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Abstract

We extend the definition of conical representations for Riemannian symmetric
space to a certain class of infinite-dimensional Riemannian symmetric spaces. Us-
ing an infinite-dimensional version of Weyl’s Unitary Trick, there is a correspon-
dence between smooth representations of infinite-dimensional noncompact-type
Riemannian symmetric spaces and smooth representations of infinite-dimensional
compact-type symmetric spaces. We classify all smooth conical representations
which are unitary on the compact-type side. Finally, a new class of non-smooth
unitary conical representations appears on the compact-type side which has no
analogue in the finite-dimensional case. We classify these representations and show
how to decompose them into direct integrals of irreducible conical representations.
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Chapter 1
Introduction

Harmonic analysis and representation theory of topological groups have been very
well-studied over the past century and have produced many fruitful applications in
areas such as PDEs and quantum physics. Two broad developments in the theory
are brought together in this thesis: first, Helgason’s theory of horocycle spaces and
conical representations for noncompact-type Riemannian symmetric spaces and
second, the more recent study of representation theory and harmonic analysis on
infinite-dimensional Lie groups.

In the theory of Riemannian symmetric spaces, there are two crucially impor-
tant dualities. One is the duality between compact-type and noncompact-type
Riemannian symmetric spaces. The other is the duality between a noncompact-
type Riemannian symmetric space and its horocycle space. These dualities are
intimately connected to the representation theory of their corresponding isom-
etry groups (see [20], [22], and [23], for instance). For instance, Weyl’s unitary
trick sets up a correspondence between finite-dimensional spherical representations
for a compact-type symmetric space and finite-dimensional spherical representa-
tions for its corresponding noncompact-type symmetric space. In turn, the finite-
dimensional spherical representations for a noncompact-type symmetric space are
identical to the conical representations for its corresponding horocycle space.

More recently, researchers have turned their attention to the study of infinite-
dimensional Lie groups. These are groups which are modeled by locally convex
topological vector spaces in the same way that finite-dimensional Lie groups are
modeled on finite-dimensional vector spaces. The simplest and “smallest” infinite-
dimensional groups are the direct-limit groups, which are constructed by taking
unions of increasing chains of finite-dimensional Lie groups. In a similar way, one
can form an infinite-dimensional symmetric space by forming a direct limit of
finite-dimensional symmetric spaces. Representation theory and even harmonic
analysis questions for direct-limit groups and direct-limit symmetric spaces have
been studied in some depth (e.g., see [2], [4], [43], [44], [39], [40], [54], [55], and[56]
for just a few examples). A good overview of the field may be found in [45].

In particular, spherical representations for infinite-dimensional symmetric spaces
are well-studied in the literature (e.g., see [7] and [44]). On the other hand, the
theory of conical representations for infinite-dimensional Riemannian symmetric
spaces appears to have been largely neglected up to this point. In this thesis, we
begin to rectify this situation by classifying all of the smooth conical represen-
tations for direct limits of noncompact-type Riemannian symmetric spaces that
satisfy certain technical conditions. Combined with the results of [7], we see that
for infinite-dimensional symmetric spaces of infinite rank, none of the smooth con-
ical representations are spherical, a situation which is in stark contrast with the
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classical result of Helgason that all finite-dimensional representations are spherical
if and only if they are conical. We further demonstrate the existence, in certain
cases, of nonsmooth unitary conical representations for direct limits of compact-
type Riemannian symmetric spaces. This is a phenomenon which has no analogue
for finite-dimensional symmetric spaces. We also show how these conical represen-
tations decompose into direct integrals of irreducible representations.

The arrangement of this thesis is as follows. Chapter 2 reviews relevant theorems
from elementary representation theory and harmonic analysis. Chapter 3 reviews
the relevant structure theory for Riemannian symmetric spaces and their associated
horocycle spaces. It also reviews the basic results about spherical representations
and conical representations and their role in harmonic analysis on Riemannian
symmetric spaces and horocycle spaces. Much of the theory of spherical repre-
sentations are due to Harish-Chandra, and the corresponding results for conical
representations are mostly due to Helgason. Chapter 4 introduces the concept of
direct-limit Lie groups. It also introduces the necessary technical machinery for
studying direct limits of symmetric spaces and horocycle spaces. We define what
we call admissible direct limits of Riemannian symmetric spaces and show that the
classical examples of direct limits of Riemannian symmetric spaces meet this defini-
tion. Chapter 5 contains several useful results about representations of direct-limit
groups, including an infinite-dimensional generalization of Weyl’s Unitary Trick.
Finally, Chapter 6 contains the main results of the thesis. We provide natural def-
initions of conical representations for infinite-dimensional Riemannian symmetric
spaces. We construct and classify all unitary conical representations for direct lim-
its of compact-type symmetric spaces. Finally, in Chapter 7 we end by describing
some interesting questions which remain unanswered.

1.1 Notational Preliminaries
If A is a set, then its cardinality is denoted by #A. If G is a group, then e denotes
the identity element. If H and K are subgroups of G, then ZH(K) and NH(K)
denote the centralizer and normalizer, respectively, of K in H. Similar notation is
used for centralizers and normalizers of Lie algebras.

All vector spaces, except for Lie algebras, are assumed to be over the field of
complex numbers unless otherwise stated. We denote by 〈A〉 the algebraic linear
span of a subset A of a topological vector space V . The closed linear span of A is
denoted by 〈A〉. The space of continuous linear functionals on V is denoted by V ∗,
and the space of continuous conjugate-linear functionals on V is denoted by V ′. If
H is a Hilbert space, then the inner product of two vectors u, v ∈ H is denoted
by 〈u, v〉H, or if the choice of Hilbert space is understood, by 〈u, v〉. We consider
inner products to be linear in the first variable and conjugate-linear in the second
variable. The space of bounded linear operators on H is denoted by B(H).

If M is a manifold, then the space of smooth, compactly supported functions on
M is denoted by D(M). The usual topology given to D(M) gives it the structure
of a lim-Fréchet space (i.e., it is a direct limit of Fréchet spaces). The space of
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distributions onM is denoted byD′(M) and is defined to be the space of continuous
conjugate-linear functionals on D(M) (we choose to think of D′(M) as the anti-
dual of D(M) so that there is a continuous linear embedding D(M) ↪→ D′(M)).
We give D′(M) the weak-* topology. We denote by C∞(M) the space of smooth
functions on M .
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Chapter 2
A Brief Review of Harmonic Analysis
and Representation Theory

Representation theory is the study of linear actions of groups on vector spaces,
which are called representations. Of particular interest are the unitary represen-
tations, in which a group acts on a Hilbert space by isometries. Given a group,
representation theory seeks to explicitly construct and classify the representations
of that group to the broadest extent possible. It thus fits naturally into the broader
theory of groups, which has been traditionally motivated primarily by the study
of symmetry.

Fundamental insights in representation theory often come from relating group
representations to representations of other related objects. For instance, unitary
representations of locally compact groups may be integrated to yield representa-
tions of a group C∗-algebra, which allows the application of powerful tools from
operator theory. Similarly, unitary representations of a Lie group may be differ-
entiated to yield representations of the group’s Lie algebra, which allows the rep-
resentation to be studied using basic linear algebra techniques instead of more
difficult tools from differential geometry and analysis. Finally, through the beau-
tiful and classical construction of Gelfand-Naimark-Segal, the theory of unitary
representations may be connected with the theory of positive-definite functions.
A distributional variant of this construction uses positive-definite distributions on
Lie groups to embed unitary representations into spaces of distributions on homo-
geneous spaces.

The foundational task of the field of harmonic analysis, on the other hand, is
to use the information provided by the action of a group to decompose a space of
functions into simpler pieces. Such exploitations of symmetry, to borrow a phrase
of Mackey, have many applications, particularly in the study of linear PDEs and
in quantum physics. Because it is concerned with symmetries of vector spaces of
functions, representation theory naturally plays a very important role, although
harmonic analysis may be distinguished from the study of representation theory
as an end in itself.

The material in this chapter is entirely classical and may be found in standard
references on abstract harmonic analysis, such as [8], [14], and [31]. See also the
survey article [30] for an excellent and concise introduction to the theory.

2.1 Unitary Representations
We begin by defining the basic terms.

Definition 2.1. Let G be a topological group and let V be a locally convex topolog-
ical vector space. A representation of G on V is a continuous homomorphism:

π : G→ GL(V ),
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where GL(V ) is given the strong operator topology. (We say that π is a norm-
continuous representation if it is continuous when GL(V ) is given the operator
norm topology.) If V is a Hilbert space, then π is said to be a unitary represen-
tation if π(g) is a unitary operator for all g ∈ G.

Given two representations (π, V ) and (σ,W ) of G, we say that a bounded linear
operator T : V → W is an intertwining operator if Tπ(g) = σ(g)T for all g ∈
G. If π and σ possess a continuously-invertible intertwining operator between them,
then we say that they are equivalent representations. We write Hom(π, σ) for
the space of all intertwining operators between π and σ.

Among more general continuous representations, unitary representations in par-
ticular possess the important property that they may be decomposed into smaller
representations. In fact, suppose that (π,H) is a unitary representation of a group
G on a Hilbert space H and that V is a closed subspace of H such that π(g)v ∈ V
for all v ∈ V . Then we say that V is an invariant subspace of H. One may form
a representation πV of G on V simply by restricting the action of π on H to the
subspace V . We say that πV is a subrepresentation of π.

Now consider the closed subspace

V ⊥ = {w ∈ H|〈w, v〉 = 0 for all v ∈ V }.

Note that if w ∈ V ⊥, then

〈π(g)w, v〉 = 〈w, π(g−1)v〉 = 0

for all v in V . It follows that V ⊥ is also an invariant subspace of H.
In fact, we see that H = V ⊕ V ⊥ and that

π(g)(v + w) = πV (g)v + πV ⊥(g)w

for all v ∈ V and w ∈ V ⊥. In this case, we write π = πV ⊕ πV ⊥ and say that π
decomposes into a direct sum of representations.

If a representation (π,H) of G possesses no invariant subspaces besides H and

{0}, then we say that π is an irreducible representation. Let Ĝ denote the set of
equivalence classes of irreducible representations of G.

Theorem 2.2. (Schur’s Lemma; see [14, p. 71]). Suppose that (π,H) is an ir-
reducible unitary representation of a group G. Then every intertwining operator
T ∈ Hom(π, π) for the representation π may be written T = λId for some λ ∈ C.

Now suppose that π is a unitary representation of G on a finite-dimensional
Hilbert space H. If π is not irreducible, then we can repeatedly follow the process
outlined above of decomposing it into sums of subrepresentations. Because H is
finite-dimensional, the process must terminate at some point, which will occur
when π has been decomposed into a direct sum of irreducible subrepresentations.
In this way, irreducible representations play a role similar to that of prime numbers
in arithmetic.
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More generally, we say that a representation (π,H) of G is cyclic if there is a
vector v ∈ H such that the span 〈π(G)v〉 is dense in H. In that case, we say that
v is a cyclic vector for π. The following powerful and broad-ranging result may
be proven using Zorn’s Lemma.

Theorem 2.3. ([14, p. 70]). Every unitary representation (π,H) of a group G
may be decomposed into an orthogonal direct sum of cyclic subrepresentations.

It is a classical result that all unitary representations of compact groups may
be decomposed into a direct sum of irreducible subrepresentations. On the other
hand, there are many interesting examples of representations of noncompact groups
on infinite-dimensional Hilbert spaces which do not possess any irreducible sub-
representations (and thus cannot be decomposed into a direct sum of irreducible
subrepresentations). However, it is possible to write such representations as a sort
of “continuous” direct sum of irreducible representations in a matter which we now
describe, roughly following the construction in [14, p. 219–232].

Suppose that µ is a Borel measure on a topological space X, and that for each
x ∈ X we are given a unitary representation (πx,Hx) of a group G. Suppose we
are also given a collection of maps si : X → ∪̇x∈XHx for i in some countable index
set I such that:

1. si(x) ∈ Hx for each x ∈ X and i ∈ I.

2. 〈si(x)|i ∈ I〉 is dense in Hx for all x ∈ X.

3. x 7→ 〈si(x), sj(x)〉Hx is a Borel-measurable function on X for all i, j ∈ I.

The set {si}i∈I is called a measurable frame. We then say that a map s : X →
∪̇x∈XHx is a measurable section if

1. s(x) ∈ Hx for each x ∈ X.

2. x 7→ 〈s(x), si(x)〉Hx is a Borel-measurable function on X for all i ∈ I.

Finally, we define a direct-integral Hilbert space by

H ≡
∫ ⊕
X

Hxdµ(x) =

{
measurable sections s

∣∣∣∣∫
X

||s(x)||2Hxdµ(x) <∞
}

where the inner product is given by

〈u, v〉 =

∫
X

〈u(x), v(x)〉Hxdµ(x)

for u, v ∈ H. We can also define a continuous unitary representation π ≡
∫ ⊕
X
πxdµ(x)

of G on H by
(π(g)s)(x) = πx(g)(s(x))

for all s ∈ H and g ∈ G. We say that π is a direct integral of the representa-
tions Hx for x ∈ X.
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It is easy to see that orthogonal direct sums of Hilbert spaces and representations
are a special case of direct integrals in which the measure is discrete. Moreover,
every continuous unitary representation of a group G may be decomposed as a
direct integral of irreducible representations, although there are some subtleties
surrounding the uniqueness of such decompositions for certain groups.

We end this section by defining two very important classes of representations.

Definition 2.4. A unitary representation (π,H) of a topological group G is said
to be multiplicity free if every decomposition π = π1⊕ π2 of π into a direct sum
of subrepresentations has the property that no subrepresentation of π1 is equivalent
to a subrepresentation of π2.

One can show that a unitary representation π is multiplicity-free if and only if its
ring Hom(π, π) of intertwining operators is commutative. The term “multiplicity
free” comes from the face that a direct sum π = ⊕i∈Iπi of irreducible representa-
tions of a group G is multiplicity free if and only if each equivalence class in Ĝ
appears at most once in the collection of πi’s. This basic result is a corollary of
Schur’s lemma (see [9, p. 123]).

Definition 2.5. A unitary representation (π,H) of a topological group G is said
to be primary if the center of its ring of intertwining operators is trivial—that is,
if

Z(Hom(π, π)) = {λId|λ ∈ C}.

One can show (see [9, p. 122]) that a direct sum π = ⊕i∈Iπi of irreducible rep-
resentations of a group G is primary if and only if all the irreducible components
πi are equivalent to each other. However, for some groups it is possible to con-
struct primary representations which cannot be decomposed into a direct sum of
irreducible representations.

2.2 Invariant Measures
It is well-known that every locally-compact topological group G possesses a Radon
measure µG which is left-invariant under left translations of the group and such
that every open subset of G has positive measure. That is,∫

G

f(gx)dµG(x) =

∫
G

f(x)dµG(x) (2.1)

for all f ∈ Cc(G) and g ∈ G. Such measures, called Haar measures, are unique
up to multiplication by a constant. If G is a compact group, then µG is a finite
measure, which we will always normalize so that µG(G) = 1.

The existence of Haar measures has several important and useful consequences.
For example, the fact that compact groups have invariant probability measures
makes it possible to construct many arguments in which one averages some object
over the group:
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Theorem 2.6. (See also [27, Proposition 4.6]). If G is a compact topological group,
then every norm-continuous representation (π,H) of G on a Hilbert space is equiv-
alent to a unitary representation.

Proof. We denote the inner product on H by 〈, 〉H and construct a new inner
product 〈, 〉π on H by defining:

〈v, w〉π =

∫
G

〈π(g)v, π(g)w〉HdµG(g)

for all v, w ∈ H.
Now define

M = sup
g∈G
||π(g)||H

and note that M < ∞ because π is norm-continuous and G is compact. We then
have ||π(g)−1||H < M for all g ∈ G. Thus

M−2||v||2H ≤ ||v||2π =

∫
G

||π(g)v||2HdµG(g) ≤M2||v||2H

for all v ∈ H. Hence the identity map on H forms a homeorphism between H under
〈, 〉H and H under 〈, 〉π.

Finally, for all h ∈ G and u, v ∈ H, we have that

〈π(h)u, π(h)v〉π =

∫
G

〈π(gh)v, π(gh)w〉HdµG(g)

=

∫
G

〈π(g)v, π(g)w〉HdµG(g)

= 〈u, v〉π.

Thus, we see that π is a unitary representation of G on H under the inner product
〈, 〉π.

For certain groups, the left-invariant Haar measure is also right invariant. That
is, the Haar measure µG satisfies the property that∫

G

f(g1xg2)dµG(x) =

∫
G

f(x)dµG(x) (2.2)

for all f ∈ Cc(G) and g1, g2 ∈ G. In this case, we say that G is unimodular. Many
basic results in harmonic analysis can be formulated most cleanly when the group
under consideration to be unimodular; fortunately several broad classes of groups
are known to be unimodular, including (see [12, p. 88]) all compact groups, abelian
groups, semisimple Lie groups, and connected nilpotent Lie groups (in contrast,
not all solvable Lie groups are unimodular).

At any rate, with a Haar measure µG on G, we may consider the Hilbert space
L2(G) ≡ L2(G, µG) of square-integrable functions on G. It is easy to show that the
action given by

(g · f)(x) = f(g−1x) (2.3)
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for g ∈ G and f ∈ L2(G) gives a continuous representation of G on L2(G) that is
unitary by (2.1). This representation is called the (left) regular representation
of G.

The foundational problem of harmonic analysis is to provide, for a particular
group G, a decomposition of the regular representation into irreducible compo-
nents. A general result states that this is possible for a very broad class of locally-
compact groups, called Type I groups.

Definition 2.7. A topological group G is said to be of Type I if every primary
representation of G decomposes into a direct sum of copies of the same irreducible
representation.

This class includes all compact groups (see [12, p. 206] and all semisimple Lie
groups (see [19, p. 230]), for example.

Theorem 2.8. (The Abstract Plancherel Theorem; see [9, p. 368]). Let G be a

Type I separable, locally-compact topological group. For each λ ∈ Ĝ, choose a rep-
resentative irreducible representation (πλ,Hλ) of G. Then there is a measure µ on

Ĝ (whose measure class is uniquely determined) such that

L2(G) ∼=G

∫ ⊕
Ĝ

Hλ ⊗Hλdσ(λ).

Such a decomposition is called a Plancherel formula for G.

One of the basic tasks of harmonic analysis is to make the Plancherel formula
as explicit as possible for particular groups.

There are several variants of the regular representation that will be useful to us
later. We can define continuous representations L and R of G on the space D(G)
of smooth, compactly supported functions as follows:

L(g)f(x) = f(g−1x)

R(g)f(x) = f(xg)

for g, x ∈ G and f ∈ D(G). These representation may be dualized to produce
continuous representations L and R on the space D′(G) of distributions on G.

Similarly, one can define continuous left- and right-regular representations of G
on the space C∞(G) of smooth functions on G. We say that a function f ∈ C∞(G)
is G-finite if the subspace 〈L(G)f〉 ⊆ C∞(G) generated by all G-translations of
f is finite-dimensional. We denote the space of all G-finite smooth functions by
C∞fin(G) and note that C∞fin(G) is an invariant subspace of C∞(G).

