, 12MB cache, 32 GB of RAM

Solutions with domain decomposition using MPI
We are going to present just a couple examples, these were executed in a cluster with 15 nodes, 
each one with two dual core Intel Xeon E5502 (1.87GHz) processors, a total of 60 cores. A node is 
used as a master process to load the geometry and the problem parameters, partition an split the 
systems  of  equations.  The  other  14  nodes  are  used  to  solve  the  system of  equations  of  each 
partition. Times are in seconds. Tolerance used is 1x10-10.

Solid deformation

The problem tested is a 3D solid model of a building that is deformed due to self weight. The 
geometry is divided in 1’336,832 elements, with 1’708,273 nodes, with three degrees of freedom 
per node the resulting system of equations has 5’124,819 unknowns. 

Figure 12. Substructuration of the domain.

Number of 
processes

Partitioning
time [s]

Inversion time 
(Cholesky) [s]

Schur complement 
time (CG) [s]

CG steps Total time [s]

14 47.6 18520.8 4444.5 6927 23025.0
28 45.7 6269.5 2444.5 8119 8771.6
56 44.1 2257.1 2296.3 9627 4608.9

27/33



Numerical experiments

14 28 56
0

5000

10000

15000

20000

Schur complement time (CG) 
[s]

Inversion time (Cholesky) [s]

Partitioning time [s]

Number of  processes

T
im

e
 [s

]

    

14 28 56
0

10

20

30

40

50

60

70

80 Slave processes [GB]

Number of processes

M
e

m
o

ry
 [G

ig
a

 b
yt

e
s

]

Number of 
processes

Master process 
[GB]

Slave processes 
[GB]

Total memory 
[GB]

14 1.89 73.00 74.89
28 1.43 67.88 69.32
56 1.43 62.97 64.41

Figure 13. Resulting deformation.

Heat diffusion

This is a 3D model of a heat sink, in this problem the base of the heat sink is set to a certain  
temperature and heat is lost in all the surfaces at a fixed rate. The geometry is divided in 4’493,232 
elements, with 1’084,185 nodes. The system of equations solved had 1’084,185 unknowns.

Number of 
processes

Partitioning
time [s]

Inversion time 
(Cholesky) [s]

Schur 
complement 
time (CG) [s]

CG steps Total time 
[s]

14 144.9 798.5 68.1 307 1020.5
28 146.6 242.0 52.1 348 467.1
56 144.2 82.8 27.6 391 264.0
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Figure 14. Substructuration of the domain.

Number of 
processes

Master process 
[GB]

Slave processes 
[GB]

Total memory 
[GB]

14 9.03 5.67 14.70
28 9.03 5.38 14.41
56 9.03 4.80 13.82
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Figure 15. Resulting temperature distribution.

Large systems of equations
To test solution times in larger systems of equations we set a simple geometry. We calculated the 
temperature distribution of a metalic square with Dirichlet conditions on all boundaries.

1°C
2°C
3°C
4°C

Figure 16. Geometry example.

The domain was discretized using quadrilaterals with nine nodes, the discretization made was from 
25 million nodes up to 150 million nodes. In all cases we divided the domain into 116 partitions.

In this case we used a larger cluster with mixed equipment 15 nodes with 4 Intel Xeon E5502 cores 
and 14 nodes with 4 AMD Opteron 2350 cores, a total of 116 cores. A node is used as a master  
process  to  load  the  geometry  and  the  problem  parameters,  partition  an  split  the  systems  of 
equations. Tolerance used was 1x10-10.

Equations Partitioning
time [min]

Inversion 
time 

(Cholesky) 
[min]

Schur 
complement 

time (CG) 
[min]

CG steps Total time 
[min]

25,010,001 6.2 17.3 4.7 872.0 29.4
50,027,329 13.3 43.7 6.3 1012.0 65.4
75,012,921 20.6 80.2 4.3 1136.0 108.3

100,020,001 28.5 115.1 5.4 1225.0 152.9
125,014,761 38.3 173.5 7.5 1329.0 224.2
150,038,001 49.3 224.1 8.9 1362.0 288.5
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Equations Master 
process [GB]

Average slave 
processes 
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Slave 
processes 

[GB]

Total 
memory 

[GB]
25,010,001 4.05 0.41 47.74 51.79
50,027,329 8.10 0.87 101.21 109.31
75,012,921 12.15 1.37 158.54 170.68

100,020,001 16.20 1.88 217.51 233.71
125,014,761 20.25 2.38 276.04 296.29
150,038,001 24.30 2.92 338.29 362.60
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Library license

Library license
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
Library General Public License for more details.

You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA.
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