
FEMT, an open source library for solving
large systems of equations in parallel

Miguel Vargas-Félix, Salvador Botello-Rionda
Computer Science Departament,
Centre for Mathematical Research (CIMAT).
Callejón Jalisco s/n, Mineral de Valenciana, Guanajuato, Gto. México 36240.
e-mail: miguelvargas@cimat.mx, botello@cimat.mx
WWW: http://www.cimat.mx

Table of Contents

Introduction.. 2
Modules.. 3

FEMT library...3
FEMSolver..5
FEMSolver.MPI...5
EqnSolver...6
MatSolver...6

Sparse matrices...7
Matrix storage...7

Cholesky factorization for sparse matrices...8
Reordering rows and columns..8
Symbolic Cholesky factorization...10
Filling entries in parallel...11
LDL’ factorization..12

LU factorization for sparse matrices...12
Solvers for triangular sparse matrices..13
Parallel preconditioned conjugate gradient...14

Jacobi preconditioner..15
Incomplete Cholesky factorization preconditioner...15
Factorized sparse approximate inverse preconditioner...16

Parallel biconjugated gradient..17
Preconditioning with incomplete LU factorization..18
Approximate inverse preconditioner..19

Schur sustructuring method..20
Partitioning..20
Schur complement method...21

Parallelization...22
Parallelization using multi-core computers..22

1/33

Introduction

Computer clusters and MPI..24
Numerical experiments...24

Solutions with OpenMP..24
Solutions with domain decomposition using MPI..27
Large systems of equations..30

Library license..32
References...32

Introduction
We present a new open source library and tools for solving large sparse linear systems of equations.
This software is specialy set to solve systems of equations resulting from finite element, finite
volume and finite differences discretizations.

In this work we will describe the solvers included in the library, there are three kind of solvers:
direct, iterative and domain decomposition. Direct and iterative solvers are designed to run in
parallel in multi-core computers using OpenMP. The domain decomposition solver has been
designed to run in clusters of computers using a combination of MPI (Message Passing Interface)
and OpenMP.
Direct solvers implemented are sparse versions of Cholesky and LU factorizations. We use
reordering and symbolic factorization to reduce and determine fill-in.

Iterative solvers are conjugate gradient and biconjugate gradient for sparse matrices. To improve
convergence, we implemented several preconditioners suitable for sparse systems: Jacobi,
incomplete Cholesky and LU factorizations, and sparse approximate inverses.
The domain decomposition method included is Schur substructuring method. This method allows to
split a large system of equations into many smaller systems that can be solved in different
processors or computers of a cluster, reducing solution times and making possible to solve systems
that can not fit in a single computer.

The FEMSolver is multi-platform library (Windows, GNU/Linux, Mac OS), released under the
GNU Library General Public License. It has been programmed in modern standard C++, and has
modules to access it from other languajes like Fortran, Python, C, etc.
We will show some numerical results of finite element modelation of solid deformation and heat
difussion, with systems of equations that have from a few million, to more than one hundred million
degrees of freedom.

2/33

Modules

Modules

FEMT library
This is a library designed to help scientists and engineers to solve large systems of equations from
problems of finite element, finite volume and finite difference problems. It was programmed in
modern C++, with focus on performance and efficient resource usage. It has a simple and intuitive
set of classes to handle meshes, systems of equations and solvers. Below is a list of its capabilities.

Containers

The following containers are available, these have been implemented to be efficient in time access
and memory consumption, most of the code use templates to allow these containers to handle any
data type, like float, double, integer, bool, etc.

• Sparse matrices (compress row and compress column storage), sparse vectors.

• Dense matrices and vectors.

• Upper and lower triangular matrices.

• Sets.

• Lists.

File operations

FEMT library includes routines to read/write files with several common formats:

• CSV (comma separated values).

• Matrix Market (http://math.nist.gov/MatrixMarket).

• MatLab (format v4).

Finite element routines

A group of classes to handle finite element data:

• Meshes with several kind of elements (triangular, quadrilateral, tetrahedron, hexahedron).

• Nodes for 2D and 3D geometries.

• Shape functions for, triangles (3 and 6 nodes), quadrilaterals (4, 8 and 9 nodes), tetrahedra (4 and
10 nodes), hexahedra (8, 20 and 27 nodes).

• Jacobian and determinant calculation for all shape functions.

• Quadrature rules, gauss quadrature (1, 2, 3, 4, 5, 6 and 7 points), triangle (1, 3, 4 and 7 points),
tetrahedron (1, 4, 5 and 11 points).

• Facet integration.

• Mesh partitioning using METIS library (http://glaros.dtc.umn.edu/gkhome/views/metis).

• Graph reordering for reducing fill-in in factorizations.

Parser

Parser for mathematical expresions. It can evaluate in run time strings.

• Suports single and double precision.

3/33

http://glaros.dtc.umn.edu/gkhome/views/metis
http://math.nist.gov/MatrixMarket

Modules

• Unlimited number of variables.

• Supports the following functions: abs, acos, asin, atan, atan2, ceil, cos, cosh, tan, exp, floor, log,
log10, mod, pow, sin, sinh, sqrt, tan, tanh.

Solvers for sparse matrices with OpenMP

The following list enumerates all solvers implemented for sparse matrices, all have been desigened
to run in parallel in multi-core computers using the OpenMP schema:

• Cholesky.

• Cholesky (LDL’).

• LU (Doolittle version).

• Upper triangular matrices.

• Lower triangular matrices.

• Conjugate gradient.

• Conjugate gradient + Jacobi preconditioner.

• Conjugate gradient + incomplete Cholesky factorization preconditioner.

• Conjugate gradient + incomplete Cholesky LDL’ factorization preconditioner.

• Conjugate gradient + factorized sparse approximate inverse preconditioner.

• Biconjugate gradient.

• Biconjugate gradient + Jacobi preconditioner.

• Biconjugate gradient + incomplete LU factorization preconditioner.

• Conjugate gradient + minimal residual sparse approximate inverse preconditioner.

Solvers for sparse matrices with MPI

These solvers have been designed to run in clusters of computers and solve systems of equations
that can not fit in a single computer.

• Distributed conjugate gradient with Jacobi preconditioner. This version of the conjugate gradient
stores the matrix in several computers that work simultaneously to obtain the solution.

• Schur substructuring method. This is a domain decomposition method that starts partitioning the
domain, splitting a large system of equations into many small systems, each one is sent to a com-
puter of the cluster to be evaluated independently, a global solution is obained from the comtribu-
tion of all systems.

Solvers for dense matrices with OpenMP

There are also some solvers implemented for dense matrices that run in parallel on multi-core
computers.

• Cholesky.

• LU (Doolittle version).