2.3 Homogeneous Spaces
More generally, we wish to study not only functions on a group G but also functions
on spaces on which G acts. To that end, suppose that G is a Lie group which acts
smoothly and transitively on a manifold X. Let xo ∈ X and consider the stabilizer
subgroup of G given by

Gxo = {g ∈ G|g · xo = xo}.
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Note that Gxo is a closed subgroup of G.
One can then form the space G/Gx0 of left cosets. There is a transitive action

of G on G/Gx0 given by
g · hGx0 = ghGx0 .

In fact, one can show (see [5, Proposition 4.6]) that there is a G-equivariant dif-
feomorphism

X → G/Gx0 .

In other words, we have an identification of transitive G-actions with quotient
spaces of the form G/H, where H is a closed subgroup of G. Such spaces are
called homogeneous spaces, because the transitive group action forces them to
have the same local behavior around each point. We refer to G as the translation
group of G/H and to H as the isotropic subgroup of G.

We would like to study harmonic analysis on homogeneous spaces. Just as for
harmonic analysis on groups, the natural place to start is to construct an invariant
measure. Unfortunately, not every homogeneous space G/H, where G and H are
locally compact groups, possesses a Radon measure that is invariant under the
action of G. However, as long as both G and H are unimodular, then such a
measure always exists:

Theorem 2.9. (See [8, p. 41–44]). If G and H are locally compact unimodular
topological groups, then there is a Radon measure µG/H on G/H, unique up to
multiplication by a constant, such that∫

G/H

f(g · x)dµG/H(x) =

∫
G/H

f(x)dµG/H(x)

for all g ∈ G and f ∈ Cc(G/H).
Furthermore, µG/H satisfies the functional equation∫

G

f(g)dµG(g) =

∫
G/H

∫
H

f(gh)dµH(h)dµG/H(g)

for all f ∈ Cc(G).

As before, we construct the Hilbert space L2(G/H) ≡ L2(G/H, µG/H) and note
that a continuous unitary representation of G on L2(G/H) may be constructed
using the action given by

(g · f)(x) = f(g−1 · x)

for f ∈ L2(G/H), g ∈ G, and x ∈ G/H. This representation is also called a regular
representation of G for the homogeneous space G/H. Just as for L2(G), it is a
basic problem of harmonic analysis to explicitly decompose L2(G) into a direct
integral of irreducible representations.

In the interest of brevity, from this point forward we will use the simplified
notations dg = dµG(g) and dx = dµG/H(x) to denote integration against a Haar
measure on G and against a G-invariant measure on G/H, respectively.
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2.4 Gelfand-Naimark-Segal
In this section we explore the connection between unitary representations and
positive-definite functions. We begin with a basic definition:

Definition 2.10. Let G be a group. We say that a function φ : G→ C is positive-
definite if

n∑
i,j=1

φ(g−1
i gj)cicj > 0

where gi ∈ G and ci ∈ C for 1 ≤ i ≤ n.

Positive-definite functions have several basic properties which may be proved
directly from the definition (see [8, Lemma 5.1.8]):

1. φ(e) > 0

2. |φ(g)| ≤ φ(e) for all g ∈ G

3. φ(g−1) = φ(g) for all g ∈ G

The canonical examples of positive-definite functions are provided by matrix
coefficients of unitary representations. That is, if (π,H) is a unitary representation
of a group G and v ∈ H\{0}, then the function φπ,v : G→ C given by

φπ,v(g) = 〈v, π(g)v〉 (2.4)

is continuous and positive-definite, as may be shown straightforwardly using the
unitarity of π and the definition of positive-definite functions.

The key insight of Gelfand-Naimark-Segal is that every continuous positive-
definite function arises in this way from a unitary representation. In particular,
given a continuous positive-definite function φ : G → C, one can define a repre-
sentation. We now show how this may be done.

For each g ∈ G, define the function g · φ : G→ C by

g · φ(x) = φ(g−1x)

for each x ∈ G. We can then define the vector space

Vφ = 〈{g · φ|g ∈ G}〉,

which is the algebraic span of all G-translates of φ. We define a pre-Hilbert space
structure on Vφ:〈

n∑
i=1

ci(gi · φ),
n∑
j=1

dj(hi · φ)

〉
=

n∑
i,j=1

φ(g−1
i hj)cidj (2.5)

where ci, dj ∈ C and gi, hj ∈ G. It can be shown that this bilinear form is well-
defined on Vφ and turns it into a pre-Hilbert space.
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We can then define a representation πφ of G on Vφ by

πφ(g)v(h) = v(g−1h)

for all v ∈ Vf and g, h ∈ G. It is clear from (2.5) that πφ extends to a unitary
representation on the the Hilbert-space completion Hφ of Vφ. Then one has

φ(g) = 〈φ, π(g)φ〉Hφ .

Thus every positive-definite function may be given the form (2.4). In fact, a
stronger result may be proven:

Theorem 2.11. (Gelfand-Naimark-Segal; see [8, p. 54, 61]). The map

(π, v) 7→ φπ,v

is a surjection from the set of all pairs (π, v) of cyclic representations (π,H) of G
and cyclic vectors v ∈ H\{0} to the set of all continuous positive-definite functions
on G.

Furthermore, suppose that (π,H) and (σ,K) are unitary representations of G
such that v ∈ H and w ∈ K are cyclic vectors. Then one has

φπ,v = φσ,w

if and only if there is a unitary intertwining operator T : H → K such that
T (v) = w.

Let G be a locally-compact topological group. We write P(G) for the space
of all positive-definite functions φ on G such that φ(e) = 1. One can show that
P(G) is a closed convex subset of the space L∞(G) of almost-everywhere-bounded
measurable functions on G. The convexity may be shown by noticing that

λφπ,v + (1− λ)φσ,w = φπ⊕σ,
√
λv+
√

1−λw, (2.6)

where (π,H) and (σ,K) are unitary representations of G with cyclic vectors v ∈ H
and w ∈ K.

In fact, L∞(G) is the dual of the Banach space L1(G) by the Riesz Representation
Theorem. One can show that P(G) is closed in the weak-∗ topology on L∞(G).
Since |φ(g)| ≤ φ(e) = 1 for all φ in P(G) and g ∈ G, we see that P(G) is contained
in the unit ball B1(L∞(G)). It follows from the Banach-Alaoglu theorem that
P(G) is a compact convex subset of L∞(G) in the weak-∗ topology. Thus, the
Krein-Milman theorem may be applied to P(G):

Theorem 2.12. (Krein-Milman [8, Theorem 5.2.7]) If K is a compact, convex
subset of a locally convex topological vector space V , then

K = co(ex(K)),

where co denotes the convex hull and ex(K) denotes the set of extremal points of
K.

12



In other words, all normalized positive-definite functions may be formed by
taking a limit of convex combinations of normalized positive-definite functions. In
fact, by exploiting the identity in (2.6), one has the following result:

Theorem 2.13. Let G be a locally compact topological group. Then the extremal
points of P(G) are given by functions of the form φπ,v, where (π,H) is an irre-
ducible representation of G and v is a cyclic unit vector in H.

Thus, positive-definite functions are generated in some sense by the ones coming
from irreducible representations. These are just a few examples of how powerful
theorems from functional analysis may be applied to provide insight into the de-
composition of unitary representations.

2.5 Smooth Vectors and Distribution Vectors
Suppose now that G is a Lie group with Lie algebra g. In a certain sense, g is
a “linearization” of G that encapsulates all of the local aspects of its structure.
This is exemplified best by the famous Campbell-Baker-Hausdorff Theorem, which
shows how the group product on a Lie group may be recovered, in a neighborhood
of the identity, from the Lie bracket on its Lie algebra.

Similarly, it is desirable to recover information about a representation of a
group G by first passing to a representation of g. If (π, V ) is a continuous finite-
dimensional representation of G (not necessarily unitary), then one can show that
the map g → π(g)v is a smooth (in fact analytic) function from G to V . Thus, π
induces a representation dπ of g on V by:

dπ(X)v =
d

dt

∣∣∣∣
t=0

(π(exp(tX))v)

for all X ∈ g and v ∈ V . One can show that two finite-dimensional representations
π and ρ of G are equivalent if and only if dπ and dρ are equivalent.

However, the situation is more delicate for infinite-dimensional representations.
Let (π,H) be a continuous representation of G on a Hilbert space. We say that
v ∈ H is a smooth vector in H if the map g 7→ π(g)v is smooth. We denote the
space of all smooth vectors by H∞. Similarly, we say that a vector is G-finite if
the G-invariant subspace 〈π(G)v〉 generated by v is finite-dimensional. We denote
the space of G-finite vectors by Hfin. It is not difficult to show that H∞ and Hfin

are linear subspaces of H and that Hfin ⊆ H∞.
Unfortunately, there are many interesting examples of infinite-dimensional rep-

resentations (π,H) for which not every vector is a smooth vector. Nevertheless, a
classical result of G̊arding uses the integrated representation of π to show that H∞
is a dense subspace of H.
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Theorem 2.14. (G̊arding; see [8, p. 131–133]). Let (π,H) be a continuous repre-
sentation of a locally compact group G on a Hilbert space H. Then H∞ is a dense
subspace of H. In fact, for each f ∈ D(G) and v ∈ H, the vector

π(f)v ≡
∫
G

f(g)π(g)vdg (2.7)

is in H∞.

In fact, a beautiful theorem of Dixmier and Malliavin shows that the vectors
G̊arding constructed generate all of the smooth vectors:

Theorem 2.15. (The Decomposition Lemma; see [10]) If (π,H) is a continuous
representation of a locally compact group G on a Hilbert space H, then every ele-
ment of H∞ may be written as a finite linear combination of vectors of the form
(2.7).

Theorem 2.14 allows us to define a representation of g on the space H∞ in the
same way as before, namely

dπ(X)v = lim
t→0

π(exp(tX))v − v
t

for all X ∈ g and v ∈ H∞. Furthermore,

dπ(X)dπ(Y )v − dπ(Y )dπ(X)v = dπ([X, Y ])v

for all X, Y ∈ g and v ∈ H∞ (see [22, p. 387]). This representation of g on H∞
extends to a representation dπ of the universal enveloping algebra U(g) in the
natural way.

Finally, H∞ may be given a Fréchet topology under the family of seminorms
given by

||v||D = ||dπ(D)v||H
for each D ∈ U(g) and v ∈ H. Under this topology, the inclusion map

H∞ ↪→ H

is a continuous dense embedding of a Fréchet space into a Hilbert space ([8, p.
132]).

Now consider the anti-dual H−∞ of H∞–that is, the space of all conjugate-
linear continuous functionals on H∞. Elements of H−∞ are called distribution
vectors for the representation π. We give H−∞ the weak-* topology. Then there
is a continuous embedding

H ↪→ H−∞

given by mapping a vector v ∈ H to the conjugate-linear functional on H∞ given
by

w 7→ 〈v, w〉H
for all w ∈ H∞.
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There are several ways in which the space of distribution vectors is well-behaved.
Just as distributions on a manifold are infinitely differentiable in a weak sense,
the derived representations of g and U(g) on H∞ extend by dualization to repre-
sentations on H−∞. Furthermore, distribution vectors can be “smoothed out” by
integration against smooth functions on G:

Lemma 2.16. ([8, p. 136]). For each v ∈ H−∞ and φ ∈ D(G), the distribution
vector

π(φ)v =

∫
G

φ(g)vdg

is an element of H∞.

As a corollary of this result, one has that H∞ is densely contained in H−∞. Putting
everything together, we have continuous, dense embeddings

H∞ ↪→ H ↪→ H−∞.

2.6 Invariance and Harmonic Analysis on

Homogeneous Spaces
Suppose that G is a compact group with a closed subgroup K, and consider the
space G/K and the regular representation of G on L2(G/K). The basic task of
harmonic analysis on G/K is to decompose L2(G/K) into a direct sum of irre-
ducible representations. We now show how to determine which equivalence classes
of unitary representations of G appear in this decomposition, as well as how many
times they appear.

Suppose that (σ,H) is a unitary representation of G. We consider the space

HK ≡ {v ∈ V |π(k)v = v for all k ∈ K}

of K-invariant vectors in H. One then has the following theorem.

Theorem 2.17. For each irreducible unitary representation (σ,H) of G, we have
that

dimHK = dim Hom(σ, L2(G/K)).

That is, the multiplicity of σ in L2(G/K) is equal to the dimension of the space of
K-invariant vectors in H.

This result is a special case of the Frobenius Reciprocity Theorem for unitary
representations of compact groups (see [14, p. 160]).

Corollary 2.18. Let G be a compact group. For each (π,Hπ) ∈ Ĝ. Then

L2(G/K) ∼=G

⊕
π∈Ĝ

mπHπ,

where mπ = dimHK
π and mπHπ = Hπ ⊕ · · · ⊕ Hπ refers to the direct sum of mπ

copies of Hπ.
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Unfortunately, the analysis just described is not applicable to homogeneous
spaces G/H where either G or H is non-compact. If G is locally compact but
not compact, then L2(G/H) is no longer guaranteed to decompose into a direct
sum of irreducible subrepresentations; a direct integral decomposition is necessary.
Furthermore, if H is non compact, then L2(G) may not possess any nontrivial H-
invariant functions, so that L2(G/H) cannot be embedded as a subrepresentation
of L2(G). The solution to this problem is to move to the theory of distributions and
distribution vectors; one attempts to decompose L2(G/H) into a direct integral of
irreducible representations (π,H) which possess H-invariant distribution vectors
(i.e., (H−∞)H 6= 0).
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Chapter 3
Finite-Dimensional Riemannian
Symmetric Spaces

Riemannian symmetric spaces form a class of particularly well-behaved homo-
geneous spaces with a rich structure theory and relatively well-understood har-
monic analysis. Among other important properties, they possess a Riemannian
metric that is invariant under the action of the translation group. Furthermore,
the isotropic subgroup is fixed under an involution on the translation group, which
essentially forces the regular representations on Riemannian symmetric spaces to
have multiplicity-free direct integral decompositions. We shall also see that there is
a beautiful duality between compact-type and noncompact-type Riemannian sym-
metric spaces.

In addition, the noncompact-type Riemannian symmetric spaces possess an as-
sociated homogeneous space called a horocycle space. The relationship between a
Riemannian symmetric space and its horocycle space is analogous to, for instance,
the relationship between points and hyperplanes in Rn, or the relationship between
points and horocycles of hyperbolic space (it is for this reason that the terminology
horocycle space was originally chosen).

In the late 1950s, Gelfand and Graev developed a “horospherical method” which
relates harmonic analysis on the noncompact-type Riemannian symmetric space
SL(n,C)/SU(n) and harmonic analysis on its corresponding horocycle space (see
[31, p. 283–287]). These ideas were generalized to all noncompact-type Rieman-
nian symmetric spaces and developed quite completely in the pioneering work of
Helgason (see [20], for instance). The relationship between symmetric spaces and
horocycle spaces, together with its implications for representation theory, provides
the primary context for this thesis.

See [21] for a comprehensive overview of the structure theory for Riemannian
symmetric spaces. See also [22] and [23] for applications of representation theory
to analysis on Riemmanian symmetric spaces and horocycle spaces, respectively.
A good concise overview of this theory from the perspective of unitary group
representations may be found in [38].

3.1 Basic Definitions
Suppose that G is a semisimple Lie group with finite center and that K is a closed
subgroup. Furthermore, we suppose that there is an involutive automorphism
θ : G→ G such that

(Gθ)0 ≤ K ≤ Gθ, (3.1)

where Gθ is the fixed-point subgroup for θ and (Gθ)0 is the connected component
of the identity for Gθ. Then G/K is said to be a symmetric space.

The involution θ differentiates to an involution θ : g → g of the Lie algebra g
of G. By (3.1), the +1-eigenspace for θ is just k (i.e., the Lie algebra for K). We
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denote the −1-eigenspace of θ by p. Just as k may be naturally identified with the
tangent space TeK, there is a natural identification of p with the tangent space
TeKG/K (see [21, p. 214]). We may write down the eigenspace decomposition

g = k⊕ p.

Due to the fact that θ is also a Lie algebra involution, one easily computes that
[k, k] ⊆ k, [k, p] ⊆ p, and [p, p] ⊆ k.

Let G/K be a symmetric space with involution θ, and recall that the Killing
form B : g× g → R provides an Ad(G)-invariant nondegenerate symmetric bilin-
ear form on g. If B restricts to a positive-definite or negative-definite symmetric
bilinear form on p, then G/K is said to be a Riemannian symmetric space.
This terminology comes from the fact that an Ad(G)-invariant positive-definite
bilinear form on p may be translated by the action of g to produce a G-invariant
Riemannian metric on G/K.

If U/K is a Riemannian symmetric space with U compact, then B restricts to a
negative-definite form on p and U/K is said to be a compact-type Riemannian
symmetric space. On the other hand, if G/K is a Riemannian symmetric space
with G noncompact, then K is compact and B restricts to a positive-definite form
on p and G/K is said to be a noncompact-type Riemmanian symmetric
space.

There is a beautiful duality between compact-type and noncompact-type Rie-
mannian symmetric spaces. Suppose that U/K is a compact-type symmetric space
with involution θ. We make the further simplifying assumption that G is simply-
connected. As before, we consider the θ-eigenspace decomposition u = k⊕p. Recall
that g may be embedded in the complexified Lie algebra uC = u⊗RC. Furthermore,
θ extends to a complex Lie algebra involution on uC, which we also denote by θ.
Furthermore, the Killing form B on u extends to a complex bilinear form on gC.
We can then consider the real vector space g ⊂ gC defined by

g = k⊕ ip.

It can be shown that g is a real semisimple Lie algebra that is invariant under θ.
In fact, k and ip are the +1- and −1-eigenspaces for θ : g → g. Also, since U/K
is a compact-type Riemannian symmetric space, we see that B(X,X) < 0 for all
X ∈ p. But then B(iX, iX) > 0 for all X ∈ p and hence B is positive-definite on
ip. 1

We now consider the unique connected complex Lie group UC with Lie algebra uC
such that U is the analytic subgroup of UC corresponding to the Lie algebra g ⊆ gC.
The Lie algebra involution θ on uC integrates to an involution on UC by Proposition
7.5 in [27]. We then consider the analytic subgroup G ≤ UC corresponding to the
Lie algebra g ⊆ uC. By Proposition 7.9 in [27], we see that G is a closed subgroup
of UC and has a finite center. Putting everything together, we see that G/K is a
noncompact-type Riemannian symmetric space, called the c-dual of U/K.

1Here we have used the fact (see [27, p.37]) that BgC |g×g = Bg together with the fact that gC = uC
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3.2 The Structure of Noncompact-Type

Riemannian Symmetric Spaces
In this section we review the basic structure theory for noncompact-type Rieman-
nian symmetric spaces. All of the material is entirely classical and may be found
in standard references, such as Chapters VI and VII in [27] or in Chapter VI of
[21].

