Tarea 8: Teoremas de la Función Inversa y la Función Implícita

1. Supongamos que $m, n \in \mathbb{N}$ con $n \geq m$. Sea $A \subseteq \mathbb{R}^n$ un conjunto abierto y sea $f: A \to \mathbb{R}^m$ una función continuamente diferenciable en A tal que la transformación lineal $Df(a): \mathbb{R}^n \to \mathbb{R}^m$ es de rango m para todo $a \in A$ (recuerda que esto es equivalente a decir que Df(a) es sobreyectivo para cada $a \in A$).

Demuestra que f es un **mapeo abierto**, es decir, para cada conjunto abierto $U \subseteq A$, la imagen $f(U) \subseteq \mathbb{R}^m$ es abierta.

Pista: Usa el truco que usamos en la demostración del teorema de la función implícita.

2. Sea $A \subseteq \mathbb{R}^m$ abierto. Sea $f: A \to \mathbb{R}^m$ una función inyectiva y continuamente diferenciable, tal que det $f'(x) \neq 0$ para todo $x \in A$. Demuestra que $f: A \to f(A)$ es un **difeomorfismo de primer orden**, es decir, que la función inversa $f^{-1}: f(A) \to A$ es continuamente diferenciable.

Comentario: En el problema 5b, veremos que la suposición de que f es inyectiva es indispensable; es posible que det $f'(x) \neq 0$ en todos puntos pero f no sea inyectiva.

- 3. Sea X un espacio topológico compacto y sea (Y, d) un espacio métrico. Demuestra que si $f: X \to Y$ es biyectiva y continua, entonces $f^{-1}: Y \to X$ es continua, es decir, f es un **homeomorfismo**.
- 4. (Spivak 2-37) Sea $f: \mathbb{R}^2 \to \mathbb{R}$ una función continuamente diferenciable. Demuestra que f no puede ser inyectiva usando los teoremas acerca de la derivada.

Pista: Por ejemplo, si $\partial_1 f(x,y) \neq 0$ para (x,y) en algún conjunto abierta A, puedes considerar la función $g: A \to \mathbb{R}^2$ definida por g(x,y) = (f(x,y),y).

- 5. (Spivak 2-38)
 - a) Demuestra que si $f: \mathbb{R} \to \mathbb{R}$ satisface $f'(a) \neq 0$ para todo $a \in \mathbb{R}$, entonces f es invectiva.
 - b) Definamos $f: \mathbb{R}^2 \to \mathbb{R}^2$ por $f(x,y) = (e^x \cos y, e^x \sin y)$. Demuestra que f es continuamente diferenciable y que det $f'(x,y) \neq 0$ para todo (x,y), pero f no es inyectiva.

Comentario: El lector astuto habrá observado que este mapeo $f: \mathbb{R}^2 \to \mathbb{R}^2$ realmente es la función exponencial exp : $\mathbb{C} \to \mathbb{C}$ disfrazado si usamos la identificación $\mathbb{R} \leftrightarrow \mathbb{C}$ dada por $(x,y) \leftrightarrow x+iy$.

6. (Spivak 2-39) Demuestra que la function $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} \frac{x}{2} + x^2 \sin \frac{1}{x} & \text{si } x \neq 0\\ 0 & \text{si } x = 0 \end{cases}$$

sería un contraejemplo del teorema de la función inversa si la continuidad de la derivada no fuera una hipótesis de dicho teorema.

- 7. (Spivak 2-41) Sea $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ una función continuamente diferenciable en todos puntos. Supongamos además que todas sus derivadas parciales del segundo orden existen en todos puntos. Para cada $x \in \mathbb{R}$ definamos $g_x: \mathbb{R} \to \mathbb{R}$ por $g_x(y) = f(x,y)$. Supongamos que para cada $x \in \mathbb{R}$ hay un único número $y \in \mathbb{R}$ tal que $g'_x(y) = 0$; denotemos con c(x) este número y que depende de x.
 - a) Demuestra que si $\partial_{2,2} f(x,y) \neq 0$ para todo (x,y), entonces c es diferenciable y su derivada está dada por:

$$c'(x) = -\frac{\partial_{2,1} f(x, c(x))}{\partial_{2,2} f(x, c(x))}$$

 $Pista: g'_x(y) = 0$ se puede reescribir como $\partial_2 f(x, y) = 0$.

b) Demuestra que si c'(x) = 0, entonces existe $y \in \mathbb{R}$ tal que

$$\partial_{2,1} f(x,y) = 0$$

$$\partial_2 f(x,y) = 0$$

c) Sea $f(x,y) = x(y \log y - y) - y \log x$. Determina el número

$$\max_{\frac{1}{2} \le x \le 2} \left(\min_{\frac{1}{3} \le y \le 1} f(x, y) \right).$$