• Upper triangular matrices.

• Lower triangular matrices.

• Conjugate gradient.

4/33

Modules

• Conjugate gradient + Jacobi preconditioner.

FEMSolver
FEMSolver is a program that solves finite element problems in parallel using the FEMT library on
multi-core computers. It uses a very simple interface using pipes. A pipe is an object of the
operationg system that can be accessed like a file but does not write data to the disk, is a fast way to
communicate running programs.

MeshMesh

Elemental
matrices

Elemental
matrices

Fixed
conditions
Fixed
conditions

Intependent
terms
Intependent
terms

FEMSolverFEMSolver SolutionSolution
PipePipe PipePipe

If you know how to write files, you can use FEMSolver. The user only needs to write on a pipe data
describing the mesh, all the elemental matrices, fixed conditions, and the vector of intependent
terms. FEMSolver reads these data and runs one of the solvers from the FEMT library and retuns
the solution using other pipe, the user only has to read it like reading a normal file.

This flexible schema allows an used using any programming languaje (C/C++, Fortran, Python, C#,
Java, etc.) to solve large systems of equations resulting from finite element discretizations.
If the matrix remains constant, FEMSolver can be used to efficiently solve multi-step problems, like
dynamic deformations, transient heat diffusion, etc.

FEMSolver helps to focus on the solution of the problem and not in how to implement it.

FEMSolver.MPI
FEMSolver.MPI is a similar program to FEMSolver, but instead of solving the system of equations
using a single computer, it can use a cluster of computers to distribute the workload and solve even
larger systems of equations.

5/33

Modules

MeshMesh

Elemental
matrices

Elemental
matrices

Fixed
conditions
Fixed
conditions

Intependent
terms
Intependent
terms

FEMSolver.MPIFEMSolver.MPI SolutionSolution
PipePipe PipePipe

Cluster of computersCluster of computers

It uses the MPI technology to handle communication between nodes in the cluster. It makes high
performance computing (HPC) easy to use.

EqnSolver
This program was designed to solve systems of equations from finite volume and finite differences
problems. It works in a similar way than FEMSolver, but instead of mesh and elemental matrices, it
takes as input a sparse matrix.

Sparse
matrix

Sparse
matrix

Fixed
conditions
Fixed
conditions

Intependent
terms
Intependent
terms

EqnSolverEqnSolver SolutionSolution
PipePipe PipePipe

It can use any of the solvers of the FEMT library.

MatSolver
Another simple way to access the FEMT libary solvers is through systems of equations written in
the MatLab file format, MatSolver reads this file, calls any of the solvers available and stores the
result in a file with MatLab format.

MatLab
file with a
system of
equations

MatLab
file with a
system of
equations

MatSolverMatSolver
MatLab
file with
the solution

MatLab
file with
the solution

6/33

Sparse matrices

Sparse matrices
In problems modeled with finite element or finite volume methods is common to have to solve
linear system of equations

Ax=b.

Relation between adjacent nodes is captured as entries in a matrix. Because a node has adjacency
with only a few others, the resulting matrix has a very sparse structure.

i j



∂

 A=
° ° ° ° ° ° ° ° ⋯
° a i i ° a j i ° ° ° ° ⋯

° ° ° ° ° ° ° ° ⋯
° a i j ° a j j ° ° ° ° ⋯

° ° ° ° ° ° ° ° ⋯
° ° ° ° ° ° ° ° ⋯
° ° ° ° ° ° ° ° ⋯
° ° ° ° ° ° ° ° ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱


Figure 1. Discretized domain (mesh) and its matrix representation.

Lets define the notation η(A), it indicates the number of non-zero entries of A.

For example, A∈ℝ556×556 has 309,136 entries, with η(A)=1810, this means that only the 0.58% of
the entries are non zero.

Figure 2. Black dots indicates a non zero entry in the matrix

In finite element problems all matrices have symmetric structure, and depending on the problem
symmetric values or not.

Matrix storage
An efficient method to store and operate matrices of this kind of problems is the Compressed Row
Storage (CRS) [Saad03 p362]. This method is suitable when we want to access entries of each row
of a matrix A sequentially.

For each row i of A we will have two vectors, a vector v i
A that will contain the non-zero values of

the row, and a vector j i
A with their respective column indexes. For example a matrix A and its CRS

7/33

Sparse matrices

representation

A=(
8 4 0 0 0 0
0 0 1 3 0 0
2 0 1 0 7 0
0 9 3 0 0 1
0 0 0 0 0 5

),
8 4
1 2
1 3
3 4
2 1
1 3

7
5

9 3
2 3

1
6

5
6

v4
A
=(9,3, 1)

j 4
A
=(2,3, 6)

The size of the row will be denoted by ∣vi
A∣ or by ∣ jiA∣. Therefore the q th non zero value of the row

i of A will be denoted by (v i
A)q and the index of this value as (jiA)q, with q=1,… ,∣v i

A∣.
If we do not order entries of each row, then to search an entry with certain column index will have a
cost of O(∣vi

A∣) in the worst case. To improve it we will keep v i
A and j i

A ordered by the indexes j i
A.

Then we could perform a binary algorithm to have an search cost of O (log 2∣v i
A∣).

The main advantage of using Compressed Row Storage is when data in each row is stored
continuously and accessed in a sequential way, this is important because we will have and efficient
processor cache usage [Drep07].

Cholesky factorization for sparse matrices
The cost of using Cholesky factorization A=L LT is expensive if we want to solve systems of
equations with full matrices, but for sparse matrices we could reduce this cost significantly if we
use reordering strategies and we store factor matrices using CRS identifying non zero entries using
symbolic factorization. With these strategies we could maintain memory and time requirements near
to O(n). Also Cholesky factorization could be implemented in parallel.
Formulae to calculate L entries are

L i j=
1

L j j
(Ai j−∑

k=1

j−1

L i k L j k), for i> j; (1)

L j j=√A j j−∑
k=1

j−1

L j k
2 . (2)

Reordering rows and columns
By reordering the rows and columns of a SPD matrix A we could reduce the fill-in (the number of
non-zero entries) of L. The next images show the non zero entries of A∈ℝ556×556 and the non zero
entries of its Cholesky factorization L.

8/33

Cholesky factorization for sparse matrices

Figure 3. Left: non-zero entries of A . Right: non-zero entries of L (Cholesky factorization of A)

The number of non zero entries of A is η(A)=1810 , and for L is η(L)=8729. The next images
show A with an efficient reordering by rows and columns.

Figure 4. Left: non-zero entries of reordered A . Right: non-zero entries of L .