Let G be a semisimple Lie group with Lie algebra g. It can be shown (see [27, p.
355–358]) that there is an involution θ on g such that the symmetric bilinear form
given by

(X, Y ) 7→ −B(X, θY )

is positive-definite. Such an involution is called a Cartan involution and is unique
up to inner automorphisms. One shows that a Cartan involution on g integrates
to an involution on G (see [27, p. 362]). Furthermore, if G has a finite center, then
K = Gθ is a maximal compact subgroup of G. For a subgroup G ≤ GL(n,C) which
is stabilized by the taking of adjoints, then one may define Cartan involutions on
G and g by setting θ(g) = (g−1)∗ and θ(X) = −X∗, respectively.

Now suppose that G/K is a noncompact-type Riemannian symmetric space
with involution θ and that G has finite center. It can be shown that θ is a Cartan
involution on G and thus that K is a maximal compact subgroup of g. Thus, the
classification of real semisimple Lie groups may be used to provide a classification
of noncompact-type Riemannian symmetric spaces.

As before, we write g = k ⊕ p. Now let a be a maximal abelian subalgebra of
p. Denote the real linear dual of a by a∗, whose elements are called weights. For
each α ∈ a∗, write

gα = {X ∈ g|[H,X] = α(H)X for all H ∈ a}

Note that because a is a maximal abelian subalgebra of g, we have

g0 = m⊕ a,

where m = Zk(a) is the centralizer of a in k. The set of all α 6= 0 in a∗ such that
gα 6= 0 is denoted by Σ(g, a) = Σ. Elements of this set are called restricted roots.

Fix H ∈ a. Because ad(H) is skew-adjoint under B and θ(H) = −H (since
H ∈ p), we see that ad(H) is self-adjoint under the inner product (·, ·) = −B(·, θ·).
Thus, g decomposes into joint eigenspaces under the action of ad(a):

g = m⊕ a⊕
⊕
α∈Σ

gα (3.2)

(Note that all of the restricted roots in Σ(g, a) are real-valued weights on a, in
contrast with the roots of g with respect to a Cartan subalgebra h, which are in
general complex-valued.)

The Jacobi identity shows that

[gα, gβ] ⊆ gα+β (3.3)
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for all α, β ∈ Σ. In this way the restricted root spaces provide a great deal of
information about the Lie algebra structure of g.

Furthermore, we claim that

θ(gα) = g−α. (3.4)

In fact, suppose that X ∈ gα and H ∈ a. Then

[H, θ(X)] = θ([θ(H), X])

= θ(−[H,X])

= −α(H)θ(X),

where we use the fact that θ is a Lie algebra involution and that H ∈ p. Thus
X ∈ g−α.

An element H ∈ a∗ is said to be regular if α(H) 6= 0 for all α ∈ Σ. The set
of all regular elements of a will be denoted by ã. The connected components of
ã are called Weyl chambers. We choose a Weyl chamber a+ ⊆ ã. Under this
choice, a weight λ ∈ a∗ is said to be positive if λ(H) > 0 for all H ∈ a+. We let
Σ+(g, a) = Σ+ denote the set of all positive restricted roots. Since the negative of
any restricted root is again a restricted root (see 3.4), one obtains a decomposition

Σ = Σ+ ∪̇ (−Σ+) (3.5)

We denote by Σ0(g, a) = Σ0 the set of nonmultiplicable restricted roots (that is,
roots α ∈ Σ such that cα /∈ Σ for all c 6= 1 in R).2 We set Σ+

0 = Σ0 ∩ Σ+. Finally,
it is possible to choose a set Ψ = {α1, . . . , αr} ⊂ Σ+

0 , where r = dim a, such that
Ψ is a basis for a∗. Each root α ∈ Σ+

0 may then be written α = n1α1 + · · ·+ nrαr
where n1, . . . , nr ∈ Z+. Roots in Ψ are called simple roots.

Now consider the normalizer M ′ of a in K (that is, M ′ consists of all k ∈ K
such that Ad(k)a = a). Similarly, let M = ZK(a) denote the centralizer of a in K
(that is, M consists of all k ∈ K such that Ad(k)X = X for all X ∈ a). Note that
M �M ′. The quotient group W = M ′/M is called the restricted Weyl group
for (g, a). In fact, one may show that elements in W , acting by conjugation on
A, permute the Weyl chambers. Furthermore, there is a unique element w∗ ∈ W
whose action on A sends the Weyl chamber a+ to the Weyl chamber −a+. We refer
to w∗ as the longest element of the Weyl group.

As a word of caution to the reader, we note that M = ZK(a) is generally not
connected (even when G is connected), in which case M 6= expm. We define
M0 = expm and note that M0 is the connected component of the identity for M .
We will recall some well-known results about the structure of the component group
M/M0 when the need arises later.

2It is standard in the literature to define Σ0 to be the set of all indivisible roots, but here we follow the notation

of [7].
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Consider the nilpotent Lie algebras

n =
⊕
α∈Σ+

gα

n =
⊕
α∈Σ+

g−α.

We note that θ(n) = θ(n) by 3.4. By combining (3.2) and (3.5), we then have a
triangular decomposition of g:

g = n⊕m⊕ a⊕ n. (3.6)

There is a triangular decomposition on the level of the group G, as well. Consider
the subgroups N = exp n, N = expn, and A = exp a of G. One can show that
N , M , A, and N are closed Lie subgroups of G with Lie algebras n, m, a, and n,
respectively. Furthermore, one shows that θ(N) = N . Then the map

N ×M × A×N → G
(n,m, a, n) 7→ nman

(3.7)

is a smooth embedding of the manifold N ×M ×A×N into an open dense subset
of G.

There are other decompositions of G that are useful to consider. The Iwasawa
decomposition states that

g = k⊕ a⊕ n. (3.8)

We will prove this result in the next subsection, when we discuss the Killing form
more deeply. This Lie algebra decomposition integrates nicely to the group level;
in fact, the map

K × A×N → G

(k, a, n) 7→ kan

is a diffeomorphism.
Recall the choice of positive Weyl chamber C in a. The set

Ã = exp ã

is called the regular set of A. Similarly, we define

A+ = expC ⊆ Ã.

In fact, because the elements of W permute the Weyl chambers of A, there is a
natural identification A+ ∼= Ã/W .

One can show (see Theorem 7.39 in [27]) that G = KAK; that is, each g ∈ G
may be written g = k1ak2 where a ∈ A and k1, k2 ∈ K. More strongly, one has the
decomposition

G = KA+K. (3.9)
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In fact, if g = k1ak2 where a ∈ A+ and k1, k2 ∈ K, then a ∈ A+ is uniquely
determined by g. In other words, there is a natural identification

K\G/K ∼= A/W, (3.10)

where K\G/K denotes the space of double-cosets of G over K.
It follows easily from (3.3) that [a, n] ⊆ n and [m, n] ⊆ n. One can in fact show

that both A and M normalize N in G. Since M normalizes N , we see that MN
is a closed Lie subgroup of G with Lie algebra m⊕ n. Also, since A centralizes M
and also normalizes N , it follows that MAN is a closed Lie subgroup of G with
Lie algebra m⊕a⊕n. Furthermore, MN�MAN and MAN/MN ∼= A. One refers
to MAN as a minimal parabolic subgroup of G (more generally, a parabolic
subgroup of G is a group H such that MAN ≤ H ≤ G). Note that each choice
of maximal abelian subalgebra a in p and Weyl chamber in a produces a minimal
parabolic subgroup in this way.

We move now to the final decomposition of this section. For each w ∈ W , we
choose a representative mw ∈M ′. We then consider double cosets of the form

MANmwMAN = NmwMAN,

called Bruhat cells. The Bruhat decomposition (see [27, Theorem 7.40]) states
that G decomposes into a disjoint union of Bruhat cells. That is,

G =
⋃̇
w∈W

NmwMAN. (3.11)

From (3.7) we see that one of the Bruhat cells is an open and dense subset of G,
namely the cell corresponding to the longest Weyl group element w∗.

The Bruhat decomposition should be viewed as analogous to the decomposition
in (3.9). Helgason exploited this analogy and many others to relate analysis on
the symmetric space G/K to analysis on the associated horocycle space, which we
discuss in Section 3.3.

3.2.1 More on the Killing Form
In this section, we review some more facts about the Killing form on g. Because
it is neither positive- nor negative-definite (only compact-type Lie groups produce
definite Killing forms), there are some subtleties with which to be careful. For
instance, there are many nonzero vectors X ∈ g such that B(X,X) = 0.

First, we note that k ⊥ p in g under both B and the inner product (·, ·) =
−B(·, θ·). Orthogonality under the latter inner product follows immediately from
orthogonality under B, since θ(k) = k and θ(p) = p. Orthogonality under B follows
from the relations [k, k] ⊆ k, [k, p] ⊆ p, and [p, p] ⊆ k. In fact, they imply that if
X ∈ k and Y ∈ p, then ad(X) and ad(Y ) may be given in two-by-two block form

22



under the decomposition g = k⊕ p as

ad(X) =

(
∗ 0
0 ∗

)
ad(Y ) =

(
0 ∗
∗ 0

)
.

Thus we have the product

ad(X)ad(Y ) =

(
0 ∗
∗ 0

)
,

and it follows that B(X, Y ) = Tr(ad(X)ad(Y )) = 0.
Since B is negative-definite on k and positive-definite on p, it follows that both

k and p are non-degenerate subspaces of g. In other words, p⊥ = k and k⊥ = p
under B. It is also not difficult to explicitly write down the orthogonal projections
onto k and p. In fact, we note that X + θ(X) ∈ k and Xθ(X) ∈ p for all X ∈ g.
Since X = 1

2
(X + θ(X)) + 1

2
(X − θ(X)) for all X ∈ g, we have the orthogonal

projections pk(X) = 1
2
(X + θ(X)) and pp(X) = 1

2
(X − θ(X)).

Note that the orthogonal projections pk and pp commute with θ because k and p
are both stable under θ. Since n = θ(n), we see that pk(n) = pk(n) and pp(n) = pp(n).
Furthermore, we easily see that pk(n) ⊆ n⊕ n and pp(n) ⊆ n⊕ n. Hence, we obtain
the decomposition

g = (pk(n)⊕m)⊕ (a⊕ pp(n)). (3.12)

Furthermore, we will soon see that B(n,m) = B(n, a) = 0, from which it will
quickly follow that this decomposition is orthogonal under both B and (·, ·) (hint:
use the fact that the orthogonal projections pk and pp are self-adjoint and act as
the identity on m ⊂ k and a ⊂ p, respectively).

In fact, 3.12 can be used to prove the Iwasawa decomposition on the Lie algebra
level. One begins by showing that pp|n : n → p and pk|n : n → k are linear
isomorphisms onto their images. This comes from the fact that n and n are linearly
independent subspaces and thus, if X+ θ(X) = 0 for some X ∈ n, then X = 0 ∈ n
and θ(X) = 0 ∈ n. It follows from this and 3.12 that each X ∈ g may be written
as X = pk(Y1) +Z +H + pp(Y2), where Y1, Y2 ∈ n, Z ∈ m, and H ∈ a are uniquely
determined. But then we have

X = pk(Y1) + Z +H + pp(Y2)

= pk(Y1 − Y2) + Z +H + pp(Y2) + pk(Y2)

= pk(Y1 − Y2) + Z +H + Y2,

where we note that pk(Y1−Y2)+Z ∈ k, H ∈ a, and Y2 ∈ n. Because k, a, and n have
pairwise trivial intersections, the Iwasawa decomposition g = k⊕ a⊕ n follows.

Next, we note that the decomposition in 3.2 is an orthogonal decomposition
of g under the inner product (·, ·) but is not an orthogonal decomposition under

23



B. This is because ad(a) consists of operators that are self-adjoint for (·, ·) and
skew-adjoint under B. To prove this, we need the following elementary fact about
skew-adjoint operators on real scalar product spaces:

Lemma 3.1. Suppose that 〈·, ·〉 : V × V → R is a symmetric bilinear form for a
vector space V over R. Suppose that A : V → V is skew-adjoint with respect to Q.
If Vλ and Vµ are eigenspaces of A with eigenvalues λ, µ ∈ R such that λ 6= −µ,
then Vλ ⊥ Vµ.

Proof. Fix x ∈ Vλ and y ∈ Vµ. Then λ〈x, y〉 = 〈Ax, y〉 = −〈x,Ay〉 = −µ〈x, y〉.
Thus 〈x, y〉 = 0 since λ 6= −µ.

Corollary 3.2. Since ad(a) acts by skew-adjoint operators on g under B, we
have that gα ⊥ gβ for all α 6= −β. Furthermore, because B is nondegenerate and
g = ⊕α∈Σ∪{0}gα, this implies that the restriction B|gα×g−α : gα × g−α → R is a
non-degenerate pairing between gα and g−α for any α ∈ Σ ∪ {0}.

In particular, since m⊕a = g0 and n = ⊕α∈Σ+aα , we have that n ⊥ a and n ⊥ m.
It also follows that gα ⊥ gα for all α ∈ Σ. In fact, n ⊥ n and one can show that
B|n×n : n× n→ R is a nondegenerate pairing of n and n. Thus n is far away from
being a nondegenerate subspace of g under B. Finally, we note that n⊥ = m⊕a⊕n.

Since gα is not orthogonal to g−α for all α ∈ Σ, it follows that neither the root-
space decomposition in 3.2, nor the related triangular decomposition in 3.6, nor
the Iwasawa decomposition in 3.8 are orthogonal under B.

3.3 The Horocycle Space
In this section, we introduce and explore the geometric aspects of horocycles for
Riemannian symmetric spaces. We begin by briefly reviewing the analogous geo-
metric considerations for Euclidean space in order to motivate the definition of a
horocycle.

3.3.1 Motivation from Euclidean Space
In the early twentieth century, the famous Radon transform was introduced. For-
mally, the idea is as follows. Consider Rn and denote the space of all n − 1-
dimensional planes in Rn by Pn. For each function f : Rn → C with sufficient
decay characteristics (for example, Schwartz or compact support), we can define
the Radon Transform of f as a function Rf : Pn → C as follows:

(Rf)(ξ) =

∫
x∈ξ

f(x)dx.

If we could put a suitable measure on Pn, then it would be possible to construct a
dual Radon Transform which would take a function g : Pn → C and construct
a new function R∗g : Pn → C by

(Rg)(x) =

∫
ξ3x

g(ξ)dξ.
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What properties should this measure have? For one thing, we would like it to
have suitable invariance characteristics, like the ones Lebesgue measure on Rn has.

In particular, the Euclidean motion group M(n) = O(n) o Rn acts transitively
on Rn. In fact, the subgroup of M(n) which stabilizes 0 is equal to O(n). In other
words, we can make the identification

Rn ∼= O(n) oRn/O(n).

Because O(n) and O(n) oRn are both unimodular, it follows that Rn possesses a
unique (up to constant multiple) measure invariant under M(n). This measure, of
course, is Lebesgue measure.

Similarly, note that applying M(n) = O(n) o Rn pointwise to hyperplanes in
Pn produces a natural action of M(n) on Pn. The action is readily seen to be
transitive. It is clear that the base hyperplane {(x, 0) ∈ Rn|x ∈ Rn−1 ∼= Rn−1} is
stabilized by the subgroup M(n−1) ⊆ M(n). Furthermore, we see that Rn−1 is also
stabilized by the reflection group L = {Id,−Id} on Rn. In fact, the full stabilizer
subgroup of our base hyperplane is M(n− 1)×L. Thus, we have the identification

Pn ∼= M(n)/(M(n− 1)× L).

It is thus possible to give Pn a smooth manifold structure and a measure which
is invariant under M(n), which in turn makes it possible to define a dual Radon
transform.

Next we examine one more way to look at hyperplanes in Rn−1: namely, each
hyperplane is an orbit of a subgroup of Rn. In particular, one way to construct a
hyperplane ξ is to fix a point x ∈ Rn and consider a subgroup gM(n − 1)g−1 ≤
O(n) oRn, where g ∈ O(n). The orbit

gM(n− 1)g−1 · x

is then a hyperplane. In fact, every hyperplane may be constructed in this fashion.
In particular, x ∈ Rn serves to fix a point in the hyperplane and g ∈ O(n) serves
to give the hyperplane its “tilt.”

Next we need to find a property of hyperplanes that we can readily generalize to
Riemannian symmetric spaces. One important property of hyperplanes is that each
hyperplane in Rn is orthogonal to a maximal collection of parallel lines in Rn−1. For
this reason, we expect that an appropriate generalization of a hyperplane should
be orthogonal to a family of parallel geodesics.

3.3.2 Horocycles for Noncompact-Type Riemannian
Symmetric Spaces

We continue with the same notation as in Section 3.2. A horocycle on a noncompact-
type Riemannian symmetric space G/K is an orbit in G/K of a subgroup of G
that is conjugate to N . In other words, it takes the form

gNg−1 · g0K ⊆ G/K,
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where g, g0 are arbitrary elements G. We denote the space of all Horocycles by Ξ.
Horocycles on Riemannian symmetric spaces were studied in detail by Helgason

in the 1970s. The relationship between horocycles and points in a Riemannian
symmetric space was intended to be analogous to the relationship between points
and hyperplanes in Rn (see [23, p. 59]). Most of the results in this section may be
found in either [20] and [23].

It is not difficult to see that left translations of horocycles by elements of G are
also horocycles. In fact,

h · (gNg−1 · g0K) = (hg)N(hg)−1 · hg0K

where h ∈ G and gNg−1 · g0K is a horocycle in Ξ. Thus G acts on Ξ by left
translation. Furthermore, this action is transitive: consider the horocycles gNg−1 ·
hK and N · K. Next consider the Iwasawa decomposition h−1g = kan and note
that

hkN ·K = hkN(hk)−1hk ·K
= g(an)−1N(an)g−1hk ·K
= gNg−1h ·K.

One then has the following theorem of Helgason.

Theorem 3.3 (Theorem II.1.1 in [23]). The group G acts transitively on Ξ, and
the isotropic subgroup of G which fixes the horocycle N ·K is MN .

In other words, we can make the identification

Ξ ∼= G/MN

In certain ways, Ξ behaves more simply than G/K, as exemplified by the fol-
lowing important decomposition theorem.

Theorem 3.4. (Proposition II.1.4 in [23]).

1. The map

K/M × A→ G/K

(kM, a) 7→ kaK

is a surjection, and its restriction to K/M ×A+ is a diffeomorphism onto its
dense image in G/K.

2. The map

K/M × A→ G/MN

(kM, a) 7→ kaMN

is a diffeomorphism.

26



Proof. Note that (1) is well-defined because kmaK = k(mam−1)mK = kaK.
The surjection of the map in (i) then follows immediately from the decomposition
G = KAK.

The map in (2) is well-defined by a similar argument. To see that it is surjective,
we note that G acts transitively on Ξ and observe that

kanMN = kaMN

for each k ∈ K, a ∈ A and n ∈ N . Surjectivity then follows from the Iwasawa
decomposition.

Next we show that (2) is injective. Suppose that k1a1MN = k2a2MN . If follows
that a−1

2 k−1
2 k1a1 = mn for some m ∈M and n ∈ N . Then

k−1
2 k1 = a2mna

−1
1

= ma2a
−1
1 (a1na

−1
1 ).

Since a1na
−1
1 ∈ N , a2a

−1
1 ∈ A and k−1

2 k1 ∈ K, it follows from the uniqueness of
the Iwasawa decomposition that a2a

−1
1 = e and k−1

2 k1 = m ∈ M . Thus a1 = a2

and k1M = k2M . Thus (2) is injective.
The proof that (2) is a diffeomorphism may be found in [23].

