Tarea 9: Multiplicadores de Lagrange, El Hessiano, El Teorema de Taylor, y

- 1. (Marsden 7-34,35,36,37; p. 249) Usa el método de multiplicadores de Lagrange para encontrar los únicos lugares donde puede haber máximos y mínimos locales de la función f sobre el conjunto S.
 - a) $f: \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto x^2 + y^2, S = \{(x, 2) | x \in \mathbb{R}\}$
 - b) $f: \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto x^2 + y^2, S = \{(x, y) \mid x^2 y^2 = 1\}$
 - c) $f: \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto x^2 y^2, S = \{(x, \cos x) \mid x \in \mathbb{R}\}$
- 2. (Marsden 6-7; p. 200) Encuentra los puntos críticos de las siguientes funciones $f: \mathbb{R}^2 \to \mathbb{R}$ (es decir, los puntos a donde f'(a) = 0) y para cada uno, determina si es máximos local, mínimo local, o ni máximo ni mínimo local.
 - a) $f(x,y) = x^3 + 6x^2 + 3y^2 12xy + 9x$
 - b) $f(x,y) = \sin x + y^2 2y + 1$
- 3. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x) = x^2 + y^2 xy$, sea $S = \{(x,y) \in \mathbb{R} \mid 3x^2 + y^2 \le 5\}$. Demuestra que f alcanza un máximo y un mínimo en S. Encontrar el máximo y el mínimo (con demostraciones).
- 4. Para cada función $f: \mathbb{R}^2 \to \mathbb{R}$ en lo siguiente, escribe los términos de la serie de Taylor hasta el orden dos alrededor del punto (0,0). Entonces $f(h) = p(h) + R_1(0,h)$ para cada $h \in \mathbb{R}^2$, donde p es el polinómio de Taylor de f de orden dos alrededor del punto (0,0) y $R_1(0,h)$ es el término de error. Encuentra un número M (con demostración) tal que $||R_2(0,h)|| \leq M||h||^3$ para todo $h \in \overline{B_1(0)}$.
 - $a) \ f(x,y) = e^{x+y}$
 - $b) f(x,y) = \sin(xy) + \cos(xy)$
- 5. (Marsden 7-10; p. 246) Se
a $f:\mathbb{R}^2\to\mathbb{R}^2$ una función de clase C^1 tal que

$$\partial_1 f^1(a) = \partial_2 f^2(a) \vee \partial_2 f^1(a) = -\partial_1 f^2(a)$$

para todo $a \in \mathbb{R}^2$. En otra notación,

$$\frac{\partial f^1}{\partial x}(a) = \frac{\partial f^2}{\partial y}(a) \text{ y } \frac{\partial f^1}{\partial y}(a) = -\frac{\partial f^2}{\partial x}(a)$$

para todo $a \in \mathbb{R}^2$. Estas ecuaciones diferenciales se llaman **Las Ecuaciones Cauchy-Riemann** y las funciones $f : \mathbb{R}^2 \to \mathbb{R}^2$ que las cumplen corresponden a las funciones $f : \mathbb{C} \to \mathbb{C}$ que son diferenciable *en el sentido complejo* (es decir, son funciones **holomorfas**).

- a) Demuestra que det $Df(a) \neq 0$ si y sólo si $f'(a) \neq 0$.
- b) De parte (a), se sique que si hay un punto $a \in \mathbb{R}^2$ donde $f'(a) \neq 0$, entonces podemos aplicar el teorema de la función inversa para construir vecindades $V \subseteq \mathbb{R}^2$ de $a \neq W \subseteq \mathbb{R}^2$ de f(a) tales que $f: V \to W$ es un difeomorfismo local. Demuestra que $f^{-1}: W \to V$ cumple las ecuaciones de Cauchy-Riemann.
- c) Construye una function $f: \mathbb{R}^2 \to \mathbb{R}^2$ de clase C^1 (que no necesariamente es una solución de las ecuaciones Cauchy-Riemann) tal que hay un punto $a \in \mathbb{R}^2$ con $f'(a) \neq 0$ pero det f'(a) = 0.
- 6. (Marsden 6; p. 199)
 - a) Sean $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$ y $g: \mathbb{R}^m \to \mathbb{R}^p$ funciones cuya segunda derivada existe en todos puntos. Demuestra que $g \circ f$ es una función que es dos veces diferenciable y que, para cada $x_0 \in A$, se tiene que la forma bilineal $D^2(g \circ f)(x_0)$ está dada por

$$D^{2}(g \circ f)(x_{0})(x_{1}, x_{2}) = D^{2}g(x_{0})(Df(x_{0})(x_{1}), Df(x_{0})(x_{2})) + Dg(f(x_{0}))(D^{2}f(x_{0})(x_{1}, x_{2}))$$

Recuerda que, por definición, tenemos

$$D^2 f(x_0)(x_1, x_2) = D(Df)(x_0)(x_1)(x_2).$$

Pista: El truco aquí es el uso cuidadoso de la regla de la cadena. Puedes reescribir $D(f \circ g) : A \to L(\mathbb{R}^n, \mathbb{R}^m)$ como una composición de funciones?