By reordering we have a new factorization with η(L)=3215 , reducing the fill-in to 0.368 of the
size of the not reordered version. Both factorizations allow us to solve the same system of
equations.
The most common reordering heuristic to reduce fill-in is the minimum degree algorithm, the basic
version is presented in [Geor81 p116]:

Let be a matrix A and its corresponding graph G 0

i ← 1
repeat

Let node x i in Gi−1(X i−1 , E i−1) have minimum degree
Form a new elimination graph Gi(X i ,E i) as follow:

Eliminate x i and its edges from Gi−1

Add edges make adj(x1) adjacent pairs in Gi

i ← i+1
while i<∣X ∣

More advanced versions of this algorithm can be consulted in [Geor89].

There are more complex algorithms that perform better in terms of time and memory requirements,
the nested dissection algorithm developed by Karypis and Kumar [Kary99] included in METIS
library gives very good results.

9/33

Cholesky factorization for sparse matrices

Symbolic Cholesky factorization
This algorithm identifies non zero entries of L, a deep explanation could be found in [Gall90 p86-
88].

For an sparse matrix A, we define
a j ≝ {k> j ∣ Ak j≠0}, j=1…n,

as the set of non zero entries of column j of the strictly lower triangular part of A.
In similar way, for matrix L we define the set

l j ≝ {k> j ∣ Lk j≠0}, j=1…n.

We also use sets define sets r j that will contain columns of L which structure will affect the column
j of L. The algorithm is:

r j ← ∅, j ← 1…n
for j ← 1…n
l j ← a j

for i∈r j

l j ← l j∪l i ∖ { j }
end_for

p ← {min {i∈ l j} si l j≠∅

j otro caso
r p ← r p∪{ j }

end_for

For the next example matrix column 2, a2 and l 2 will be:

A=(
a1 1 a12 a16

a21 a22 a2 3 a2 4

a32 a33 a35

a42 a4 4

a53 a55 a56

a61 a65 a66

)
a2={3,4 }

L=(

l 1 1

l 2 1 l 2 2

l 3 2 l 3 3

l 4 2 l 4 3 l 44

l 5 3 l 54 l5 5

l 6 1 l 6 2 l 6 3 l 64 l6 5 l 66

)
l 2={3, 4,6}

Figure 5. Example matrix, showing how a2 and l 2 are formed.

This algorithm is very efficient, complexity in time and memory usage has an order of O(η(L)).
Symbolic factorization could be seen as a sequence of elimination graphs [Geor81 pp92-100].

10/33

Cholesky factorization for sparse matrices

Filling entries in parallel
Once non zero entries are determined we can rewrite (1) and (2) as

L i j=
1

L j j(Ai j− ∑
k∈ ji

L
∩ j j

L

k < j

Li k L j k), for i> j;

L j j=√A j j−∑
k∈ j j

L

k < j

L j k
2

.

The resulting algorithm to fill non zero entries is [Varg10]:

for j ← 1…n
L j j ← A j j

for q ← 1…∣v j
L
∣

L j j ← L j j−(v j
L
)q(v j

L
)q

L j j ← √L j j

L j j
T
← L j j

parallel for q ← 1…∣ j j
L T

∣
i ← (j j

LT

)q
L i j ← Ai j

r ← 1; ρ ← (jiL)r
s ← 1; σ ← (jiL)s
repeat

while ρ<σ

r ← r+1; ρ ← (jiL)r
while ρ>σ

s ← s+1; σ ← (jiL)s
while ρ=σ

if ρ= j
exit repeat

L i j ← Li j−(v i
L)r (v j

L)s
r ← r+1; ρ ← (jiL)r
s ← s+1; σ ← (jiL)s

L i j ←
L i j

L j j

L j i
T
← Li j

This algorithm could be parallelized if we fill column by column. Entries of each column can be
calculated in parallel with OpenMP, because there are no dependence among them [Heat91 pp442-
445]. Calculus of each column is divided among cores.

Core 1

Core 2

Core N

Figure 6. Calculation order to parallelize the Cholesky factorization.

Cholesky solver is particularly efficient because the stiffness matrix is factorized once. The domain
is partitioned in many small sub-domains to have small and fast Cholesky factorizations. The
paralellization was made using the OpenMP schema.

11/33

Cholesky factorization for sparse matrices

LDL’ factorization
A similar schema can be used for this factorization, formulae to calculate L entries are

L i j=
1
D j
(Ai j−∑

k=1

j−1

Li k L j k D k), for i> j

D j=A j j−∑
k=1

j−1

L j k
2 Dk .

Using sparse matrices, we can use the following

L i j=
1
D j (Ai j− ∑

k∈(J (i)∩ J (j))
k < j

Li k L j k Dk), for i> j

D j=A j j−∑
k∈J (i)

k < j

L j k
2 D k .

LU factorization for sparse matrices
Symbolic Cholesky factorization could be use to determine the structure of the LU factorization if
the matrix has symmetric structure, like the ones resulting of the finite element and finite volume
methods. The minimum degree algorithm gives also a good ordering for factorization. In this case L
and U T will have the same structure.

Formulae to calculate L and U (using Doolittle’s algorithm) are

U i j=Ai j−∑
k=1

j−1

Li k U k j for i> j,

L j i=
1

U i i
(A j i−∑

k=1

i−1

L j k U k i) for i> j,

U i i=Ai i−∑
k=1

i−1

Li k U k i, L i i=1.

By storing these matrices using sparse compressed row, we can rewrite them as

U i j=Ai j− ∑
k∈(J (i)∩ J (j))

k < j

Li k U j k for i> j,

L j i=
1

U i i(A j i− ∑
k∈(J (j)∩J (i))

k<i

L j k U i k) for i> j,

U i i=Ai i−∑
k∈J (i)

k <i

L i k U i k, L i i=1.

12/33

LU factorization for sparse matrices

To parallelize the algorithm, the fill of U must be done row by row, each row filled in parallel, L
must be filled column by column, each one in parallel. The sequence to fill L y U in parallel is
shown in the following figures.