For each w ∈ W , define a set of horocycles by Ξw = NAmw ·MN ⊆ G/MN ,
where mw is a representative in M ′ of the Weyl group element w ∈ W = M ′/M .
Using the fact that A normalizes N and that M ′ normalizes A, we obtain the
following identity for each Bruhat cell:

MANmwMAN = MNAmwMN = NAmwMN.

The Bruhat decomposition then implies (see [23, p. 63]) that Ξ decomposes dis-
jointly as

Ξ =
⋃̇
w∈W

Ξw,

Furthermore, from the denseness of the embedding in (3.7), we see that Ξw∗ is an
open, dense subset of Ξ. In fact, we can write ξ ∈ Ξw∗ as

ξ = na(ξ) · ξ∗,

where n ∈ N and a(ξ) ∈ A. The next theorem shows that a(ξ) is uniquely deter-
mined by ξ.

Theorem 3.5 (Proposition II.1.5 in [23]). Each element gMN ∈ G/MN may be
written in the form

gMN = namwMN,

where n ∈ N , a ∈ A, and mw ∈ M ′ is a representative of w ∈ W . Furthermore a
and w are uniquely determined.

27



As a corollary of this result, we may make an identification

MN\G/MN ∼= A×W,

which should be viewed in analogy with (3.10).
Finally, we take a moment to identify which horocycles pass through a given

point in G/K.

Theorem 3.6. A horocycle hN ·K ∈ Ξ contains gK ∈ G/K if and only if there
is k ∈ K such that hMN = gkMN .

Proof. First, we note that it is clear that gK ∈ gkN ·K for all k ∈ K.
Next, we claim that gK ∈ gaN · K (where a ∈ A) if and only if a = e. In

fact, suppose that gK ∈ ga′N · K for some a′ ∈ A. It immediately follows that
K = aN ·K. In other fords, there is n ∈ N such that K = anK. The uniqueness
of the Iwasawa decomposition then shows that n = e and a = e, as we wanted to
show.

Now fix hMN ∈ G/MN such that gK ∈ hN ·K. By Theorem 3.4, we may write
hMN = gkaMN for some k ∈ K and a ∈ A. By the previous paragraph, we see
that gK ∈ gkN ·K and that gK = gkK ∈ gkaN ·K if and only if a = e. Thus we
are done.

3.3.3 Tangent Spaces of Horocycles and Geometry on the
Symmetric Space

In this section, we prove some results about the relationship between horocycles
and the geometry on the symmetric space. The tangent spaces of horocycles play
an important role in these results.

It is a result of Cartan that the maximal flats of G/K have the form gA ·K ⊆
G/K, where g ∈ G (see Section V.6 in [21]). We begin by showing that horocycles
and maximal flats are, indeed, embedded submanifolds of G/K.

Lemma 3.7. Consider the canonical projection π : G → G/K. The restrictions
π|N : N → N ·K ⊆ G/K and π|A : A→ A ·K ⊆ G/K are smooth embeddings.

Proof. Note that the tangent space of N ⊆ G at the identity may be identified
with n ⊆ g and that the tangent space of A ⊆ G at the identity may be identified
with a. Furthermore, there is a natural identification of TeKG/K with p such that
the canonical projection p : G → G/K induces a differential dπe : g → p which is
equal to the orthogonal projection pp of g onto p.

Our next claim is that π|N : N → N · K ⊆ G/K and π|A : A → A · K ⊆
G/K are smooth embeddings. First we recall from the discussion surrounding 3.12
that the differential dπe = pp restricts so that dπ|n = pp|n and dπ|a = pp|a are
linear isomorphisms onto their images. Because π : G→ G/K is equivariant with
respect to the left-actions of G on G and G/K, it follows that d(π|N)n : T |n(N)→
T |nK(G/K) and d(π|A)a : T |a(A)→ T |aK(G/K) are linear isomorphisms for each
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n ∈ N and a ∈ A. The injectivity of π|N and π|A follows immediately from the
Iwasawa decomposition on G.

We still need to show that π|N and π|A are homeomorphisms onto their images
in G/K. Since they are already known to be continuous and injective, we need only
show that they are closed maps. Suppose that F ⊆ N is closed in N . Since N is a
closed subgroup of G we see that F is also closed in G. Then π(F ) ⊆ G/K is closed
if and only if π−1(π(F )) ⊂ G is closed. But π−1(π(F )) = FK ⊆ G. It is well known
that the product of a closed set and a compact set is closed for any topological
group (see [8, p. 28], for instance). Thus FK ⊆ G is closed and it follows that p(F )
is closed. The same argument shows that π|A is a homeomorphism onto its image
in G/K.

Corollary 3.8. Each horocycle gN ·K and maximal flat gA ·K is an embedded
submanifold of G/K.

Proof. This corollary follows immediately from the fact that τg : x → g · x is a
diffeomorphism of G/K.

Recall that the geodesics in G/K which pass through the basepoint eK are
precisely the curves of the form

γX(t) = exp(tX)K,

where X ∈ p. More generally, the geodesics in G/K which pass through a point
gK are precisely curves of the form

γgK,X(t) = g exp(tX)K,

The next theorem shows that each horocycle is indeed orthogonal to a family of
geodesics and, in fact, orthogonal to a maximal flat:

Theorem 3.9 (See Exercise VI.B.2 in [21]). The horocycle gN ·K is orthogonal to
the maximal flat gA ·K at gK. In particular, gN ·K is orthogonal to the geodesic
γgK,H for each H ∈ a.

Proof. First we will show that N · K ⊆ G/K and A · K ⊆ G/K are orthogonal
at eK. It will then follow that gN ·K is orthogonal to gA ·K at gK because the
metric on G/K is left-invariant under G.

By Lemma 3.7, we see that N ·K and A ·K are embedded submanifolds of G/K
with tangent spaces TeK(N · K) = dπe(n) = pp(n) and TeK(A · K) = dπe(a) =
pp(a) = a. We recall from the discussion following 3.12 that pp(n) ⊥ a and so we
are done.

Corollary 3.10. The horocycle kaN ·K is orthogonal to the maximal flat kA·K =
kAk−1 ·K at kaK. In other words, kaN ·K is orthogonal to the geodesic γad(k)H

for all H ∈ a.

29



An Iwasawa decomposition argument shows that kA ·K ∩ kaN ·K = {kaK} ⊆
G/K. Thus, the previous theorem shows that each horocycle is orthogonal to a
unique maximal flat. Since kM uniquely identifies which maximal flat the horocycle
kaMN is orthogonal to, Helgason refers to kM ∈ K/M as the normal for kaMN .

Theorem 3.11. ([23, Proposition 1.7(ii)]). Each gK ∈ G/K is contained in a
unique horocycle kaMN with a given normal kM ∈ K/M .

Proof. To show existence, suppose that gK ∈ G/K. Consider the Iwasawa decom-
position g−1k = k1a1n1. Then g = kn−1

1 a−1
1 k−1

1 . In particular gK = ka−1
1 n2K for

some n2 ∈ N because A normalizes N . Thus, gK is contained in the horocycle
ka−1

1 N ·K, which has normal kM .
Conversely, if gK ∈ kaN ·K for some a ∈ A, then by Theorem 3.6, we see that

kaMN = gk1MN for some k1 ∈ K. Thus there are m1,m2 ∈ M and n1, n2 ∈
N such that kam1n1 = gk1m2n2. Then g−1k = k1m2(n2n

−1
1 )m−1

1 a−1. Since M
commutes with A and both M and A normalize N , we see that we can write
g−1k = k3a

−1n3. Hence a−1 is the Iwasawa A-component of g−1k and is thus
uniquely identified by g ∈ G and kM ∈ K/M .

In the previous section, we classified which horocycles contain a given point in
G/K. In this section, we consider the question of determining which horocycles
pass through a given point and have the same tangent space at that point.

Theorem 3.12. ([23, Proposition 1.7(ii)] The horocycles kN · K and k′N · K
have the same tangent space at eK if and only if k−1k′ ∈M ′. Thus there are #W
distinct horocycles which pass through a given point in G/K and possess the same
given tangent space.

Proof. First we note that kN ·K and k′N ·K have the same tangent space if and
only if k−1k′ and N ·K have the same tangent space. Thus we may assume that
k′ = e without loss of generality.

We use the notation q = pp(n) to denote the tangent space of N ·K at eK. Note
that kN ·K = kNk−1 ·K. Thus, the tangent space of kN ·K at eK is

TeK(kN ·K) = Ad(k)TeK(N ·K)

= Ad(k)pp(n)

= pp(Ad(k)n),

where the last equality comes from the fact that Ad(k)p ⊆ p. Therefore, we need
to show that pp(n) = pp(Ad(k)n) if and only if k ∈M ′.

The key is to note that Ad(k) acts as an isometry on p with respect to B for
each k ∈ K (since B is ad-invariant). Thus, the orthogonal decomposition

p = a⊕ pp(n)

(see 3.12) turns into the orthogonal decomposition

p = Ad(k)a⊕ pp(Ad(k)n).
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Hence pp(n) = pp(Ad(k)n) if and only if a = Ad(k)a, which is equivalent to k ∈M ′

by definition. Thus we are done.
We have already seen a horocycle gN ·K passes through eK if and only if g ∈ K

(see Theorem 3.6). Since two horocycles kN ·K and k′N ·K (where k, k′ ∈ K) are
equal equal if and only if k−1k′ ∈M , we can identify the set of horocycles passing
through eK having a fixed tangent space with W = M ′/M . Left translation by
elements of G then shows that there are #W horocycles passing through a given
point in G/K which have a given tangent space.

3.3.4 Geometry on the Horocycle Space
In this section we discuss some aspects of the geometry on the horocycle space
G/MN of a Riemannian symmetric space G/K of noncompact type. The first
thing we note is that G/MN is not a symmetric space in general and, in fact, not
even a reductive homogeneous space.

The fact that G/MN is not a symmetric space (with respect to G) follows from
the fact that m ⊕ n is a degenerate subspace of g. In fact, from the results of
Section 3.2.1, we see that n ∈ (m⊕ n) ∩ (m⊕ n)⊥, so m⊕ n is clearly degenerate.
However, if G/MN were a symmetric space, then we would have there would be
an involution τ such that g = (m⊕ n)⊕ q, where m⊕ n is the +1-eigenspace and
q is the −1-eigenspace of τ . The same argument used to prove that k ⊥ p would
show that (m⊕ n) ⊥ q. But since m⊕ n is degenerate, it is impossible to write an
orthogonal (with respect to B) decomposition g = (m ⊕ n) ⊕ q for any subspace
q ⊆ g. Thus G/MN is not a symmetric space.

We say that a homogeneous space G/H, where H is a closed subgroup of G, is
reductive if there is an ad(h)-invariant subspace q ⊆ g such that g = h ⊕ g. In
particular, it is clear that symmetric spaces are always reductive. The important
property of reductive homogeneous spaces is that if G is semisimple, then the
Killing form on G can be used to produce a G-invariant pseudo-Riemannian metric
on G/H, which makes it possible to define geodesics, parallel transport, etc. on
G/H.

Unfortunately, G/MN is not, in general, reductive (see [23, p. 65]). What can be
said, then about the geometry on G/MN? Helgason defines curves which resemble
geodesics in the following way. Let γ be a regular geodesic–that is, a geodesic
such that the stabilizer Gγ = {g ∈ G|g · γ = γ} has minimal dimension. Next,
we pick a point x = gK ∈ γ ⊆ G/X. Then isotropy subgroup at x ∈ G/K is
Kx = gKg−1. Consider the Lie algebra kx = Ad(g)k of Kx and its orthogonal
complement px = ad(g)p. Then the quotient map πx : g 7→ g · x differentiates to
an isomorphism (dπx)epx → Tx(G/K).

Finally, we choose dx ∈ px such that (dπx)e(dx) is the tangent vector of γ at
x ∈ G/K. Because γ is a regular curve, it follows that the centralizer of dx in
px has minimal dimension. Thus, ax = Zpx(gx) is a maximal abelian subspace of
px and dx lies in a Weyl chamber a+

x . Denote by Nx the nilpotent group which
is constructed with the weyl chamber a+

x . It can be shown (see [23, p. 66]) that
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Nx = Ny for all x, y ∈ γ. Thus it makes sense to write Nγ = Nx for any x along γ.
Then one defines

Γγ(t) = Nγ · γ(t) ∈ Ξ

for t ∈ R. We say that Γγ is a geodesic in Ξ = G/MN .

Lemma 3.13 (Lemma II.1.9 in [23]). For any g ∈ G, we have that g · Γγ(t) =
Γg·γ(t).

A transvection along a geodesic γgK,X in G/K is defined to be a map of the
form x 7→ g exp(tX)g−1 · x, where g ∈ G and X ∈ p. It is an isometry of G/K
that, when restricted to γgk,X , corresponds to a shift along the geodesic.

Lemma 3.14 (Corollary II.1.10 in [23]). Any two horocycles on a given geodesic
Γγ correspond in G/K under a transvection along γ.

Given an element m ∈M ′, we say that the m-reflection about a point naK ∈
G/K is the map x 7→ (na)m(na)−1 · x . Note that the reflections about a point
x ∈ G/K preserve the tangent spaces of horocycles passing through x.

Theorem 3.15 (Proposition II.1.12 in [23]). Given any two horocycles ξ1 and
ξ2, it is possible to write ξ1 = sτξ2, where τ is a transvection along a geodesic γ
orthogonal to both ξ1 and ξ2 and s is a reflection about ξ1 ∩ γ.

3.4 The Radon Transform for Riemannian

Symmetric Spaces
Recall that functions on G/K may be thought of as right-K-invariant functions on
G. Similarly, functions on G/MN are identified with right-MN -invariant functions
on G. We can, for instance, consider the natural projections PK : C∞(G) →
C∞(G/K) and PMN : D(G)→ D(G/MN) by

PKf(gK) =

∫
K

f(gk)dk

PMNf(gMN) =

∫
MN

f(gmn)dmdn.

In fact, these projections generalize to projections PK : D′(G) → D′(G/K) and
PMN : D′(G) → D′(G/MN). Note that these projections are both intertwining
operators for the left-regular action of G.

Note that compactly-supported functions on G/K correspond to campactly-
supported right-K-invariant functions on G (because K is compact). In other
words, D(G/K) ⊆ D(G). Thus, it is possible to construct a G-intertwining op-
erator R : D(G/K) → D(G/MN) by simply restricting PMN . That is, we define
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R = PMN |D(G/K). In particular,

Rf(gMN) =

∫
MN

f(gmnK)dmdn

=

∫
N

f(gnK)dn.

for each f ∈ D(G/K).
In fact, if we recall that gMN ∈ G/MN corresponds to the horocycle gN ·K ⊆

G/K, then we see that

Rf(ξ) =

∫
ξ

f(x)dx

for each horocycle ξ ∈ Ξ. It is for this reason that we refer to R as the Radon
transform for G/K.

Similarly, the dual Radon transform R∨ : D(G/MN)→ D(G/K) is defined
by

R∨f(gK) =

∫
K

f(gkMN)dk

=

∫
K/M

f(gkMN)dk.

for each f ∈ D(G/MN).
Because the horocycles passing through a point gK ∈ G/K are precisly those

of the form gkMN , where k ∈ K/M (see Theorem 3.6, we see that

R∨f(x) =

∫
ξ3x

f(ξ)dξ,

and thus the dual Radon transform generalizes the dual Radon transform for Eu-
clidean space.

3.5 Spherical Representations and Gelfand

Pairs
In this section, we review the theory of harmonic analysis on Gelfand Pairs, which
generalize the theory of harmonic analysis on locally compact abelian groups. Most
of the theorems and their proofs (with the exception of the direct integral theory)
appear in Chapter 6 of [8], and these notes closely follow the exposition there.
Helgason uses a more geometric approach in Chapter IV of [22] to study the case of
Riemannian symmetric spaces, where the theory of invariant differential operators
is emphasized.

Suppose now that G is any locally compact topological group and that K is a
compact subgroup. Consider the convolution algebra L1(G), and note that L1(G)
is in fact a Banach ∗-algebra with the involution ∗ given by f ∗(x) = f(x−1). One
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can show that the space L1(G)# = L1(K\G/K) of bi-K-invariant functions in
L1(G) is a closed subspace of L1(G) and closed under convolutions. Furthermore,
there is a projection # : L1(G)→ L1(G)# given by

f#(g) =

∫
K

∫
K

f(k1gk2)dk1dk2.

Definition 3.16. If G is a locally compact group and K is a compact subgroup,
then we say that G/K is a Gelfand pair if L1(G)# is a commutative Banach
∗-algebra.

Notice that if G is abelian and K = {e} is the trivial subgroup, then G/K
is clearly a Gelfand pair. In fact, the concept of a Gelfand pair is intended to
be a tool for generalizing the techniques of harmonic analysis on abelian groups.
Another important class of examples is given by Riemannian symmetric spaces, as
demonstrated by the following lemma.

Theorem 3.17. Suppose that K is a compact closed subgroup of a locally compact
topological group G. If there is an involution θ such that θ(g) ∈ Kg−1K for each
g ∈ G, then G/K is a Gelfand pair.

Corollary 3.18. Every Riemmanian symmetric space (of either compact or non-
compact type) is a Gelfand pair.

Proof. This follows immediately from the KAK decomposition (we note that the
KAK decomposition holds for both compact- and non-compact-type Riemannian
symmetric spaces (see [21, Theorem V.6.7])).

The next lemma is important for some integration arguments on G:

Theorem 3.19. If G/K is a Gelfand pair, then G is a unimodular group (that is,
the Haar measure on G is both left- and right-G invariant and invariant under the
group inverstion).

For harmonic analysis on an abelian locally compact group G, one studies the
space Ĝ of irreducible representations of G. By Schur’s Lemma, it is easy to show
that each irreducible representation of G is one-dimensional. Thus, G is the char-
acter group of G and consists of all of the continuous homomorphisms G → S1,
where S1 is the group of all complex numbers of modulus one. Finally, the char-
acters φ in Ĝ are precisely the bounded, continuous positive-definite functions on
G such that

f 7→
∫
G

f(x)φ(x)dx

is a character of the Banach ∗-algebra L1(G).
For Gelfand pairs we consider the following generalization of the notion of a

character for an abelian group.
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Definition 3.20. A continuous, bounded, bi-K-invariant function φ ∈ Cb(G)# is
said to be spherical if the mapping

χφ : f 7→
∫
G

f(x)φ(x−1)dx

is a character of the Banach ∗-algebra L1(G)#.

The appearance of φ(x−1) in the above definition in place of φ(x) may be con-
fusing at first, but we will ultimately be concerned with positive-definite spher-
ical functions, which, like all positive-definite functions, have the property that
φ(x−1) = φ(x).

Theorem 3.21. Every character of L1(G)# is given by a spherical function.

The analogies with characters for abelian groups continue in the following two
theorems.