b) Sea $A \subseteq \mathbb{R}^n$ abierto y sea $f: A \to \mathbb{R}^m$ una función de clase C^k . Sea $p: \mathbb{R}^n \to \mathbb{R}^m$ una función que es igual a un mapeo lineal más un constante. Es decir, p(v) = h(v) + c, donde $c \in \mathbb{R}^n$ y $h: \mathbb{R}^n \to \mathbb{R}^m$ es lineal. Demuestra que para $x_0 \in A$ y $x_1, x_2 \in \mathbb{R}^n$, tenemos que:

$$D^{2}(f \circ p)(x_{0})(x_{1}, \dots, x_{k}) = D^{2}f(p(x_{0}))(Dp(x_{0})(x_{1}), \dots, Dp(x_{0})(x_{k}))$$
$$= D^{2}f(p(x_{0}))(h(x_{1}), \dots, h(x_{k})).$$

(La tercera expresión se sigue de la segunda por el hecho de que Dp(a) = h para todo $a \in A$.)

Pista: Usa inducción y el hecho de que

$$D^{k+1}f(x_0)(x_1,\ldots,x_{k+1}) = D^kf(x_0)(x_1)(x_2,\ldots,x_{k+1})$$

para $x_0 \in A$ y $x_1, \ldots, x_{k+1} \in \mathbb{R}^n$. (Recuerden que

$$D^k: A \to L^{(k)}(\mathbb{R}^n, \mathbb{R}^m)$$

es una función sobre A con valores en el espacio $L^{(k)}(\mathbb{R}^n,\mathbb{R}^m)$ de formas k-multilineales. Así que

$$D(D^k): A \to L(\mathbb{R}^n, L^{(k)}(\mathbb{R}^n, \mathbb{R}^m)$$

nos da, para cada punto en A, un mapeo lineal de \mathbb{R}^n a $L(\mathbb{R}^n, L^{(k)}(\mathbb{R}^n, \mathbb{R}^m))$. Entonces, $D^k f(x_0)(x_1)$ es una forma k-multilineal para cada $x_0 \in A$ y $x_1 \in \mathbb{R}^n$.)

7. (Marsden 7-15) Sea $GL(n,\mathbb{R}) = \{A \in M(n,n) \mid \det A \neq 0\}$, el grupo de las matrices $n \times n$ que son invertibles. Ya hemos visto que el espacio lineal de matrices $n \times n$ se puede identificar con el espacio \mathbb{R}^{n^2} (ya que hay n^2 entradas en cada matriz $n \times n$). Debido al hecho de que det : $M(n,n) \to \mathbb{R}$ es un mapeo continuo, sabemos que $GL(n,\mathbb{R})$ es un subconjunto abierto de M(n,n), ya que es la imagen inversa bajo det de un subconjunto abierto de \mathbb{R} .

Definamos el mapeo

$$\iota: \mathrm{GL}(n,\mathbb{R}) \to \mathrm{GL}(n,\mathbb{R})$$

 $A \mapsto A^{-1},$

que lleva una matriz invertible a su inversa. La regla de Cramer nos dice que ι es suave (de hecho, es una función racional como un mapeo de \mathbb{R}^{n^2} a \mathbb{R}^{n^2}). (Si no recuerdes o no has visto la regla de Cramer, deberías leerla para tu propio conocimiento de álgebra lineal.)

- a) Demuestra que ι es biyectivo.
- b) Es claro que $\iota(A) \cdot A = I$, donde $I \in \mathrm{GL}(n,\mathbb{R})$ es la identidad y el producto es el producto de matrices. A partir de tomar la derivada de ambos lados de esa ecuación, demuestra que:

$$D\iota(A)(B) = -A^{-1} \cdot B \cdot A^{-1}$$

Pista: El truco es demostrar que M(n,n) tiene una "regla del producto". Es decir, si $U \subseteq M(n,n)$ es abierto y $f,g:U \to M(n,n)$ son funciones diferenciables en un punto $a \in A$, entonces el mapeo $F:U \to M(n,n)$ es diferenciable en el punto $a \in U$, donde:

$$F:A\mapsto f(A)\cdot g(A),$$

donde el producto · es el producto de matrices. De hecho, puedes demostrar que:

$$DF(A)(B) = Df(A)(B) \cdot g(A) + f(A) \cdot Dg(A)(B).$$

¿Cómo vamos a demostrar ese resultado? Se puede demostrar esto por demostrar primero que la función

$$P: M(n,n) \times M(n,n) \rightarrow M(n,n)$$

 $(A,B) \rightarrow CD$

es continuamente diferenciable y que

$$DP(A, B)(C, D) = AD + BC.$$

Puedes demostrar esa equación a través demostrar que

$$\lim_{t\to 0}\frac{1}{t}(A+tC)\cdot (B+tD)=AD+BC$$

por trabajar componente por componente (¿por qué?). Después, puedes usar la regla de la cadena para calcular la derivada DF(A)(B).