Core 1

Core 2

Core N

Core 1 Core 2 Core N

Similarity to the Cholesky algorithm, to improve performance we will store L, U and U T matrices
using CRS. It is shown in the next algorithm [Varg10]:

For j ← 1…n
U j j ← A j j

For q ← 1…(∣V j (L)∣−1)
U j j ← U j j−V j

q (L)V j
q (U)

L j j ← 1

U j j
T
← U j j

Parallel for q ← 2…∣J j (L
T)∣

i ← J j
q (LT)

L i j ← Ai j

U j i
T
← A j i

r ← 1; ρ ← J i
r (L)

s ← 1; σ ← J j
s (L)

Repeat
While ρ<σ

r ← r+1; ρ ← J i
r (L)

While ρ>σ

s ← s+1; σ ← J j
s (L)

While ρ=σ
If ρ= j

Exit repeat loop
L i j ← Li j−V i

r (L)V j
s (U T)

U j i
T
← U j i

T
−V j

s (L)V i
r(UT)

r ← r+1; ρ ← J i
r (L)

s ← s+1; σ ← J j
s (L)

L i j ←
Li j

U j j

L j i
T
← Li j

U j i ← U i j
T

Solvers for triangular sparse matrices
Using A=LU in Ax= y, we have

LU x= y,
let z=U x , we have to solve two triangular systems

L z= y, U x=z,
for L z= y we solve for z making a forward substitution with

13/33

Solvers for triangular sparse matrices

z i=
1

Li , i(y i− ∑
k∈J i (L)

k <i

Li , k zk),
finally, U x=z is solved for x making a backward substitution

x i=
1

U i ,i (zi− ∑
k∈J i(U)

k>i

n

U i , k xk).

Parallel preconditioned conjugate gradient
Conjugate gradient (CG) is a natural choice to solve systems of equations with SPD matrices, we
will discuss some strategies to improve convergence rate and make it suitable to solve large sparse
systems using parallelization.

The condition number κ of a non singular matrix A∈ℝm×m, given a norm ∥⋅∥ is defined as

κ(A)=∥A∥⋅∥A−1
∥.

For the norm ∥⋅∥2,

κ2(A)=∥A∥2⋅∥A
−1∥2=

σmax (A)

σmin(A)
,

where σ is a singular value of A.

For a SPD matrix,

κ(A)=
λmax(A)

λmin(A)
,

where λ is an eigenvalue of A.
A system of equations Ax=b is bad conditioned if a small change in the values of A or b results in
a large change in x. In well conditioned systems a small change of A or b produces an small change
in x. Matrices with a condition number near to 1 are well conditioned.

A preconditioner for a matrix A is another matrix M such that M A has a lower condition number
κ(M A)<κ(A).

In iterative stationary methods (like Gauss-Seidel) and more general methods of Krylov subspace
(like conjugate gradient) a preconditioner reduces the condition number and also the amount of
steps necessary for the algorithm to converge.
Instead of solving

Ax−b=0,
with preconditioning we solve

M (A x−b)=0.

The preconditioned conjugate gradient algorithm is:

14/33

Parallel preconditioned conjugate gradient

x0, initial approximation
r0 ← b−A x0, initial gradient
q0 ← M r 0

p0 ← q0, initial descent direction
k ← 0
while ∥rk∥>ε

αk ← −
r k

Tqk

pk
T A pk

xk+1 ← x k+αk pk

rk +1 ← rk−αk A pk

qk +1 ← M r k+1

βk ←
r k+1

T qk +1

r k
T qk

pk+1 ← qk +1+βk pk

k ← k+1

For large and sparse systems of equations it is necessary to choose preconditioners that are also
sparse.
We used the Jacobi preconditioner, it is suitable for sparse systems with SPD matrices. The diagonal
part of M−1 is stored as a vector,

M−1=(diag(A))−1.

Parallelization of this algorithm is straightforward, because the calculus of each entry of qk is
independent.

Parallelization of the preconditioned CG is done using OpenMP, operations parallelized are matrix-
vector, dot products and vector sums. To synchronize threads has a computational cost, it is possible
to modify to CG to reduce this costs maintaining numerical stability [DAze93].

Jacobi preconditioner
The diagonal part of M−1 is stored as a vector,

M−1
=(diag(A))−1.

Parallelization of this algorithm is straightforward, because the calculus of each entry of qk is
independent.

Incomplete Cholesky factorization preconditioner
This preconditioner has the form

M−1
=G lGl

T,
where G l is a lower triangular sparse matrix that have structure similar to the Cholesky
factorization of A.

• The structure of G0 is equal to the structure of the lower triangular form of A.

• The structure of Gm is equal to the structure of L (complete Cholesky factorization of A).

15/33

Parallel preconditioned conjugate gradient

• For 0< l<m the structure of G l is creating having a number of entries between L and the lower
triangular form of A, making easy to control the sparsity of the preconditioner.

Values of G l are filled using (4) and (5). This preconditioner is not always stable [Golu96 p535].

The use of this preconditioner implies to solve a system of equations in each CG step using a
backward and a forward substitution algorithm, this operations are fast given the sparsity of G l .
Unfortunately the dependency of values makes these substitutions very hard to parallelize.

Factorized sparse approximate inverse preconditioner
The aim of this preconditioner is to construct M to be an approximation of the inverse of A with
the property of being sparse. The inverse of a sparse matrix is not necessary sparse.

Ejemplo de las estructuras de una matriz rala y de su inversa

A way to create an approximate inverse is to minimize the Frobenius norm of the residual I−AM ,

F (M)=∥I−AM∥F
2. (3)

The Frobenius norm is defined as

∥A∥F=√∑
i=1

m

∑
j=1

n

∣ai j∣
2=√ tr(ATA).

It is possible to separate (3) into decoupled sums of 2-norms for each column [Chow98],

F (M)=∥I−AM∥F
2=∑

j=1

n

∥e j−Am j∥2
2,

where e j is the j-th column of I and m j is the j-th column of M . With this separation we can
parallelize the construction of the preconditioner.
The factorized sparse approximate inverse preconditioner [Chow01] creates a preconditioner

M=G l
TGl ,

where G is a lower triangular matrix such that

G l≈L
−1,

where L is the Cholesky factor of A. l is a positive integer that indicates a level of sparsity of the
matrix.

Instead of minimizing (3), we minimize ∥I−G l L∥F
2, it is noticeable that this can be done without

knowing L, solving the equations

(G l L L
T
)i j=(L

T
)i j , (i , j)∈SL,

this is equivalent to

16/33

Parallel preconditioned conjugate gradient

(G l A)i j=(I)i j, (i , j)∈SL,
S L contains the structure of G l .

This preconditioner has these features:

• M is SPD if there are no zeroes in the diagonal of G l .

• The algorithm to construct the preconditioner is parallelizable.

• This algorithm is stable if A is SPD.

The algorithm to calculate the entries of G l is:

Let S l be the structure of G l

for j ← 1…n
for ∀(i , j)∈S l

solve (AG l)i j=δi j

Entries of G l are calculated by rows. To solve (AG l)i j=δi j means that, if m=η((G l) j) is the
number of non zero entries of the column j of G l , then we have to solve a small SPD system of
size m×m.

A simple way to define a structure S l for G l is to simply take the lower triangular part of A .

Another way is to construct S l from the structure take from
Ã, Ã2, ..., Ãl ,

where Ã is a truncated version of A,

Ãi j={1 if i= j o ∣(D−1/2 AD−1 /2)i j∣>threshold

0 other case
,

the threshold is a non negative number and the diagonal matrix D is

D̃i i={∣Ai i∣ if ∣Ai i∣>0
1 other case

.