Theorem 3.22. A continuous, bounded bi-K-invariant function φ ∈ Cb(G)# is
spherical if and only if

1. φ(e) = 1

2. For each f ∈ L∞(G)#, there is χφ(f) ∈ C such that one has f ∗φ = χφ(f)φ,
where χφ(f) =

∫
G
f(x)φ(x−1)dx.

As a consequence of the following theorem, it is easy to see that any spherical
function on G will in fact be bi-K-invariant. Thus, one may think of it as a function
on G, as a function on G/K, or as a function on K\G/K.

Theorem 3.23 (Proposition IV.2.2 in [22]). A continuous bounded function φ :
G→ C is a spherical function if and only if φ is not identically zero and∫

K

φ(xky)dk = φ(x)φ(y) (3.13)

for all x, y ∈ G.

For abelian groups, a character is a one-dimensional unitary group representa-
tion. Similarly, spherical functions on a Gelfand pair G/K are closely related to a
particular type of representation of G, called a spherical representation.

Definition 3.24. Let G/K be a Gelfand pair. We say that a Hilbert space repre-
sentation (π,H) of G is spherical if there is a nonzero cyclic vector v ∈ H such
that π(k)v = v for all k ∈ K.

Theorem 3.25. Suppose that G is a Lie group with a closed compact subgroup K.

1. If (π,H) is a of G such that there is a nonzero cyclic vector v ∈ dimHK and
dimHK = 1, then π is irreducible.

2. G/K is a Gelfand pair if and only if dimHK ≤ 1 for every irreducible unitary
representation (π,H) of G.
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The next theorem shows that the positive-definite spherical functions are pre-
cisely those given by certain matrix coefficients of certain irreducible untiary spher-
ical representations:

Lemma 3.26. (Theorem IV.3.7 in [22]) Suppose that (π,H) is an irreducible
unitary spherical representation of G with a spherical vector e. Then the function
φπ on G given by

φπ(x) = 〈e, π(g)e〉
is a positive-definite spherical function. Furthermore, every positive-definite spher-
ical function takes the form φπ for an irreducible unitary spherical representation π
that is unique up to unitary equivalence.

Proof. Suppose that (π,H) is an irreducible unitary spherical representation of G
with a spherical vector e. We will show that φπ is spherical by demonstrating that
it satisfies the condition of Lemma 3.23. Note that the orthogonal projection P
from H to HK is given by:

P (v) =

∫
K

π(k)v dk.

Since P (π(y)e) ∈ HK and dimHK = 1, it follows that P (π(y)e) = ce for some
nonzero c ∈ C. But then

c = 〈P (π(y)e), e〉

=

∫
K

〈π(ky)e, e〉

= 〈π(y)e, e〉.

Hence ∫
K

φπ(xky)dk =

∫
K

〈e, π(xky)e〉

=

〈
π(x−1)e,

∫
π(k)π(y)e dk

〉
=
〈
π(x−1)e, P (π(y)e)

〉
=
〈
π(x−1)e, 〈π(y)e, e〉e

〉
= 〈e, π(x)e〉 〈e, π(y)e〉
= φπ(x)φπ(y)

On the other hand, suppose that φ is a positive-definite spherical function on
G. Because φ is positive definite, we recall from Section 2.4 that there is a repre-
sentation (π,H) of G with a nonzero cyclic vector v ∈ H such that

φ(g) = 〈v, π(g)v〉

It follows immediately from the bi-K-invariance of φ that v ∈ HK .
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It remains to be shown that π is irreducible. To that end, we will show that
dimHK = 1. Fix y ∈ G. From Lemma 3.23, we see that〈

π(x−1)v, P (π(y)v)
〉

=

∫
K

φ(xky)dk

= φ(x)φ(y)

= 〈π(x−1)v, φ(y)v〉

for all x ∈ G. Recall that v is cyclic; that is, 〈π(G)v〉 is dense in H, It follows that
P (π(y)v) = φ(y)v. Using again the fact that v is cyclic, we see that

dim(range P ) = 1.

In other words, dimHK = 1, and thus H is irreducible.

One can show that in fact, the positive-definite spherical functions (together
with the zero function) are precisely the extremal points of the compact convex
space P(G)# of positive-definite functions φ ∈ L∞(G) such that ||φ||∞ = φ(e) ≤ 1.
The Krein-Milman Theorem then suggests that all other positive-definite functions
should be constructed as limits of convex combinations of positive-definite spherical
functions.

We will see that understanding the commutative Banach ∗-algebra L1(G)# is
the key to determining the decomposition of the regular representation of G on
L2(G/K). To that end, we begin by considering the Gelfand transform on L1(G)#,
which in this context we refer to as the spherical Fourier transform. We have

seen that the character space L̂1(G)# for L1(G)# may be identified with the set
of spherical functions on G and with the space of spherical representations of G.
For any f ∈ L1(G)#, one sees that the spherical Fourier transform ^ : L1(G)# →
C(L̂1(G)#) is given by

f̂(π) = χφπ(f) =

∫
G

f(x)φπ(x−1)dx.

This Fourier transform may readily be seen to have the following basic properties:

1. f̂ ∗ g = f̂ · ĝ for f, g ∈ L1(G)#

2. f̂ ∗ = f̂

3. f̂ ∈ C0(X) and ||f̂ ||∞ ≤ ||f ||1
These may be proved directly, but they also follow immediately from the fact that
^ is a Gelfand transform of a commutative Banach ∗-algebra.

It can be shown that if f ∈ P(G)#, then the support of f̂ on the space of
positive-definite spherical functions is sufficient to recover f . This is essentially

true by the Krein-Milman theorem, as mentioned earlier. We denote by Ĝ/K the
space of equivalence classes of irreducible unitary spherical representations of G.
This space may be identified, as seen by Theorem 3.26, with the space of positive-
definite spherical functions G. In fact, one has the following result:
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Theorem 3.27. Let P1(G)# denote the space of all finite linear combinations of
positive-definite functions in P(G)#. For each irreducible unitary spherical repre-
sentation π, let φπ denote the corresponding spherical function. Then there is a

unique positive Borel measure µ on Ĝ/K such that

1. f̂ ∈ L1(Ĝ/K) for all f ∈ P1(G)#

2. f(g) =
∫
Ĝ/K

f̂(π)φ(g)dµ(π) for all f ∈ P1(G)# (in particular, f(e) = ||f̂ ||1)

3.
∫
G
|f(g)|2dg =

∫
Ĝ/K
|f̂(π)|2dµ(π) for all f ∈ Cc(G)#, so that the Fourier

transform extends to a unitary operator ^ : L2(G)# → L2(Ĝ/K).

We refer to µ as the Plancherel measure for G/K.

The above theorem provides all of the essential details about harmonic analysis
on spaces of bi-K-invariant functions on G. We would like to understand harmonic
analysis on spaces of functions on G/K, which may be thought of as right-invariant
functions on G.

To begin, we recall that there is a unique G-invariant measure on G/K. In
fact, we may specify this G-invariant measure as follows. Consider the canonical
projection p : G→ G/K. We recall that f 7→ f ◦p defines a continuous embedding
Cc(G/K)→ Cc(G). The G-invariant measure on G/K is then defined by∫

G/K

f(gK)d(gK) =

∫
G

f(p(g))dg.

for all f ∈ Cc(G/K). This definition gives rise to a natural unitary identifica-
tion L2(G)# ∼= L2(G/K)K , where L2(G/K)K denotes the left-K-invariant square-
integrable functions on G/K. We will use the Fourier theory of L2(G/K)# in
Theorem 3.27 to generate harmonic analysis on L2(G/K).

Next we recall the operator-valued Fourier transform on G. For any f ∈
L1(G) and any (π,H) ∈ Ĝ, we define an operator f̂(π) ∈ B(H) by

f̂(π) =

∫
G

f(g)π(g−1)dg.

Note that f̂(π) is very closely related to the integrated representation of π, which
is given by

π(f) =

∫
G

f(g)π(g)dg.

In fact, it follows that f̂(π) = π(f∨), where f∨(g) = f(g−1) (here it is necessary to

use that G is unimodular). Another quick computation shows that f̂(π)∗ = π(f).
The Fourier transform and the integrated representations will both be useful in
different contexts.

This transform has all the expected properties of a Fourier transform:
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1. f̂ ∗ g(π) = f̂(π)ĝ(π) for f, g ∈ L1(G)#

2. f̂ ∗ = f̂(π)∗

3. ||f̂(π)|| ≤ ||f ||1

for f, g ∈ L1(G) and π ∈ Ĝ. Furthermore, if g ∈ G and f ∈ L1(G), then

L̂gf(π) =

∫
G

f(g−1x)π(x−1)dx

=

∫
G

f(x)π((gx)−1)dx = f̂(π)π(g−1).

Similarly, on the level of integrated representations, we have that

π(Lgf) =

∫
G

f(g−1x)π(x)dx

=

∫
G

f(x)π(gx)dx = π(g)π(f).

Recall that functions on G/K are naturally identified with right-K-invariant
functions on G. Furthermore, for such functions the projection # defined at the
beginning of the section takes on the simplified form

f#(g) =

∫
K

f(kg)dk

for each f ∈ L1(G/K) ⊆ L1(G).
Let P1(G/K) denote the space of all finite linear combinations of positive-

definite functions in ∈ L1(G/K). Fix f ∈ P1(G/K). Then f# ∈ P1(G)#. It is
not difficult to use the right-invariance of f to see that f(e) = f#(e).

Here we hit a small notational annoyance. Note that f# may considered an
element of either L1(G) or L1(G)#, and we have a different Fourier transform for

each space. For now, we let f̃# denote the Fourier transform of f# as an element

of L1(G)# and let f̂# denote the Fourier transform of f as an element of L1(G).
There is no real difficulty here, however, because the two transforms are closely

related as follows. For each (π,Hπ) ∈ Ĝ/K, let eπ denote a unit vector in HK
π .

Then

〈f̂#(π)eπ, eπ〉 =

∫
G

〈f#(g)π(g−1)eπ, eπ〉dg

=

∫
G

f#(g)φπ(g−1) = f̃#(π).

Next we examine the connection between f̂# and f̂ . For each (π,Hπ) ∈ Ĝ/K,
we note that the orthogonal projection P : Hπ → HK

π is given by

Pv =

∫
K

π(k)vdk.
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We then see that

f̂#(π) =

∫
G

∫
K

f(kg)dkπ(g−1)dg

=

∫
K

∫
G

f(g)π((k−1g)−1dgdk

=

∫
K

f̂(π)π(k)dk = f̂(π)Pπ.

In particular, since Pπeπ = eπ, we see that 〈f̂(π)eπ, eπ〉 = 〈f̂#(π)eπ, eπ〉.
We may now procede to the inversion formula for f . We see that

f(e) = f#(e) =

∫
Ĝ/K

f̃#(π)dµ(π)

=

∫
Ĝ/K

〈f̂(π)eπ, eπ〉dµ(π).

This formula merely recovers the value of f at the identity, which does not sound
impressive until we perform the following trick:

f(g) = Lg−1f(e) =

∫
Ĝ/K

〈L̂g−1f(π)eπ, eπ〉dµ(π)

=

∫
Ĝ/K

〈f̂(π)π(g)eπ, eπ〉dµ(π).

Proceeding to the L2-theory, we claim that the regular representation (L,L2(G/K))
decomposes into a direct integral over all spherical representations with respect to
the Plancherel measure:

L2(G/K) ∼=G

∫ ⊕
Ĝ/K

Hπdµ(π). (3.14)

In order to correctly define the space
∫ ⊕
Ĝ/K
Hπdµ(π), we need to construct mea-

sureable frames. In fact, we begin by considering the section

e : Ĝ/K →
⋃̇

π∈Ĝ/K

Hπ

π 7→ eπ.

Then choose a countable dense subset {gn}n∈N of G (since G is a Lie group, it is
separable). Our frame of measurable sections will be the collection of sections gn ·e
defined by π 7→ π(gn)e. Since eπ is a conical vector in Hπ for each π ∈ Ĝ/K, it

follows that 〈{gn · e(π)}n∈N〉 = 〈{π(gn)eπ}n∈N〉 is dense in Hπ for each π ∈ Ĝ/K.
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We thus have a measurable bundle of Hilbert spaces which produces the direct
integral in 3.14, and G acts unitarily on

∫ ⊕
Ĝ/K
Hπdµ(π) by

g ·
∫ ⊕
Ĝ/K

vπdµ(π) =

∫ ⊕
Ĝ/K

π(g)vπdµ(π),

where
∫ ⊕
Ĝ/K

vπdµ(π) denotes a square-integrable section π 7→ vπ in
∫ ⊕
Ĝ/K
Hπdµ(π).

Finally, we define the operator

T : Cc(G/K)→
∫ ⊕
Ĝ/K

Hπdµ(π)

f 7→
∫ ⊕
Ĝ/K

π(f)eπdµ(π).

Note that we have used integrated representations here instead of the Fourier
transform; this is done in order that T be an intertwining operator, which follows
from the fact that π(Lgf) = π(g)π(f) for all g ∈ G.

It remains only to be shown that T extends continuously to a unitary intertwin-
ing operator between L2(G/K) and

∫ ⊕
Ĝ/K
Hπdµ(π). To prove this claim, we recall

that if f ∈ Cc(G/K), then f ∗ f ∗ is a positive-definite function on G. That is,
f ∗ f ∗ ∈ P1(G/K). A quick computation shows that

f ∗ f ∗(e) =

∫
G

f(g)f((g−1)−1)dg = ||f ||22.

But the inversion formula given above for elements of P1(G/K) shows us that

||f ||22 = f ∗ f ∗(e) =

∫
Ĝ/K

〈f̂ ∗ f ∗(π)eπ, eπ〉dµ(π)

=

∫
Ĝ/K

〈f̂(π)f̂(π)∗eπ, eπ〉dµ(π)

=

∫
Ĝ/K

〈π(f)∗π(f)eπ, eπ〉dµ(π)

=

∫
Ĝ/K

||π(f)eπ||2dµ(π) = ||Tf ||2.

One can thus show that T extends to a unitary intertwining operator.
We have so far come at the theory of spherical functions from an “integral

calculus” point of view. In the case of a symmetric space, it is possible to view the
theory from a “differential calculus” point of view. In particular, this approach is
taken by Helgason in Chapter IV of [22].

Suppose that G/K is a Riemmanian symmetric space with an involution θ. In
this particular case, one also has that the algebra D(G/K) of left G-invariant
differential operators on G/K is abelian (see Corollary II.5.4 in [22]). It is thus
natural to look for functions which are joint eigenvectors for the operators in
D(G/K). In fact, these are precisely the spherical functions:
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Theorem 3.28. A function φ ∈ C∞(G/K) is a spherical function if

1. φ is left-invariant under translations by elements of K.

2. φ is an eigenfunction for every differential operator in D(G/K).

3. φ(eK) = 1.

In particular, spherical functions are eigenfunctions of the Laplace operator.
An application of the elliptic regularity theorem shows that any distribution in
D′(G) which satisfies the conditions of Definition 3.28 is automatically an analytic
function (see [23, p. 105]), which is why we speak of spherical functions rather
than spherical distributions. It is this definition, in fact, which we will generalize
to the context of the horocycle space.

3.6 Conical Representations
In this section we assume that G/K is a noncompact-type Riemannian symmetric
space. Just as was the case for a symmetric space G/K, it can be shown that the
algebra D(G/MN) of left-G-invariant differential operators on a horocycle space
G/MN is commutative (see Theorem II.2.2 in [23]), and it is natural to look for
joint eigendistributions.

Definition 3.29. A distribution φ ∈ D′(G/MN) is called a conical distribution
if it is an eigendistribution for every differential operator in D(G/MN). If φ is in
fact a smooth function on G, then we say that it is a conical function.

As before, we notice that a conical distribution on G/MN may be considered to
be a bi-MN -invariant distribution on G. In contrast to the situation for spherical
functions, a conical distribution need not be analytic and need not be a function
at all.

The analogue for a horocycle space of a spherical representation is called a conical
representation.

Definition 3.30. A Hilbert space representation (π,H) of G is said to be conical
if there is a nonzero cyclic distribution vector v in H−∞ such that π(MN)v = v.
In this case, v is said to be a conical distribution vector for π.

Suppose that (π,H) is a conical representation of G with a conical unit vector
v ∈ HMN . In this case, one obtains a conical function ψπ,v by

ψπ,v(g) = 〈v, π(g)v〉. (3.15)

Note the similarity with the way in which spherical representations give rise to
spherical functions.

In general, a conical representation (π,H) of G might not have a conical vector
but rather may have merely a conical distribution vector. In this case, each v ∈
(H−∞)MN gives rise to a conical distribution ψπ,v on G in the following way:
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Suppose that π is a conical representation ofG with conical vector v ∈ (H−∞)MN .
For each v ∈ H−∞ and f ∈ D(G), consider as in Section 2.5 the vector

π(f)v =

∫
G

f(g)π(g)v dg ∈ H∞

We then define a conical distribution ψπ,v on G by

〈ψπ,v, f〉 = 〈v, π(f)v〉

Another contrast with spherical representations is that an irreducible conical
representation (π,H) may have the property that dim(H−∞)MN > 1, as we shall
see later.

3.7 Finite-Dimensional Representations and

Weyl’s Unitary Trick
The easiest representations to construct and classify are those which are finite-
dimensional. For that reason, we will later be interested in studying, for infinite-
dimensional Riemannian symmetric spaces, the analogues of finite-dimensional
conical representations. Those representations will no longer be finite-dimensional,
but they will inherit many of the features of finite-dimensional conical representa-
tions. To that end, we review the relevant material on finite-dimensional represen-
tations.

The material in this section is almost entirely classical and very well known. For
a treatment of Weyl’s Unitary Trick, see Section VII.1 of [27]. The highest-weight
theorem may be found in any standard reference on Lie groups, including Section
V.2 of [27]. For a more algebraic treatment, see Chapter 3 of [16]. Results about
finite-dimensional spherical and conical representations may be found in Section
V.4 of [22] and Section II.4 of [23], respectively.

As before, we suppose that G/K is a noncompact-type Riemannian symmetric
space with involution θ. For this section, we will further assume that G/K is the
c-dual of a simply-connected compact-type Riemannian symmetric space U/K. In
other words, we have that gC = uC and also have the decompositions

g = k⊕ p

u = k⊕ ip,

where k and p are the +1 and −1 eigenspaces of θ on g. Furthermore, G and U
share the same complexified group GC = UC.

Theorem 3.31 (Weyl’s Unitary Trick). ([27, Proposition 7.15]) There is are one-
to-one correspondences between the following categories of representations on a
finite-dimensional vector space V , under which corresponding representations have
the same algebra of intertwining operators:

1. representations of G on V
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2. representations of g on V

3. complex-linear representations of gC on V

4. holomorphic representations of GC on V

5. representations of U on V

6. representations of u on V

Proof. We briefly sketch an outline of the proof. Begin with a representation π of
G on V . We can differentiate π to yield a representation of g on V . Note that any
two representations of G with the same derived representation are equivalent, so
passing from (1) to (2) is injective. We can extend the real-linear representation
of g on V to a complex-linear representation gC, and this process is bijective. We
can similarly extend representations of u to uC. This gives the correspondences
(2) ↔ (3) and (6) ↔ (3). Since GC is simply-connected, there is a correspondence
between holomorphic representations of GC and complex-linear representations of
gC given by differentiation. This gives the bijective correspondence (3) ↔ (4). We
can restrict the holomorphic representation of GC to the closed subgroups U and
G, giving (4) → (5) and (4) → (1). Finally, differentiating a representation of U
gives a representation of u and this correspondence is bijective because U is simply
connected, yielding the correspondences (5) ↔ (6).

At this point we recall Theorem 2.6, from which it follows that every finite-
dimensional representation of U is equivalent to a unitary representation and thus
decomposes into a direct sum of irreducible representations of U .3 At any rate,
classifying finite-dimensional representations of G can be reduced to classifying ir-
reducible unitary representations of U . For that reason, our next step is to briefly
review the highest-weight classification of irreducible representations of the com-
pact group U .

We use the notation of Section 3.2. In particular, we have a maximal abelian
subalgebra a in p.4 Now let t be a maximal abelian subalgebra of m = Zk(a). It can

be shown that h = t⊕ ia is a Cartan subalgebra of u and that h̃ = t⊕a is a Cartan
subalgebra of g. In other words, hC = tC ⊕ aC is a maximal abelian subalgebra of
gC. For each α ∈ a∗C, we define the space

gC,α = {Y ∈ gC | [H,Y ] = α(H)Y for all H ∈ hC}.

If gC,α 6= 0, then we say that α is a root for (gC, hC) and denote the set of all
such roots by ∆ = ∆(gC, hC). Note the distinction between the restricted roots
in Σ(g, a) and the roots in ∆(gC, hC). As with the restricted roots, we choose a
positive root subsystem ∆+ ⊆ ∆. Then ∆ = (∆+)∪̇(−∆+).

3In contrast, finite-dimensional irreducible representations of the noncompact semisimple group G are typically

not unitary.
4In the literature it is standard to write u = k⊕ p rather than u = k⊕ ip. Thus all instances of a or a∗ will be

off by a factor of i from the literature on compact-type symmetric spaces.
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Now consider an irreducible unitary representation (π, V ) of U . The derived
representation of u then acts on V by skew-adjoint operators, whose eigenvalues
are purely imaginary. For each λ ∈ ih∗, we define the weight space

Vλ = {v ∈ V |dπ(H)v = λ(H)v for all H ∈ h}.

If Vλ 6= {0}, then we say that λ is a weight for π and denote the set of all weights
for π by ∆(π). Because dπ(h) is an abelian Lie algebra of skew-adjoint operators
on V , it follows that V decomposes into joint eigenspaces. In other words,

V =
⊕

λ∈∆(π)

Vλ.

We say that a weight λ ∈ ih∗ is dominant if 〈λ, α〉 > 0 for all α ∈ ∆+. We
can now review the famous Highest-Weight Theorem, which classifies irreducible
representations of compact groups. We say that a weight λ ∈ ih∗ is integral if
2〈λ,α〉
〈α,α,〉 ∈ Z for each α ∈ ∆+. We denote the set of all dominant, integral weights by

Λ+(u, h).

Theorem 3.32. (The Highest-Weight Theorem; see Theorem 5.110 in [27])
Let U be a simply-connected compact group.

1. If (π, V ) is an irreducible representation of U , then there is a unique domi-
nant integral weight λ ∈ Λ+(u, h) such that λ ∈ ∆(π) and

dπ(X)v = 0

for all v ∈ Vλ and X ∈
⊕

α∈∆+ gC,α. One says that λ is the highest weight
of π and that elements of Vλ are highest-weight vectors. Furthermore,
dimVλ = 1.

2. If (π, V ) is an irreducible representation of U , then dimVλ = dimVwλ for
any w in the Weyl group W = NU(h)/ZU(h) and any λ ∈ ih∗.

3. Two representations of U are equivalent if and only if they possess the same
highest weight.

4. Each dominant integral weight λ ∈ Λ+(u, h) is the highest weight of some
irreducible unitary representation of U . We denote such a representation by
(πµ,Hµ).

Together with Weyl’s Unitary Trick, The Highest-Weight Theorem provides a
parameterization of all finite-dimensional irreducible representations of semisimple
Lie groups.
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3.8 Finite-Dimensional Conical and Spherical

Representations
The problem of determining which finite-dimensional representations are spherical
or conical is solved by some classical results of Helgason, which we state in this
section.

Theorem 3.33 (The Cartan-Helgason Theorem). ([22, p. 535]) Suppose that U/K
is a compact-type symmetric space with c-dual G/K and that (π, V ) be an irre-
ducible representation of U with highest-weight λ ∈ ih∗. We recall that h = t⊕ ia,
where t ⊆ m is a maximal abelian subalgebra of m. Suppose further that U is
simply-connected. Then the following are equivalent:

1. π is a spherical representation of U .

2. π(M)v = v for each highest-weight vector v ∈ Vλ.

3. λ(t) = 0 and also
〈λ, α〉
〈α, α〉

∈ N for all α ∈ Σ+

Proof. We prove that (1) ⇐⇒ (2). Suppose that π is an irreducible spherical
representation of U . We use Weyl’s trick to consider π as a representation of G.
Then we recall that the Iwasawa decomposition g = k ⊕ a ⊕ n. Furthermore, we
have a root-system ∆ = ∆(u, h) ⊆ ih∗ corresponding to the Cartan subalgebra
h for u. Choose a positive subsytem ∆+ ⊆ ∆ so that ∆+|a ⊆ Σ+. the triangular
decomposition uC = gC = nh ⊕ hC ⊕ nh, where

nh =
⊕

α∈∆+(u,h)

uα,C ⊆ uC

is the positive-root nilpotent algebra coming from the root system ∆. One shows
that n ⊆ nh.

If v ∈ Vλ is a highest-weight vector for π, then we see that π(n ⊕ a)v ⊆ Cv.
Because π is irreducible, we know that π(U(g))v = V , where U(g) is the universal
enveloping algebra of g. Hence, by the Poincare-Birkhoff-Witt theorem it follows
that π(U(k))v = V and thus that 〈π(K)v〉 = V .

Now recall that the orthogonal projection P : V → V K is given by

Pw =

∫
K

π(k)wdk.

It follows that Pv ∈ V K\{0} (in fact, if Pv = 0, then V K and 〈π(K)v〉 are
orthogonal, which contradicts the fact that 〈π(K)v〉 = V ). We write Pv ≡ e.
Because P is a K-intertwining operator, t ⊆ k, and π(t)v ⊆ Cv, we see that
π(X)v = 0 for all X ∈ t and thus that λ(t) = 0. A similar argument shows that
π(g)v = v for all g ∈ K ∩ exp(ia).
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Next, one sees that

mC = tC
⊕

β∈∆+ s.t. β|a=0

(gC,β ⊕ gC,−β) .

One sees clearly that π(X) = 0 for each X ∈ gC,β such that β ∈ ∆+, because λ is
a highest weight for π and thus λ + β is not a weight of the representation. Now
suppose that β ∈ ∆+ and β|a = 0. Then 〈λ, β〉 = 0 under the Killing form on ih∗

because λ(t) = 0 but β(a) = 0. Thus, the Weyl-group reflection

wβ : γ 7→ γ − 2
〈γ, β〉
〈β, β〉

β

reflects λ+β into λ−β. It follows that λ−β is not a weight of the representation
(since the set of weights of π is invariant under the Weyl group) and thus that
π(X)v = 0 for all X ∈ gC,−β.

Thus π(X)v = 0 for all X ∈ m. It follows that π(m)v = v for all v ∈ M0 =
exp(m). Since M = M0(exp(ia) ∩ K, we see that π(M)v = v and we are done
showing that (1) =⇒ (2).

Now suppose that π is an irreducible representation of U with highest-weight
λ and highest-weight vector v ∈ Vλ such that π(M)v = v. We must show that
Pv ∈ V K is a nonzero vector. Because t ⊆ m, it follows immediately that λ(t) = 0.

Because π is a unitary representation of U, we have that π(u)∗ = π(u−1) for all
u ∈ U . Since u = k ⊕ ip, it follows that π(X)∗ = π(X) for X ∈ p and π(X)∗ =
−π(X) for X ∈ k, so that π(g)∗ = π(θ(g)) for all g ∈ G. In particular, for each
n ∈ N , we have that

〈π(n)v, v〉 = 〈v, π(θ(n))v〉 = 〈v, v〉,
since θ(n) ∈ N . Next, for each n ∈ N , we write n = k(n)a(n)n(n) for the Iwasawa
decomposition. Next, we note that

e ≡ Pv =

∫
K/M

π(k)vdk

=

∫
N

π(k(n))v · a(n)−2ρdn

=

∫
N

π(nn(n)−1a(n)−1)v · a(n)−2ρdn

=

∫
N

π(n)v · a(n)−λ−2ρdn,

where we have used the fact that π(n)v = v and π(a)v = aλv for all n ∈ N and
a ∈ A.

Thus, we have

〈e, v〉 =

∫
N

π(n)〈v, v〉 · a(n)−λ−2ρdn

= 〈v, v〉
∫
N

π(n)〈v, v〉 · a(n)−λ−2ρdn
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and thus 〈e, v〉 > 0. Hence e ∈ V K\{0}.

If π is spherical, then we say by abuse of notation that λ|ia is the highest weight
of π. Note that there is a natural identification of purely imaginary weights on ia
with purely real weights on a. Thus, the highest restricted roots may be identified
with elements of a∗. We write

Λ+ ≡ Λ+(g, a) ≡
{
µ ∈ a∗

∣∣∣∣ 〈λ, α〉〈α, α〉
∈ N for all α ∈ Σ+

}
and note that each element of Λ+ corresponds to unique irreducible spherical rep-
resentations of U and G.

Moreover, Λ+ is a semilattice. In fact, define linear functionals ξj ∈ a∗ by

〈ξi, αj〉
〈αj, αj〉

= δi,j for 1 ≤ j ≤ r . (3.16)

Then ξ1, . . . , ξr ∈ Λ+ and

Λ+ = Z+ξ1 + · · ·+ Z+ξr =

{
r∑
j=1

njξj

∣∣∣∣∣ nj ∈ Z+

}
.

The weights ξj are called the fundamental weights for (g, a). Note that each element
of Λ+ corresponds to a unique irreducible spherical representation of U .

In fact, a corollary of the Cartan-Helgason Theorem is that the finite-dimensional
conical and spherical representations of G are the same.

Theorem 3.34. ([23, p. 119]) Suppose that (π, V ) is an irreducible finite-dimen-
sional representation of G. Then π is spherical if and only if it is conical, in which
case V MN consists of the highest-weight vectors of π.

Now that the irreducible finite-dimensional spherical and conical representations
have been parameterized, one may ask more generally about finite-dimensional
spherical and conical representations that may not be irreducible.

To that end, suppose that (πµ,Hµ) is an irreducible K-spherical representation
of G with highest weight µ and that (σ,H) is a unitary primary representation of
G consisting of representations of type µ. By [17, Lemma 1.5], all cyclic primary
representations of a compact group are finite-dimensional, and hence σ extends
uniquely to a holomorphic spherical representation of GC. Because it is a finite-
dimensional spherical representation, σ is automatically a conical representation
of GC. In fact, as the following result shows, the MN -invariant vectors of σ are
precisely the highest-weight vectors of irreducible subrepresentations of σ.5

Lemma 3.35. Suppose, as above, that (σ,H) is a unitary primary representation
of a compact group G consisting of representations with highest weight µ. If v ∈

5The lemma is likely known by specialists, but we were not able to find a citation in the literature.
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HMN\{0}, then v is a highest-weight vector that generates an irreducible spherical
representation of G. Furthermore, if v, w ∈ HMN\{0} and v ⊥ w, then 〈π(G)v〉 ⊥
〈π(G)w〉.

Proof. Let v ∈ HMN\{0}, and consider W = 〈σ(G)v〉. We can write W =
W1

⊕
· · ·
⊕

Wn where each Wi gives an irreducible representation of G that is
equivalent to Hµ. It must be a finite direct sum because all cyclic primary repre-
sentations of compact groups are finite-dimensional (see [17]). For each i, let vi be
the orthogonal projection of v onto Wi. Then v = v1 + · · · + vn. Since each Wi is
a G-invariant subspace, it follows that each vector vi is also invariant under MN .
Because Wi is irreducible, we see that vi must be a (nonzero) highest-weight vector
of weight µ (see [16, Theorem 12.3.13]). Hence v is a weight vector of weight µ.

Suppose that W is not irreducible (that is, n > 1). Because W is cyclic, there
must be g1, . . . , gk ∈ G and c1, . . . , ck ∈ C such that

∑k
i=0 ciπ(gi)v = v1 (it is

sufficient to consider finite linear combinations because W is finite-dimensional).
It follows from the invariance of each space Wk that

∑k
i=0 ciπ(gi)v1 = v1 and∑k

i=0 ciπ(gi)v2 = 0. Because W1 and W2 give equivalent representations of G and
all highest-weight vectors of an irreducible representation are constant multiples of
each other, this is a contradiction. Thus W is irreducible and v = v1 is a highest-
weight vector for W .

Now suppose that v and w are nonzero MN -invariant vectors in H such that
v ⊥ w. Write V = 〈π(G)v〉 and W = 〈π(G)w〉. By the above, we know that V
and W are irreducible representations of G with highest-weight vectors v and w,
respectively. Hence, either V ∩W = {0} or V = W . Because the space of highest-
weight vectors of an irreducible representation of G is one dimensional and v ⊥ w,
we cannot have V = W . Thus V ∩W = {0}.

Now consider the invariant subspace Z = V +W and the corresponding orthog-
onal projection p : Z → W , which is an intertwining operator for π because W is
an invariant subspace of Z. Hence, p(v) ∈ HMN and so p(v) = cw for some c ∈ C.
Since v ⊥ w, we see that c = 0 and thus v ∈ ker p. Moreover, it is clear that ker p is
a U -invariant subspace of Z, so it follows that V = 〈π(U)v〉 ⊆ ker p. Hence V ⊥ W
as we wished to show.

3.8.1 Applications to Harmonic Analysis
The importance of finite-dimensional spherical representations of a groupG for har-
monic analysis may be seen by the fact that each finite-dimensional irreducible rep-
resentation (π, V ) of G is contained in the regular representation of G on C∞fin(G).
In fact, let (π, V ) be a finite-dimensional irreducible representation of G. Fix an
inner product on H such that the corresponding representation of U is unitary
(this inner product is unique up to multiplication by a constant). However, π will
not be a unitary representation of G.

What we can say, however, is that π(k) is unitary for each k ∈ K and π(expX)
is self-adjoint for each X ∈ p (since dπ acts by skew-adjoint operators on ip, it
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acts by self-adjoint operators on p). That is,

〈π(g)v, w〉 = 〈v, π(θ(g−1))〉.

In other words, the contragredient representation (π∗, V ∗) is given by

π∗(g) = π(θ(g))

under the conjugate-linear identification V ∼= V ∗ given by the inner product on V .
It can be shown (see Corollary II.4.13 in [23]) that if πµ is the finite-dimensional
spherical/conical representation with highest-weight µ ∈ Λ+, then π∗µ = π−w∗µ,
where w∗ ∈ W is again the longest element of the Weyl group.

For each u, v ∈ H the matrix coefficient function

πu,v(g) = 〈π(g−1)u, v〉

extends to a holomorphic function on GC by Weyl’s Unitary Trick. For each v ∈ V ,
the map

u 7→ πu,v

is a linear intertwining operator from (π, V ) into (L,C∞fin(G)). It is injective because
π is irreducible.

Furthermore, if (π, V ) is a finite-dimensional irreducible spherical representation
of G such that e ∈ V K is a unit vector, then πu,e is a right-K-invariant smooth
function on G for each u ∈ V : in fact,

πu,e(gk) = 〈π((gk)−1)u, e〉
= 〈π(g−1)u, π(k)e〉
= 〈π(g−1)u, e〉 = πu,e(g)

for all g ∈ G and k ∈ K. Here we have used the fact that π|K is unitary. Using the
identification of right-K-invariant functions on G with functions on G/K, we see
that

u 7→ πu,e

gives an intertwining operator from (π, V ) into (L,C∞fin(G/K)). In fact, it can be
shown that (up to a normalizing factor) πe,e is a spherical function on G (see [23,
p. 106]).

We can, in fact, obtain a more explicit formula for the spherical function πe,e.
Suppose π is a spherical representation with highest-weight µ ∈ Λ+ and highest-
weight vector v. For each g ∈ G, write g = k(g)a(g)n(g) be the Iwasawa decom-
position. Furthermore, consider the logarithm log : A → a. Using the fact that
e = P (v) =

∫
K
π(k)vdk and that v is a µ-weight vector, we arrive at Harish-

Chandra’s famous integral formula (see also Theorem IV.4.3 in [22]):

50



πe,e(g) = πe,e(g)

=

∫
K

〈π(g−1)π(k)v, π(k)e〉dk

=

∫
K

〈π(θ(k(g−1k)a(g−1k)n(g−1k))v, e〉dk

=

∫
K

〈π(a(g−1k))v, e〉dk

=

∫
K

〈eµ(log(a(g−1k)))v, e〉dk

=

∫
K

eµ(log(a(g−1k)))〈v, e〉, (3.17)

where we note that 〈v, e〉 is a constant.
Now suppose that (π, V ) is a finite-dimensional irreducible conical representation

of G such that v ∈ V MN is a unit vector. We choose a unit vector v∗ ∈ V as a
highest-weight representation for the contragredient representation π∗. That is, v∗

is invariant under θ(MN) = MN . In other words, v∗ may be thought of as a
lowest-weight vector for π.

Under these constructions, πu,v∗ is a right-MN -invariant smooth function on G
for each u ∈ V : in fact,

πu,v∗(gmn) = 〈π((gmn)−1)u, v∗〉
= 〈π(n−1)π(m−1)π(g−1)u, v〉
= 〈π(g−1)u, π(m)π(θ(n−1))v∗〉
= 〈π(g−1)u, v∗〉 = πu,v∗(g)

for all g ∈ G, m ∈M , and n ∈ N . Here we have used the fact that π(m) is unitary

for m ∈ M ⊆ K and that v∗ ∈ πMN . Furthermore, it can be shown that (up
to a normalizing constant) ψv,v∗ is a conical function (see [23, p. 113]). Using the
identification of right-MN -invariant functions on G with functions on G/MN , we
see that

u 7→ πu,v∗

gives an intertwining operator from (π, V ) into (L,C∞fin(G/MN)).
We can obtain a more explicit formula for the conical function πv,v∗ on a dense

subset of G. Suppose that π is a conical representation with highest-weight µ ∈ Λ+,
highest-weight vector v, and lowest-weight vector v∗. For each g ∈ NMAN , write
g = n′α(g)mw∗mn, where m ∈M , n and n′ are in N , and α(g) ∈ A. Furthermore,
consider the logarithm log : A → a. The following formula may also be found in
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Theorem II.4.6 of [23]:

πv,v∗(g) = 〈π((n′α(g)mw∗mn)−1)v, v∗〉
= 〈π(m−1

w∗α(g)−1)v, v∗〉
= 〈π(m−1

w∗)e
−µ(logα(g))v, v∗〉

= e−µ(logα(g))πv,v∗(mw∗)

for all g ∈ NMAN , where we note that πv,v∗(mw∗) is a constant.
Next we consider how these representations allow us to decompose function

spaces. Because dimV K = 1 and dimV MN = 1, it is possible to show that (π, V )
appears in (L,C∞fin(G/K)) and (L,C∞fin(G/MN)), respectively, with multiplicity
one. In fact, it follows from Lemma II.4.14 and Proposition II.4.15 in [23] that

C∞fin(G/MN) ∼=G

∑⊕

λ∈Λ+(g,a)

Hλ,

where
∑⊕ denotes an algebraic direct sum. From Corollary 12.3.15 in [16], we

know that
C∞fin(G/K) ∼=G

∑⊕

λ∈Λ+(g,a)

Hλ.