Powers Ãl can be calculated combining rows of Ã. Lets denote the k-th row of Ãl as Ãk , :
l ,

Ãk , :
l
=Ãk ,:

l−1 Ã.

The structure S l will be the lower triangular part of Ãl . With this truncated Ãl , a G̃ l is calculated
using the previous algorithm to create a preconditioner M=G̃ l

T G̃l .

The vector qk ← M r k is calculated with two matrix-vector products,
M rk=G̃ l

T
(G̃ l r k).

Parallel biconjugated gradient
The biconjugate gradient method is based on the conjugate gradient method, it solves linear systems
of equations

Ax=b,
in this case A∈ℝm×m does not need to be symmetric.

17/33

Parallel biconjugated gradient

This method requires to calculate a pseudo-gradient g̃k and a pseudo-direction of descent p̃k. The
algorithm construcs the pseudo-gradients g̃k to be orthogonal to the gradients gk, similarly, the
pseudo-directorions of descent p̃k to be A-orthogonal to the descent directions pk [Meie94 pp6-7].

If the matrix A is simmetric, then this method is equivalent to the conjugate gradient.
The drawbacks are, it does not assure convergence in n iterations as conjugate gradient does, it
requires to do two matrix-vector multiplications.

The algorithm is [Meie92]:

ε, tolerance
x0, initial coordinate
g0 ← A x0−b, initial gradient
g̃0 ← g0, initial pseudo-gradient
p0 ← −g0, initial descent direction
p̄0 ← p0, initial pseudo-direction of descent
k ← 0
while ∥gk∥>ε
w ← A pk

w̃ ← AT p̃k

αk ← −
g̃k

T g k

p̃k
Tw

xk+1 ← x k+αk pk

gk +1 ← gk+αw
g̃k +1 ← g̃k+α w̃

βk ←
g̃ k+1

T g k+1

g̃ k
T gk

pk+1 ← −gk +1+βk+1 pk

p̃k+1 ← − g̃k +1+βk+1 p̃k

k ← k+1

This method can also be preconditioned.

ε, tolerance
x0, initial coordinate
g0 ← A x0−b, initial gradient
g̃0 ← g0

T, initial pseudo-gradient

q0 ← M−1 g0

q̃0 ← g̃0M
−1

p0 ← −q0, initial descent direction
p̄0 ← −q̃0, initial pseudo-direction of descent
k ← 0
while ∥gk∥>ε
w ← A pk

w̃ ← p̃k A

αk ← −
q̃k gk

p̃kw
xk+1 ← x k+αk pk

gk +1 ← gk+αw
g̃k +1 ← g̃k+α w̃

qk +1 ← M−1 gk +1

q̃k +1 ← g̃k+1M
−1

βk ←
g̃ k+1qk +1

g̃ k qk

pk+1 ← −qk+1+βk +1 pk

p̃k+1 ← − q̃k+1+βk +1 p̃k

k ← k+1

Preconditioning with incomplete LU factorization
This preconditioner is analog to the incomplete Cholesky preconditioner, this one is formed by two
matrices

M=G k H k ,

where G k is a sparse lower triangular matrix, and H k is an sparse upper triangular matrix. They
have a similar structure to the factorization LU of A∈ℝn×n.

• The structure of G0 is equal to the structure of the lower triangular part of A.

• The structure of H 0 is equal to the structure of the upper triangular part of A.

18/33

Parallel biconjugated gradient

• The structure of Gm is equal to the strucure of L (from the LU factorization of A.)

• The structure of H m is equal to the strucure of U (from the LU factorization of A.)

• For 0<k <m the structure of G k is created to have a number of entries between G 0 and Gm, mak-
ing easy to control the sparsity of the preconditioner. Similarly for H k .

Values of G k and H k are filled using the formulae to calculate the LU factorization,

H i j=Ai j−∑
k=1

j−1

Gi k H k j for i> j,

G j i=
1

H i i
(A j i−∑

k=1

i−1

G j k H k i) for i> j,

H i i=Ai i−∑
k=1

i−1

Gi k H k i, Gi i=1.

Approximate inverse preconditioner
An appoximate inverse for non-simmetric matrices can be constructed using the minimal resiual
[Chow98]. The algorithm to build M is:

Let M=M 0

for j ← 1…n
m j ← M e j

for i ← 1…s
r j ← e j−Am j

α j ←
r j

T Ar j

(Ar j)
T
Ar j

m j ← m j+α j r j

Truncate less significative entries of m j

This is an iterative method, here s is small. If no sparse vectors are used, then this algorithm will
have an order of O (n2).
To initialize the algorithm, we can use

M 0=αG ,

with

α=
tr (AG)

tr (AG (AG)T)
,

G can be selected as G=I or G=AT.
M 0=α I is the faster to calculate, but M 0=α A

T produces a better initial approximation in some
cases.

The next step is to use sparse vectors. Let b be a sparse vector, η(b) indicates the number of
non-zero entries in b. A technique to select the most significative entries of m j is truncate entries in
the descent-direction of the minimal residual. Approximate inverse via minimal residual iteration
with dropping in the search direction algorithm is shown next.

19/33

Parallel biconjugated gradient

Let M=M 0

for j ← 1…n
Let m j ← M e j be an sparse vector
Let d j a sparse vector with the same strucure than m j

for i ← 1…s
r j ← e j−Am j

d j ← r j only take the entries of r j with index in d j

α j ←
r j

TAd j

(Ad j)
T
Ad j

m j ← m j+α jd j

if η(m j)< lfil

add max∣(r j)k∣, such that k does not exists in the structure of m j

Cons:

• The final structure of M is not symetric.

• M can be singular if s is small.

Schur sustructuring method
This is a domain decomposition method with no overlapping [Krui04], the basic idea is to split a
large system of equations into smaller systems that can be solved independently in different
computers in paralle.

Γ f

Γd

Ω

i j

Figure 7. Finite element domain (left), domain discretization (center), partitioning (right).

We start with a system of equations resulting from a finite element problem
K d=f , (4)

where K is a symetric positive definite matrix of size n×n.

Partitioning
If we divide the geometry into p partitions, the idea is to split the workload to let each partition to
be handled by a computer in the cluster.

20/33

Schur sustructuring method

Figure 8. Partitioning example.