Furthermore, one can show (see [22, Theorem V.4.3]) that

C∞fin(U/K) ∼=U

∑⊕

λ+∈Λ(g,a)

Hλ.

In other words, there are very natural identifications of smooth, G-finite smooth
functions on U/K, G/K and G/MN . Consider the mapping defined by

πu,e 7→ πu,v

for each spherical/conical representation (π,H) and each u ∈ H, where e ∈ HK

and v ∈ HMN are unit vectors. This mapping may be extended by linearity to
yield a G-intertwining operator from C∞fin(G/K) to C∞fin(G/MN). This intertwining
operator is given by a form of the celebrated Radon transform and may be defined
in terms of integral operators.

3.9 Unitary Spherical and Conical

Representations
We are primarily concerned in this thesis with studying the analogue of finite-
dimensional conical representations for infinite-dimensional symmetric spaces, none
of which are unitary. However, we briefly review the construction of unitary coni-
cal representations in order to show the important role that they play in harmonic
analysis on noncompact-type Riemannian symmetric spaces, which provides an
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important motivation for extending the theory of conical representations to the
infinite-dimensional context.

The results in this section are primarily due to Harish-Chandra (for G/K) and
Helgason (for G/MN). Helgason’s exposition of Harmonic analysis on G/K may
be found in Chapter IV of [22] and his exposition of analysis on G/MN may be
found in Chapters II and VI of [23] and in the earlier paper [20]. A simpler proof
of the Plancherel formula for G/MN was provided by Ronald Lipsman in [29]; it
is simple enough that we shall provide a brief outline here. For a good overview of
these topics from a representation-theory perspective, see [38].

The standard construction of unitary spherical and conical representations for
noncompact-type Riemannian symmetric spaces uses a technique known as para-
bolic induction. As before, let G/K be a Riemannian symmetric space of noncom-
pact type and use the notation in Section 3.2.

We begin by choosing a one-dimensional representation of A, which may be
identified with an element λ of a∗C. Due to the fact that MAN/MN ∼= A, there is
a well-defined extension to a representation 1⊗ λ⊗ 1 of MAN such that

(1⊗ λ⊗ 1)(man) = eλ(log(a)) ≡ aλ

for all m ∈M , a ∈ A, and n ∈ N .
We then define the spherical principal series representation (σλ,Kλ) by

setting6

Kλ =

{
ψ : G→ C

∣∣∣∣ψ(gman) = a−λ−ρψ(g) and ||ψ||2 ≡
∫
K

|ψ(k)|2dk <∞
}

and letting σλ act on Kλ by

σλ(g)ψ(h) = ψ(g−1h).

In the terminology of induced representations, one writes σλ = IndGMAN(1⊗ λ⊗ 1)
and says that σλ is the representation of G induced by the representation 1⊗λ⊗1
of the parabolic subgroup MAN . The factor of ρ comes from the fact that the Haar
measure on G = KAN is given by dg = a2ρ dk da dn.

There are several ways to interpret the space Kλ. It can be viewed as a space of
square-integrable sections of a particular homogeneous line bundle over G/MAN .
Furthermore, using the Iwasawa decomposition, one can show that there is a dif-
feomorphism between G/MAN and K/M which gives a natural identification of
Kλ with L2(K/M), on which the action is given by:

σλ(g)f(hM) = a(g−1h)−λ−ρf(k(g−1h))

for all f ∈ L2(K/M) and h ∈ K, where

g−1h = k(g−1h)a(g−1h)n(g−1h)

6The literature typically denotes this representation by (πλ,Hλ), but we need to reserve that notation for a

later use.

53



is the Iwasawa decomposition of g−1h in G. This realization of Kλ is called the
compact picture. Note that σλ|K is just the regular representation of K on
L2(K/M).

One can further show that σλ is irreducible for almost all λ. Also, for each Weyl
group element w, we have that σλ ∼= σwλ for almost all λ ∈ a∗C. Finally, σλ is a
unitary representation if λ ∈ ia∗.

It is easy to see from the compact picture that σλ is a spherical representation. In
particular, we note that the constant function 1 in L2(K/M) is K-invariant. The
work of Harish-Chandra gives an explicit formula for the corresponding spherical
functions. In particular, a generalization of the argument in (3.17), one can show
that the positive-definite spherical function for Kλ has the form

φλ(g) = 〈1, φλ(g)1〉 =

∫
K

a(gk)−λ−ρdk,

where g = ka(g)n for some k ∈ K, a(g) ∈ A, and n ∈ N . This formula, when
varied over all λ ∈ ia∗, provides all positive-definite spherical functions for G/K.
In fact, when varied over all λ ∈ ia∗C, it provides all bounded spherical functions
on G. Finally, one shows that φλ = φµ if and only if µ = wλ for some Weyl group
element w ∈ W , which demonstrates the earlier claim that σλ ∼= σwλ for almost all
λ ∈ a∗C and w ∈ W .

It is less obvious that σλ is a conical representation. Note that there is a con-
tinuous injection Hλ ↪→ D′(G/MN). For almost all λ ∈ ia∗, Helgason constructs
#W distinct conical distributions on G/MN with eigenvalue λ − ρ with respect
to the action of a. It is not clear from the works of Helgason whether these coni-
cal distributions are continuous functionals on the space (Hλ)

∞ of smooth vectors
for Hλ. but this result may be seen in [29, p. 50]. In other words, one has that
dim(H−∞λ )MN = #W for almost all λ ∈ ia∗.

The question of whether all unitary irreducible conical representations are con-
structed by the unitary spherical principal series is a subtle one. In a certain moral
sense, one expects the unitary spherical principal series to exhaust “almost all,” if
not all, unitary irreducible conical representations [23, p. 147]. To this end, Hel-
gason was able to classify all conical distributions with the exception of certain
singular eigenvalues [23, Theorem II.5.16]. For symmetric spaces G/K of rank one,
the classification was completed by Hu (see [25] as well as Theorem II.6.18 and
Theorem II.6.21 in [23]). However, for cases of rank higher than one it is not clear
in the literature whether the answer is known.

3.9.1 Applications to Harmonic Analysis
In this section we briefly discuss the Plancherel formulas for noncompact-type
Riemannian symmetric spaces and their associated horocycle spaces and note the
role played by unitary spherical and conical representations.

We once again suppose that G/K is a noncompact-type Riemannian symmetric
sapce and use the terminology of Section 3.2. Because M is a compact group and

54



N is a connected nilpotent group, we see that both groups are unimodular. We
normalize the measure on N by∫

N

a(n)−2ρdn = 1.

One can show that MN is a unimodular group ([23, p. 82]) and that its Haar
measure is (up to a constant) d(mn) = dm dn. Furthermore, G is a unimodular
group because it is semisimple. It follows from Theorem 2.9 that G/MN possesses
a G-invariant measure. Similarly, because G and K are both unimodular, the
symmetric space G/K possesses a G-invariant measure.

We can now consider the unitary regular representations of G on L2(G/K) and
L2(G/MN). The deep work of Harish-Chandra shows that the regular represen-
tation (LG/K , L

2(G/K)) may be written as a direct integral of unitary spherical
principal series representations (see, for instance, Sections 2.5 and 2.8 in [38]):

L2(G/K) ∼=G

∫ ⊕
ia∗/W

Kλ|c(λ)|−2dλ, (3.18)

where the measure |c(λ)|−2dλ is the Lebesgue measure on ia∗/W weighted by
|c(λ)|−2. Here c is the famous Harish-Chandra c-function given by

c(λ) =

∫
N

a(n̄)−λ−ρ dn̄

for λ ∈ ia∗ with Re 〈λ, α〉 > 0 for all α ∈ Σ+. It is W -invariant and may be
extended meromorphically to all of ia∗, so that (3.18) is well-defined.

The direct-integral space
∫ ⊕
ia∗/W

Kλ|c(λ)|−2dλ may be realized geometrically as

the space

L2
W (a∗, L2(K/M); (#W )−1|c(λ)|−2dλ) ∼= L2

W (a∗ ×K/M, (#W )−1|c(λ)|−2dλdk),

where the subscript W indicates that we consider W -invariant functions.
On the other hand, the decomposition of (LG/MN , L

2(G/MN)) may be derived
using more elementary methods, and we briefly sketch the argument here. By using
induction in stages, one has that

LG/MN
∼= IndGMN(1) ∼= IndGMAN IndMAN

MN (1)

But we also have

IndMAN
MN (1) ∼= L2(MAN/MN) ∼=

∫ ⊕
ia∗

1⊗ λ⊗ 1 dλ,

where the latter equality follows from the fact that MAN/MN ∼= A. Here dλ is
Lebesgue measure on ia∗. Therefore, one has that

LG/MN
∼=
∫ ⊕
ia∗

IndGMAN(1⊗ λ⊗ 1)
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where we use the fact that induction commutes with taking direct integrals. Putting
everything together, we have the following result (see Section 4.2 in [38]):

L2(G/MN) ∼=G

∫ ⊕
ia∗
Kλdλ. (3.19)

In fact, because (σλ,Hλ) is equivalent to (σwλ,Hwλ) for almost all λ ∈ ia∗ and
w ∈ W , one sees that

L2(G/MN) ∼=G (#W )

∫ ⊕
ia∗/W

Kλdλ ∼=G (#W )L2(G/K).

That is, L2(G/MN) is equivalent to a direct sum of #W copies of L2(G/K).
We noted earlier that the Radon transform is an itnertwining operator. It can

also be shown that it is injective. Unfortunately, it does not extend to a unitary
intertwining operator from L2(G/K) into L2(G/MN). However, it is possible to
“twist” the Radon transform into a unitary intertwining operator, as shown in
Section II.3.3 of [23], a variant of the Radon transform may be used to define
an intertwining operator from L2(G/K) to the space L2

W (G/MN) of W -invariant
functions on G/MN . A good exposition of the results may be found in Sections
4.2 and 4.3 of [38].

We briefly state the results here for completeness. Using the Laplace operators
on K/M and A, it is possible to define a Schwartz space S(G/MN) of rapidly-
decreasing functions on G/MN ∼= K/M × A. Then define a twisted Schwartz
space

Sρ = {f ∈ C∞(G/MN) : eρf ∈ S(G/MN)},

where eρ is the function on G/MN defined by eρ(kM, a) = eρ(log(a)). We also use the
notation aρ = eρ(log(a)) for each a ∈ A. Now define an operator Λ : Sρ(G/MN) →
Sρ(G/MN) by

Λf = e−ρF−1
A (c−1FA(eρf)),

where FA : S(K/M ×A)→ S(K/M × a∗) is the classical Fourier transform in the
A variable—that is,

FAf(kM, λ) =

∫
A

f(kM, a)e−iλ(log(a))da.

for each λ ∈ a∗. Then it can be shown that the composition ΛR extends to an
intertwining operator that is a partial isometry from L2(G/K) into L2(G/MN).
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Chapter 4
Direct Limits of Groups and Symmetric
Spaces

Motivated in part by applications to physics, there has been an increasing amount
of work done on infinite-dimensional Lie groups since the 1970s. These are topolog-
ical groups which are locally modeled on locally convex topological vector spaces
over R (in the same way that finite-dimensional Lie groups are modeled on finite-
dimensional vector spaces over R). The simplest infinite-dimensional Lie groups
which may be considered are those which are formed by taking direct limits of
finite-dimensional Lie groups. They occupy a sort of “middle ground” between
finite-dimensional groups and other infinite-dimensional groups with finer topolo-
gies, in that they inherit many of the properties of the former but already exhibit
some of the pathologies of the latter.

We refer the reader to [11] and [35] for a good overview of the basic properties
of direct-limit groups. See [36] and [33] for some details about the construction
of smooth manifold structures on direct-limit groups. See also [52] for an in-depth
study of direct limits of abelian and nilpotent groups and for applications of direct-
limit groups to physics.

4.1 Review of Direct Limits and Projective

Limits
We begin in this section by very briefly reviewing several basic definitions and
results about direct limits and projective limits. See, for instance, the appendices
in [35] for more details.

Suppose that for each n ∈ N one has a topological space Xn and continuous
embeddings pn+1

n : Xn → Xn+1, which we refer to as inclusion maps.1 By repeated
composition of these inclusion maps, we construct continuous maps pkn : Xn → Xk

for any n ≤ k. Note that pkn ◦ pnm = pkm for all m ≤ n ≤ k. We say that {Xn}n∈N
together with the inclusion maps forms a direct system.

Next, we define an equivalence relation ∼ on the disjoint union ṫn∈NXn as
follows: for x ∈ Xn and y ∈ Xm, where n ≤ m, we write x ∼ y if pmn (x) = y.
We then define

X∞ ≡ lim−→Xn ≡

(⊔̇
n∈N

Xn

)
/ ∼

and say that X∞ is the direct limit of {Xn}n∈N. Note the the inclusion map from
Xn to ṫn∈NXn factors through the quotient to give an injective map pn : Xn → X∞.
We then give X∞ the weakest topology such that pn is continuous for each n ∈ N.
The direct limit possesses two important properties:

1We warn the reader that it is not always assumed in the literature that the inclusion maps are injective.
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Lemma 4.1. Let Y be a topological space. Suppose that {Xn, p
n+1
n } is a direct sys-

tem of topological spaces and suppose that for each n ∈ N we are given a continuous
map fn : Xn → Y so that the diagram

Xk
fk // Y

Xn

pkn

OO

fn

>>

commutes for each n ≤ k. Then there is a unique continuous map f∞ : X∞ → Y
such that

X∞
f∞ // Y

Xn

pn

OO

fn

>>

commutes for each n ∈ N.

Lemma 4.2. Suppose that {Xn, p
n+1
n } and {Yn, qn+1

n } are direct systems of topo-
logical spaces and suppose that for each n ∈ N we are given a continuous map
fn : Xn → Yn so that the diagram

Xk
fk // Yk

Xn

pkn

OO

fn
// Yn

qkn

OO

commutes for each n ≤ k. Then there is a unique continuous map f∞ : X∞ → Y∞
such that

X∞
f∞ // Y∞

Xn

pn

OO

fn
// Yn

qn

OO

commutes for each n ∈ N.

In fact, these can be taken to be a sort of universal property for direct limits.
Following the construction of direct limits of topological spaces, it is possible to
define direct limits for the categories of topological groups, vector spaces, and Lie
algebras which satisfy the previous two lemmas.

The prototypical example of a direct system is that of a collection {Xk}k∈N of
topological spaces such that Xk is a closed subset of Xm whenever k ≤ m. Then
we can identify lim−→Xn with the set X∞ =

⋃
m∈N given by the topology where a

set A ⊂ X∞ is open if and only if A ∩Xn is an open subset of Xn for each n ∈ N.
If {Gk}k∈N is a collection of topological groups such that Gk is a closed subgroup

of Gm whenever k ≤ m, then we form the direct limit G∞ = ∪n∈NGn in the
topological category. The group product is obvious: if a, b ∈ Gn, then their product

58



in G∞ is equal to the group product under Gn. One uses Lemma 4.2 to show that
the group product and inverse on G∞ are continuous.

For example, consider the groups SU(n) for each n ∈ N. We see that SU(n) ≤
SU(n+ 1) under the identification

SU(n) 7→ SU(n+ 1)

A 7→
(
A 0
0 1

)
.

We can form the direct-limit group SU(∞) = lim−→ SU(n) =
⋃
n∈N SU(n). One can

think of SU(∞) as consisting of all unitary operators on `2(C) which fix all but
finitely many of the standard basis elements. Alternately, SU(∞) may be thought
of as consisting of infinite complex matrices which are equal to the identity matrix
outside of a finite block in the upper-left corner.

If {Hk}k ∈ N is a collection of Hilbert spaces such that such that Hk is a closed
subgroup of Hm whenever k ≤ m, then we form the direct limit H∞ = ∪n∈NHn

in the topological category. One uses Lemma 4.2 to show that the addition and
constant multiplication onH∞ are continuous. Furthermore,H∞ = ∪n∈NHn carries
a continuous inner product. However, H∞ is not necessarily a Hilbert space and
we must take the completion H∞ to obtain a Hilbert space.

Now suppose that for each n ∈ N one has a topological space Xn and continuous
surjections pn+1

n : Xn+1 → Xn, which we refer to as projection maps. By repeated
composition of these inclusion maps, we construct continuous maps pkn : Xk → Xn

for any n ≤ k. Note that pnm ◦ pkn = pkm for all m ≤ n ≤ k. We say that {Xn}n
together with the inclusion maps forms a projective system.

Next, we consider the Cartesian product
∏

n∈NXn under the product topology.
We denote by lim←−Xn the set of all sequences (xn)n∈N such that pnm(xn) = xm. We
give lim←−Xn the topology it inherits as a subspace of the Cartesian product. Note
that there are projection maps pn : X∞ → Xn defined by pn((xm)m∈N) = xn. In
fact, the topology on lim←−Xn is the weakest topology such that the pn is continuous
for each n ∈ N. In other words, we can form a basis for the topology on lim←−Xn

consisting of sets of the form p−1
n (A) where A is an open subset of Xn for some

n ∈ N. These sets are called cylinder sets.
Projective limits satisfy universal properties obtained by reversing the arrows

for the corresponding properties of direct limits:

Lemma 4.3. Let Y be a topological space. Suppose that {Xn, p
n+1
n } is a projec-

tive system of topological spaces and suppose that for each n ∈ N we are given a
continuous map fn : Y → Xn so that the diagram

Y

fn   

fk // Xk

pkn
��

Xn
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commutes for each n ≤ k. Then there is a unique continuous map f∞ : Y → X∞
such that

Y

fn   

f∞ // X∞

pn

��
Xn

commutes for each n ∈ N.

Lemma 4.4. Suppose that {Xn, p
n+1
n } and {Yn, qn+1

n } are projective systems of
topological spaces and suppose that for each n ∈ N we are given a continuous map
fn : Xn → Yn so that the diagram

Xk

pkn
��

fk // Yk

qkn
��

Xn fn
// Yn

commutes for each n ≤ k. Then there is a unique continuous map f∞ : X∞ → Y∞
such that

X∞

pn

��

f∞ // Y∞

qn

��
Xn fn

// Yn

commutes for each n ∈ N.

One may define projective limits in the category of topological groups by starting
with the topological projective limit and defining the group product to be the
restriction of the componentwise product of sequences in the Cartesian product.
Projective limits of vector spaces and Lie algebras may be defined in similar ways.