We can arrange (reorder variables) of the system of equations to have the following form

(
K1

II 0 K1
IB

K 2
II K2

IB

0 K3
II K3

IB

⋮ ⋱ ⋮

K p
II K p

IB

K 1
BI K2

BI K3
BI
⋯ K p

BI KBB
)(
d1

I

d2
I

d3
I

⋮

d p
I

dB
)=(

f 1
I

f 2
I

f 3
I

⋮

f p
I

f B
). (5)

The superscript II denotes entries that capture the relationship between nodes inside a partition. BB
is used to indicate entries in the matrix that relate nodes on the boundary. Finally IB and BI are used
for entries with values dependent of nodes in de boundary and nodes inside the partition.

K 1
II

K 1
IB

K 2
II

K 2
IB

K 3
II

K 3
IB

KBB

K2
IB

 (
K1

II 0 0 K1
IB

0 K2
II 0 K2

IB

0 0 K3
II K3

IB

K1
BI K 2

BI K3
BI KBB)

Figure 9. Substructuring example with three partitions.

Thus, the sistem can be separated in p different systems,

(Ki
II K i

IB

K i
BI KBB)(d i

I

dB)=(f i
I

f B), i=1… p.

For partitioning the mesh we used the METIS library [Kary99].

Schur complement method

For each partition i the vector of unknowns d i
I as

d i
I
=(K i

II)
−1
(f i

I
−Ki

IBdB). (6)

21/33

Schur sustructuring method

After applying Gaussian elimination by blocks on (5), the reduced system of equations becomes

(KBB−∑
i=1

p

Ki
BI(K i

II)
−1
Ki

IB)dB=f B−∑
i=1

p

Ki
BI(Ki

II)
−1
f i

I. (7)

Once the vector dB is computed using (7), we can calculate the internal unknowns d i
I with (6).

It is not necessary to calculate the inverse in (7). Let’s define K̄ i
BB=Ki

BI (K i
II)−1K i

IB, to calculate it
[Sori00], we proced column by column using an extra vector t , and solving for c=1…n

K i
II t=[K i

IB]c, (8)

note that many [K i
IB]c are null. Next we can complete K i

BB with,

[K̄ i
BB]c=K i

BI t.

Now lets define f̄ i
B=Ki

BI(K i
II)−1f i

I, in this case only one system has to be solved

K i
II t=f i

I, (9)

and then

f̄ i
B
=Ki

BIt .

Each K̄ i
BB and f̄ i

B holds the contribution of each partition to (7), this can be written as

(KBB−∑
i=1

p

K̄i
BB)dB=f B−∑

i=1

p

f̄ i
B, (10)

once (10) is solved, we can calculate the inner results of each partition using (6).

Since K i
II is sparse and has to be solved many times in (8), a efficient way to proceed is to use a

Cholesky factorization of K i
II. To reduce memory usage and increce speed a sparse Cholesky

factorization has to be implemented, this method is explained below.

In case of (10), KBB is sparse, but K̄ i
BB are not. To solve this system of equations an sparse version

of conjugate gradient was implemented, the matrix (KBB−∑i=1
p K̄ i

BB) is not assembled, but
maintained distributed. In the conjugate gradient method is only important to know how to multiply
the matrix by the descent direction, in our implementation each K̄ i

BB is maintained in their
respective computer and the multiplication is done in a distributed way an the resulted vector is
formed with contributions from all partitions. To improve the convergence of the conjugate gradient
a Jacobi preconditioner is used. This algorithm is described below.

One benefit of this method is that the condition number of the system is reduced when solving (10),
this decreases the number of iterations needed to converge.

Parallelization

Parallelization using multi-core computers
Using domain decomposition with MPI we could have a partition assigned to each node of a cluster,
we can solve all partitions concurrently. If each node is a multi-core computer we can also

22/33

Parallelization

parallelize the solution of the system of equations of each partition. To implement this
parallelization we use the OpenMP model.

This parallelization model consists in compiler directives inserted in the source code to parallelize
sections of code. All cores have access to the same memory, this model is known as shared memory
schema.
In modern computers with shared memory architecture the processor is a lot faster than the memory
[Wulf95].

Motherboard

Processor

Core

32
K

B
L

1
Core

32
K

B
L

1

Processor

Core

32
K

B
L

1

Core

32
K

B
L

1

B
us RAM

4
M

B
 c

a
ch

e
 L

2
4

M
B

 c
a

ch
e

 L
2

Figure 10. Schematic of a multi-processor and multi-core computer.

To overcome this, a high speed memory called cache exists between the processor and RAM. This
cache reads blocks of data from RAM meanwhile the processor is busy, using an heuristic to predict
what the program will require to read next. Modern processor have several caches that are
organized by levels (L1, L2, etc), L1 cache is next to the core. It is important to considerate the
cache when programming high performance applications, the next table indicates the number of
clock cycles needed to access each kind of memory by a Pentium M processor:

Access to CPU cycles
CPU registers <=1

L1 cache 3
L2 cache 14

RAM 240

A big bottleneck in multi-core systems with shared memory is that only one core can access the
RAM at the same time.
Another bottleneck is the cache consistency. If two or more cores are accessing the same RAM data
then different copies of this data could exists in each core’s cache, if a core modifies its cache copy
then the system will need to update all caches and RAM, to keep consistency is complex and
expensive [Drep07]. Also, it is necesary to consider that cache circuits are designed to be more
efficient when reading continuous memory data in an ascendent sequence [Drep07 p15].

To avoid lose of performance due to wait for RAM access and synchronization times due to cache
inconsistency several strategies can be use:

• Work with continuous memory blocks.

• Access memory in sequence.

• Each core should work in an independent memory area.

23/33

Parallelization

Algorithms to solve our system of equations should take care of these strategies.

Computer clusters and MPI
We developed a software program that runs in parallel in a Beowulf cluster [Ster95]. A Beowulf
cluster consists of several multi-core computers (nodes) connected with a high speed network.

S
la

ve
 n

o
d

es

Master node

Network switch

External
network

Figure 11. Diagram of a Beowulf cluster of computers.

In our software implementation each partition is assigned to one process. To parallelize the program
and move data among nodes we used the Message Passing Interface (MPI) schema [MPIF08], it
contains set of tools that makes easy to start several instances of a program (processes) and run
them in parallel. Also, MPI has several libraries with a rich set of routines to send and receive data
messages among processes in an efficient way. MPI can be configured to execute one or several
processes per node.

Numerical experiments

Solutions with OpenMP
First we will show results for the parallelization of solvers with OpenMP. The next example is a 2D
solid deformation with 501,264 elements, 502,681 nodes. A system of equations with 1’005.362
variables is formed, the number of non zero entries are η(K)=18 ' 062,500 , η(L)=111 ' 873,237 .
Tolerance used in CG methods is ∥rk∥≥1×10−5.

24/33

Numerical experiments

Cholesky CG CG-Jacobi CG-IChol CG-FSAI

0

50

100

150

200

250

300

350

400

450 1 thread

2 threads

4 threads

8 threads

T
im

e
 [s

]

Solver 1 core
time [s]

2 cores
time [s]

4 cores
time [s]

8 cores
time [s]

Steps Memory

Cholesky 227 131 82 65 3,051,144,550
CG 457 306 258 260 9,251 317,929,450

CG-Jacobi 369 245 212 214 6,895 325,972,366
CG-IChol 154 122 113 118 1,384 586,380,322
CG-FSAI 320 187 156 152 3,953 430,291,930

The next example is a 3D solid model of a building that sustain deformation due to self-weight.
Basement has fixed displacements.
The domain was discretized in 264,250 elements, 326,228 nodes, 978,684 variables,
η(K)=69 ’ 255,522.

Cholesky CG CG-Jacobi CG-FSAI

0

50

100

150

200

250

300

350

400

1 core 2 cores 4 cores 6 cores 8 cores

T
im

e
 [m

]

25/33

Numerical experiments

Solver 1 core
time [m]

2 cores
time [m]

4 cores
time [m]

6 cores
time [m]

8 cores
time [m]

Memory

Cholesky 143 74 44 34 32 19,864,132,056
CG 388 245 152 147 142 922,437,575

CG-Jacobi 160 93 57 54 55 923,360,936
CG-FSAI 74 45 27 25 24 1,440,239,572

In this model, conjugate gradient with incomplete Cholesky factorization failed to converge.

Dynamic problems

Simulation of a 18 wheels 36 metric tons truck crossing the Infante D. Henrique Bridge. Pre and
post-process where made using GiD (http://gid.cimne.upc.es).

Nodes 337,195

Elements 1’413,279

Element type Tetrahedron

Time steps 372

HHT alpha factor 0

Rayleigh damping a 0.5

Rayleigh damping b 0.5

Degrees of freedom 1’011,585

nnz(K) 38’104,965

Time to assemble K 4.5 s

Time to reorder K 32.4 s

Factorization time 178.8 s

Time per step 2.6 s

Total time 1205.1 s

26/33

http://gid.cimne.upc.es/
http://en.structurae.de/structures/data/index.cfm?id=s0004697

Numerical experiments

Peak allocated memory: 9,537’397,868 bytes
Computer: 2 x Intel(R) Xeon(R) CPU E5620, 8 cores, 12MB cache, 32 GB of RAM

Solutions with domain decomposition using MPI
We are going to present just a couple examples, these were executed in a cluster with 15 nodes,
each one with two dual core Intel Xeon E5502 (1.87GHz) processors, a total of 60 cores. A node is
used as a master process to load the geometry and the problem parameters, partition an split the
systems of equations. The other 14 nodes are used to solve the system of equations of each
partition. Times are in seconds. Tolerance used is 1x10-10.

Solid deformation

The problem tested is a 3D solid model of a building that is deformed due to self weight. The
geometry is divided in 1’336,832 elements, with 1’708,273 nodes, with three degrees of freedom
per node the resulting system of equations has 5’124,819 unknowns.

Figure 12. Substructuration of the domain.

Number of
processes

Partitioning
time [s]

Inversion time
(Cholesky) [s]

Schur complement
time (CG) [s]

CG steps Total time [s]

14 47.6 18520.8 4444.5 6927 23025.0
28 45.7 6269.5 2444.5 8119 8771.6
56 44.1 2257.1 2296.3 9627 4608.9

27/33

Numerical experiments

14 28 56
0

5000

10000

15000

20000

Schur complement time (CG)
[s]

Inversion time (Cholesky) [s]

Partitioning time [s]

Number of processes

T
im

e
 [s

]

14 28 56
0

10

20

30

40

50

60

70

80 Slave processes [GB]

Number of processes

M
e

m
o

ry
 [G

ig
a

 b
yt

e
s

]

Number of
processes

Master process
[GB]

Slave processes
[GB]

Total memory
[GB]

14 1.89 73.00 74.89
28 1.43 67.88 69.32
56 1.43 62.97 64.41

Figure 13. Resulting deformation.

Heat diffusion

This is a 3D model of a heat sink, in this problem the base of the heat sink is set to a certain
temperature and heat is lost in all the surfaces at a fixed rate. The geometry is divided in 4’493,232
elements, with 1’084,185 nodes. The system of equations solved had 1’084,185 unknowns.

Number of
processes

Partitioning
time [s]

Inversion time
(Cholesky) [s]

Schur
complement
time (CG) [s]

CG steps Total time
[s]

14 144.9 798.5 68.1 307 1020.5
28 146.6 242.0 52.1 348 467.1
56 144.2 82.8 27.6 391 264.0

28/33

Numerical experiments

Figure 14. Substructuration of the domain.

Number of
processes

Master process
[GB]

Slave processes
[GB]

Total memory
[GB]

14 9.03 5.67 14.70
28 9.03 5.38 14.41
56 9.03 4.80 13.82

14 28 56
0

200

400

600

800

1000 Schur complement time (CG)

Inversion time (Cholesky)

Partitioning

Number of processes

T
im

e
 [s

]

14 28 56
0

2

4

6

8

10

12

14

16 Slave processes Master process

Number of processes

M
e

m
o

ry
 [G

ig
a

 b
yt

e
s

]

29/33

Numerical experiments

Figure 15. Resulting temperature distribution.

Large systems of equations
To test solution times in larger systems of equations we set a simple geometry. We calculated the
temperature distribution of a metalic square with Dirichlet conditions on all boundaries.

1°C
2°C
3°C
4°C

Figure 16. Geometry example.

The domain was discretized using quadrilaterals with nine nodes, the discretization made was from
25 million nodes up to 150 million nodes. In all cases we divided the domain into 116 partitions.

In this case we used a larger cluster with mixed equipment 15 nodes with 4 Intel Xeon E5502 cores
and 14 nodes with 4 AMD Opteron 2350 cores, a total of 116 cores. A node is used as a master
process to load the geometry and the problem parameters, partition an split the systems of
equations. Tolerance used was 1x10-10.

Equations Partitioning
time [min]

Inversion
time

(Cholesky)
[min]

Schur
complement

time (CG)
[min]

CG steps Total time
[min]

25,010,001 6.2 17.3 4.7 872.0 29.4
50,027,329 13.3 43.7 6.3 1012.0 65.4
75,012,921 20.6 80.2 4.3 1136.0 108.3

100,020,001 28.5 115.1 5.4 1225.0 152.9
125,014,761 38.3 173.5 7.5 1329.0 224.2
150,038,001 49.3 224.1 8.9 1362.0 288.5

30/33

Numerical experiments

25,010,001 50,027,329 75,012,921 100,020,001 125,014,761 150,038,001
0

50

100

150

200

250

300
Schur complement time (CG) [min]

Inversion time (Cholesky) [min]

Partitioning time [min]

Total time [min]

Number of equations

T
im

e
 [m

in
]

Equations Master
process [GB]

Average slave
processes

[GB]

Slave
processes

[GB]

Total
memory

[GB]
25,010,001 4.05 0.41 47.74 51.79
50,027,329 8.10 0.87 101.21 109.31
75,012,921 12.15 1.37 158.54 170.68

100,020,001 16.20 1.88 217.51 233.71
125,014,761 20.25 2.38 276.04 296.29
150,038,001 24.30 2.92 338.29 362.60

25,010,001 50,027,329 75,012,921 100,020,001 125,014,761 150,038,001
0

50

100

150

200

250

300

350 Slave processes [GB]

Master process [GB]

Number of equations

M
e

m
o

ry
 [G

ig
a

 b
yt

e
s

]

31/33

Library license

Library license
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.

You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.

References
[Chow98] E. Chow, Y. Saad. Approximate Inverse Preconditioners via Sparse-Sparse Iterations.

SIAM Journal on Scientific Computing. Vol. 19-3, pp. 995-1023. 1998.
[Chow01] E. Chow. Parallel implementation and practical use of sparse approximate inverse

preconditioners with a priori sparsity patterns. International Journal of High
Performance Computing, Vol 15. pp 56-74, 2001.

[DAze93] E. F. D'Azevedo, V. L. Eijkhout, C. H. Romine. Conjugate Gradient Algorithms with
Reduced Synchronization Overhead on Distributed Memory Multiprocessors. Lapack
Working Note 56. 1993.

[Drep07] U. Drepper. What Every Programmer Should Know About Memory. Red Hat, Inc. 2007.

[Farh91] C. Farhat and F. X. Roux, A method of finite element tearing and interconnecting and its
parallel solution algorithm, Internat. J. Numer. Meths. Engrg. 32, 1205-1227 (1991)

[Gall90] K. A. Gallivan, M. T. Heath, E. Ng, J. M. Ortega, B. W. Peyton, R. J. Plemmons, C. H.
Romine, A. H. Sameh, R. G. Voigt, Parallel Algorithms for Matrix Computations,
SIAM, 1990.

[Geor81] A. George, J. W. H. Liu. Computer solution of large sparse positive definite systems.
Prentice-Hall, 1981.

[Geor89] A. George, J. W. H. Liu. The evolution of the minimum degree ordering algorithm.
SIAM Review Vol 31-1, pp 1-19, 1989.

[Golu96] G. H. Golub, C. F. Van Loan. Matrix Computations. Third edition. The Johns Hopkins
University Press, 1996.

[Heat91] M T. Heath, E. Ng, B. W. Peyton. Parallel Algorithms for Sparse Linear Systems. SIAM
Review, Vol. 33, No. 3, pp. 420-460, 1991.

[Hilb77] H. M. Hilber, T. J. R. Hughes, and R. L. Taylor. Improved numerical dissipation for time
integration algorithms in structural dynamics. Earthquake Eng. and Struct. Dynamics,
5:283–292, 1977.

32/33

References

[Kary99] G. Karypis, V. Kumar. A Fast and Highly Quality Multilevel Scheme for Partitioning
Irregular Graphs. SIAM Journal on Scientific Computing, Vol. 20-1, pp. 359-392, 1999.

[Krui04] J. Kruis. “Domain Decomposition Methods on Parallel Computers”. Progress in
Engineering Computational Technology, pp 299-322. Saxe-Coburg Publications.
Stirling, Scotland, UK. 2004.

[MPIF08] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, Version
2.1. University of Tennessee, 2008.

[Saad03] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2003.
[Smit96] B. F. Smith, P. E. Bjorstad, W. D. Gropp. Domain Decomposition: Parallel Multilevel

Methods for Elliptic Partial Differential Equations. Cambridge University Press, 1996.

[Sori00] M. Soria-Guerrero. Parallel multigrid algorithms for computational fluid dynamics and
heat transfer. Universitat Politècnica de Catalunya. Departament de Màquines i Motors
Tèrmics. 2000. http://www.tesisenred.net/handle/10803/6678

[Ster95] T. Sterling, D. J. Becker, D. Savarese, J. E. Dorband, U. A. Ranawake, C. V. Packer.
BEOWULF: A Parallel Workstation For Scientific Computation. Proceedings of the
24th International Conference on Parallel Processing, 1995.

[Tose05] A. Toselli, O. Widlund. Domain Decomposition Methods - Algorithms and Theory.
Springer, 2005.

[Varg10] J. M. Vargas-Felix, S. Botello-Rionda. “Parallel Direct Solvers for Finite Element
Problems”. Comunicaciones del CIMAT, I-10-08 (CC), 2010.
http://www.cimat.mx/reportes/enlinea/I-10-08.pdf

[Wulf95] W. A. Wulf , S. A. Mckee. Hitting the Memory Wall: Implications of the Obvious.
Computer Architecture News, 23(1):20-24, March 1995.

[Yann81] M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM Journal on
Algebraic Discrete Methods, Volume 2, Issue 1, pp 77-79, March, 1981.

[Zien05] O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu, The Finite Element Method: Its Basis and
Fundamentals. Sixth edition, 2005.

33/33

http://www.tesisenred.net/handle/10803/6678
http://www.cimat.mx/reportes/enlinea/I-10-08.pdf

	Introduction
	Modules
	FEMT library
	Containers
	File operations
	Finite element routines
	Parser
	Solvers for sparse matrices with OpenMP
	Solvers for sparse matrices with MPI
	Solvers for dense matrices with OpenMP

	FEMSolver
	FEMSolver.MPI
	EqnSolver
	MatSolver

	Sparse matrices
	Matrix storage

	Cholesky factorization for sparse matrices
	Reordering rows and columns
	Symbolic Cholesky factorization
	Filling entries in parallel
	LDL’ factorization

	LU factorization for sparse matrices
	Solvers for triangular sparse matrices
	Parallel preconditioned conjugate gradient
	Jacobi preconditioner
	Incomplete Cholesky factorization preconditioner
	Factorized sparse approximate inverse preconditioner

	Parallel biconjugated gradient
	Preconditioning with incomplete LU factorization
	Approximate inverse preconditioner

	Schur sustructuring method
	Partitioning
	Schur complement method

	Parallelization
	Parallelization using multi‑core computers
	Computer clusters and MPI

	Numerical experiments
	Solutions with OpenMP
	Dynamic problems

	Solutions with domain decomposition using MPI
	Solid deformation
	Heat diffusion

	Large systems of equations

	Library license
	References