Suppose that (Vn, p
n+1
n )n∈N is a direct system of topological vector spaces. Then

we can define continuous projections qn+1
n : V ∗n+1 → V ∗n by qn+1

n (λ)v = λ(pn+1
n v) for

each v ∈ Vn. This allows us to form the projective limit lim←− (V ∗n ). In fact, one can
show that (

lim−→Vn
)∗ ∼= lim←− (V ∗n ) .

4.2 Lie Algebras and Complexifications of

Direct-Limit Groups
Suppose that {Gn}n∈N is a direct system of Lie groups with inclusion maps pn+1

n :
Gn → Gn+1. Then the differentiated map dpn+1

n : gn → gn+1 is an injective Lie
algebra homomorphism for each n ∈ N because each pn+1

n is a smooth embedding.
Thus {gn}n∈N is a direct system of Lie algebras with inclusion maps dpn+1

n : gn →
gn+1. Thus we have the direct-limit group G∞ = lim−→Gn and the direct-limit Lie
algebra g∞ = lim−→ gn.
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It is natural to ask whether g∞ is the Lie algebra for G∞ in some sense. To
that end, consider the exponential maps expn : gn → Gn for each n ∈ N. One
notices that pn+1

n ◦ expn = expn+1 ◦ dpn+1
n by the definition of the differentiated

homomorphism dpn+1
n . In other words, the diagram

gn+1

expn+1// Gn+1

gn

dpn+1
n

OO

expn // Gn

pn+1
n

OO

commutes for each n ∈ N. Thus we may consider the continuous map

exp∞ : g∞ → G∞

defined by exp∞(pn(X)) = pn(expn(X)) for all X ∈ gn. Under certain technical
conditions which include all of the classical direct-limit groups, it has been shown
that exp∞ is a local homeomorphism (see Proposition 7.1 in [33]).2 However, we
will not need to use this result for our purposes.

Now suppose that {Un}n∈N is a direct system of connected compact Lie groups
with inclusion maps pn+1

n : Un → Un+1. Following the process described in Propo-
sition 3.6 of [35], we construct complexifications of u∞ = lim−→ un and U∞ = lim−→Un.
As before, we consider the direct-limit group U∞ = lim−→Un and its Lie algebra
u∞ = lim−→ un. For each n ∈ N, we consider the complexified Lie algebra (un)C =
un⊗R C. Then the inclusion maps dpn+1

n : un → un+1 may be complexified to yield
complex-linear injective Lie algebra homomorphisms (dpn+1

n )C : (un)C → (un+1)C.
We may thus consider the complex Lie algebra

(u∞)C = lim−→ (un)C.

Furthermore, because (dpn+1
n )C is the complexification of the linear map dpn+1

n , we
see that the inclusions in : un → (un)C satisfy the following commutative diagram:

un+1
in+1 // (un+1)C

un

dpn+1
n

OO

in // (un)C

(dpn+1
n )C

OO

We thus obtain an injective homomorphism i∞ : u∞ → (u∞)C. One can show that
(u∞)C is the complexification of the Lie algebra u∞.

For each n ∈ N, we consider the complexification (Un)C of the compact Lie
group Un. We recall that (Un)C has Lie algebra (un)C and that Un is the closed
analytic subgroup of (Un)C corresponding to the Lie algebra un. By [27, Proposition
7.5], each homomorphism pn+1

n induces a holomorphic homomorphism (pn+1
n )C :

2In fact, once the proper definitions for infinite-dimensional manifolds have been made, it can be shown under

these technical conditions that exp∞ is a local diffeomorphism (see Theorem 8.2).
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(Un)C → (Un+1)C whose differential is (dpn+1
n )C. We may thus consider the direct-

limit group
(U∞)C = lim−→ (Un)C.

Furthermore, by [27, Proposition 7.5] it follows that the inclusion maps in : Un →
(Un)C satisfy the following commutative diagram:

Un+1
in+1 // (Un+1)C

Un

pn+1
n

OO

in // (Un)C

(pn+1
n )C

OO

We thus obtain a continuous injective homomorphism i∞ : U∞ → (U∞)C. Because
the image of Un under in is closed in (Un)C for each n ∈ N, we see that the image of
U∞ under i∞ is a closed subgroup of (U∞)C. For these reasons, we say that (U∞)C
is the complexification of U∞.

4.3 Direct Systems of Riemannian Symmetric

Spaces
Suppose that {Gn}n∈N is a direct system of semisimple Lie groups and that for each
n ∈ N we have an involution θn : Gn → Gn such that Gn/(Gn)θ is a Riemannian
symmetric space and the diagram

Gn+1
θn+1 // Gn+1

Gn

pn+1
n

OO

θn // Gn

pn+1
n

OO
(4.1)

commutes. We thus have a continuous involution θ∞ : G∞ → G∞. Write Kn =
(Gn)θ for each n ∈ N. We see that {Kn}n∈N forms a direct system with inclusion
maps given by pn+1

n |Kn . Furthermore, (4.1) implies that pn+1
n (Kn) = pn+1

n (Gn) ∩
Kn+1 for each n ∈ N, so there are well-defined inclusion maps from the quotient
spaceGn/Kn toGn+1/Kn+1. We thus obtain a direct system of homogeneous spaces
{Gn/Kn}n∈N. Now construct the direct limits G∞ = lim−→Gn, K∞ = lim−→Kn, and

G∞/K∞ = lim−→Gn/Kn. Finally, one can show that K∞ = (G∞)θ∞ .
We say that G∞/K∞ is a lim-Riemannian symmetric space. If Gn/Kn is a

compact-type symmetric space for each n ∈ N, then G∞/K∞ is said to be a lim-
compact Riemmanian symmetric space. Similarly, if Gn/Kn is a noncompact-
type Riemannian symmetric space for all n ∈ N, then G∞/K∞ is said to be a
lim-noncompact Riemannian symmetric space.

For each m ∈ N, denote the Killing form on gk by Bk. Note that for each k ≤ m,
the Killing form Bm : gm × gm → C restricts to an ad(gk)-invariant bilinear form
on gk. If gk is a simple Lie algebra for all k ∈ N, then all such ad(gk)-invariant
bilinear forms are constant multiples of each other, and hence Bm|gk×gk = cBk for
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some constant c ∈ C. In the interest of consistency, we replace each Killing form
Bk in this case with a constant multiple in such a way that Bm|gk×gk = Bk for all
k ≤ m. In other words, we will shall normalize the Killing forms of the gk’s so that
they are consistent with each other.

Similarly, if {gk}k∈N is a direct system of simple Lie algebras, then one constructs
a direct system {gk × gk}k∈N of semisimple Lie groups. The same construction as
before allows us to consistently normalize Killing forms on gk × gk for each k ∈ N.

We now see how the notion of c-duals may be extended to lim-Riemannian
symmetric spaces. Suppose that {Un/Kn}n∈N is a direct system of Riemannian
symmetric spaces with involutions θn : Un → Un and inclusion maps pn+1

n : Un →
Un+1. We follow the constructions in Section 4.2 to produce a complexification
(U∞)C = lim−→(Un)C for the lim-compact group U∞ = lim−→Un. To simplify notation
we assume that (Un)C ⊆ (Un+1)C and therefore Un ⊆ Un+1 for each n ∈ N.

We recall that the involutions θn : Un → Un extend to holomorphic involutions
θn : (Un)C → (Un)C. The fact that the diagram

Un+1
θn+1 // Un+1

Un

OO

θn // Un

OO

commutes implies that

(Un+1)C
θn+1 // (Un+1)C

(Un)C

OO

θn // (Un)C

OO
(4.2)

commutes by [27, Proposition 7.5].
As before, we write

un = kn ⊕ p̃n

for each n ∈ N, where kn and p̃n are the +1- and −1-eigenspaces of θn. From (4.1)
it follows that

kn = kn+1 ∩ un and p̃n = p̃n+1 ∩ un

and hence that kn ⊆ kn+1 and p̃n ⊆ p̃n+1. For each n, we construct the c-dual Lie
algebra

gn = kn ⊕ ip̃n ⊆ (un)C

and note that gn ⊆ gn+1. Finally, we construct the analytic subgroup Gn of (Un)C
which corresponds to the Lie algebra gn and recall that Gn is closed in (Un)C.
Thus Gn is a closed subgroup of Gn+1 for each n. It follows that the direct-limit
group G∞ = lim−→Gn is a closed subgroup of (Un)C and possesses the direct-limit
Lie algebra g∞ = lim−→ gn.

Reviewing the construction of finite-dimensional c-dual spaces, we see that the
complexified involution θn : (un)C → (un)C restricts to an involution θn : gn → gn
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and that kn and ip̃n are the +1- and −1-eigenspaces of θn in gn. Furthermore,
because gn is θn-stable, the holomorphic involution θn : (Un)C → (Un)C restricts
to an involution θn : Gn → Gn such that (Gn)θn = Kn. Finally, the restriction of
(4.2) implies that the diagram

Gn+1
θn+1 // Gn+1

Gn

OO

θn // Gn

OO

commutes. Thus {Gn/Kn}n∈N is a direct system of noncompact-type Riemannian
symmetric spaces. We say that G∞/K∞ = lim−→Gn/Kn is the c-dual of U∞/K∞.

In order to align our notation with that of Chapter 3, we set pn = ip̃n for each
n, so that

gn = kn ⊕ pn

un = kn ⊕ ipn.

Finally, we notice that

g∞ = k∞ ⊕ p∞

u∞ = k∞ ⊕ ip∞,

where k∞ = lim−→ kn and p∞ = lim−→ pn are the +1-and −1-eigenspaces of θ∞ in g∞.

4.4 Propagated Direct Limits
As before, we assume that G∞/K∞ is a lim-noncompact Riemannian symmetric
spaces which is the c-dual of a direct limit U∞/K∞ of simply-connected compact
Riemannian symmetric space. We need to put some further technical conditions
on G∞/K∞ in order to prove our results about conical representations. The first
condition is that of propagation, which was introduced by Ólafsson and Wolf. See
[42], [54], and [56] for more details on this construction.

We begin this section by examining the restricted root data of G∞/K∞, using
the notation of Section 4.3. We recursively choose maximal commutative subspaces
ak ⊂ pk such that an ⊆ ak for n ≤ k and define a∞ = lim−→ an. We then obtain the
restricted root system Σn = Σ(gn, an) for each n ∈ N. Note that

Σn ⊆ Σk|an\{0}

whenever n ≤ k.
Next, we recursively choose positive subsystems Σ+

n ⊆ Σn in such a way that

Σ+
n ⊆ Σ+

k |an\{0}.

The projective limit Σ+
∞ = lim←−Σ+

n plays the role of the positive root subsystem for
(g∞, a∞).
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For each n ∈ N, we let (Σn)0 denote the set of nonmultipliable roots in Σn and set
(Σn)+

0 = (Σn)0∩Σ+
n . Denote the set of simple roots in (Σn)+

0 by Ψn = {α1, . . . , αrn},
where rn = dim an. Since we will be dealing with direct limits we may assume that
Σ, and hence Σ0, is one of the classical root systems. We number the simple roots
in the following way:

Ψ = Ar eαr p p p e e e p p p eα1 r = 1

Ψ = Br
eαr p p p e e p p p eα2 uα1 r = 2

Ψ = Cr uαr p p p u u p p p uα2 eα1 r = 3

Ψ = Dr

eαr p p p e e p p p eα3
HHeα1

��
eα2

r = 4

(4.3)

We are now ready to introduce the definition of propagated direct-limits of
symmetric spaces.

Definition 4.5. We say that a lim-noncompact symmetric space G∞/K∞ is prop-
agated if

1. For each simple root α ∈ Ψk there is a unique simple root α̃ ∈ Ψn such that
α̃|ak = α, whenever k ≤ n.

2. There is a choice of ordering on the roots in Ψk for each k ∈ N such that
either an = ak or else Ψk extends Ψn for n ≤ k only by adding simple roots
at the left end. (In particular, each Ψk has the same Dynkin diagram type.)

We also introduce an analogous notion of propagation for lim-compact groups.
Let U∞ = lim−→Un be a direct limit of compact Lie groups. Choose a Cartan sub-
algebra hn ⊆ gn for each n in such a way that hn ⊆ hk whenever n ≤ k. One
then obtains a root system ∆n = ∆(gn, hn) for each n. After recursively choosing
positive subsystems ∆+

n ⊆ ∆n such that

∆+
n ⊆ ∆+

k |hn\{0},

for nleqk, we arrive at a set Ξn of simple roots in ∆+
n . We order these simple roots

the same way as in Table 4.3.

Definition 4.6. We say that the lim-compact group U∞ is propagated if

1. For each simple root α ∈ Ξk there is a unique simple root α̃ ∈ Ξn such that
α̃|hk = α, whenever k ≤ n.

2. There is a choice of ordering on the roots in Ξk for each k ∈ N such that
either hn = hk or else Ξk extends Ξn for n ≤ k only by adding simple roots
at the left end.

65



Suppose that U∞ is a propagated direct limit of compact, simply-connected
semisimple Lie groups. Then each Uk may be decomposed into a product of compact
simple Lie groups, say Uk = U1

k ×U2
k ×· · ·×U

dk
k . We can recursively choose Cartan

subalgebras hk = h1
k ⊕ h2

k ⊕ · · · ⊕ hdkk where each hik is a Cartan subalgebra of uik.
The definition of propagation then implies that dn = dm ≡ d for each n,m ∈ N
and that the indices may be ordered in such a way that {U i

k}n∈N is a propagated
direct system of compact simple Lie groups for each 1 ≤ i ≤ d.

Following the exposition in [7], we make note of the details of each root system
for later use. We identify a with Rr so that, as usual, a = {(xr+1, . . . , x1) | x1 +
. . . + xr+1 = 0} if Ψ = Ar and otherwise a = Rr. Set e1 = (0, . . . , 0, 1), e2 =
(0, . . . , 0, 1, 0), . . . , en = (1, 0, . . . , 0) where n = r + 1 for Ar and otherwise n = r.
We view the vectors ej also as elements in a∗ via the standard inner product in
Rr+1 in the case Ψ = Ar and otherwise Rr. Note that in the case Ψ = Ar this gives
a map Rr+1 → a∗ which is not injective.

For Ψ = Ar, we have Σ+
0 = {ej − ei | 1 5 i < j 5 n} and αj = ej+1 − ej,

j = 1, . . . , r. The Weyl group W consists of linear maps given by

wσ(ei) = eσ(i)

for permutations in the symmetric group Sr+1. One can show that the fundamental
weights are

ξj = 2
r+1∑
i=j+1

ei .

If Ψ is of type Br then we have Σ+
0 = {ej | j = 1, . . . , r}∪{ej±fi | 1 5 i < j 5 r}

and Ψ = {α1 = f1} ∪ {αi = ei − ei−1 | i = 2, . . . , r}. The Weyl group consists of
linear maps generated by the involutions

wi(ei) = −ei and wi(ej) = ej for j 6= i

for i ≤ r and the maps
wσ(ei) = eσ(i)

for permutations in the symmetric group Sr. Furthermore, one shows that the
fundamental weights are

ξ1 =
r∑
j=1

ej and ξj = 2
r∑
i=j

ei , j > 1 .

If Ψ is of type Cr then we have Σ+
0 = {2ej | j = 1, . . . , r}∪{ej± ei | 1 5 i < j 5

r} and Ψ = {α1 = 2e1} ∪ {αj = ej − ej−1 | j = 2, . . . , r}. The Weyl group consists
of linear maps generated by the involutions

wi(ei) = −ei and wi(ej) = ej for j 6= i

for i ≤ r and the maps
wσ(ei) = eσ(i)
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for permutations in the symmetric group Sr. Furthermore, one shows that the
fundamental weights are

ξj = 2
r∑
i=j

fi

.
If Ψ is of type Dr then α1 = e1 + e2 and αj = ej − ej−1 for j = 2. The Weyl

group consists of linear maps generated by the involutions

wi(ei) = −ei and wi(ej) = ej for j 6= i

for 2 ≤ i ≤ r and the maps
wσ(ei) = eσ(i)

for permutations in the symmetric group Sr. One shows that the fundamental
weights are

ξ1 =
r∑
i=1

ei , ξ2 = −e1 +
r∑
j=2

ej , and ξj = 2
r∑
i=j

ei for j = 3 .

Thus if we take a propagated symmetric space G∞/K∞ or a propagated direct-
limit group U∞, then one uses the above formulations to construct countable bases
{e1, e2, . . .} for a∞ and h∞, respectively.

4.5 Admissible Direct Limits
We continue to examine the root data for lim-noncompact symmetric spacesG∞/K∞
by analogy with Section 3.2. For each k ∈ N and each restricted root α ∈ Σk, we
define as before the root space

gk,α = {Y ∈ gk | [H,Y ] = α(H)Y for all H ∈ ak} .

Next we define the subalgebras

nk =
⊕
α∈Σ+

k

gk,α

and
mk = Zkk(ak)

of gk. Similarly, we define the subgroups Nk = exp(nk) and Mk = ZKk(ak) of Gk.
For each k ∈ K, the conical representations of Gk are the representations which

possess a nonzero vector (or, more generally, distribution vector) which is invariant
under the action of the group MkNk. Hence, in order to define conical represen-
tations of G∞, one would like to define a subgroup M∞N∞ = lim−→MnNn. In order
for such a group to be well-defined, we need to make a technical assumption that
was first introduced in [24].
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Definition 4.7. A lim-noncompact symmetric space G∞/K∞ is said to be ad-
missible if MkNk ≤MmNm whenever k ≤ m.

As a consequence of the following lemmas, it is sufficient to assume that mk ⊆ mm

for k ≤ m:

Lemma 4.8. If G∞/K∞ is a lim-noncompact symmetric space, then Nk ≤ Nm for
k ≤ m.

Proof. We will show that nk ⊆ nm. The result will then follow from the fact that
Nk = exp nk and Nm = exp nm.

In fact, it suffices to show that gk,α ⊆ nm for all α ∈ Σ+
k . Suppose that X ∈ gk,α.

Consider the decomposition of X into am-root vectors:

X =
∑
β∈Σm

Xβ,

where Xβ ∈ gm,β for each (gm, am)-root β. Because this decomposition is unique
and X is a root vector for ak ⊆ am, it follows that β|ak = α for all β ∈ Σm such
that Xβ 6= 0.

Now recall that we have made a consistent choice of positive root subsystems
Σ+
k of Σk and Σ+

m of Σm. In other words, β ∈ Σm is positive if β|ak is positive. Since
α ∈ Σ+

k , it follows that X is a sum of Σ+
m-root vectors. Hence, X ∈ Nm.

Due to the fact that Mk is typically a disconnected subgroup of Gn, it is not clear
a priori that requiring mk ⊆ mm for k ≤ m is sufficient to imply that Mk ≤ Mm.
However, the following lemma shows that this Lie algebra condition is, in fact,
sufficient:

Lemma 4.9. Suppose that G∞/K∞ is a propagated lim-noncompact symmetric
space such that mk ⊆ mm for all k ≤ m. Then Mk ≤Mm for k ≤ m.

Proof. By Theorem 7.53 in [27] we see that for each k ∈ N there is a finite discrete
subgroup Fk ⊆ exp(iak) ∩Kk such that Mk = Fk(Mk)0, where (Mk)0 = expmk is
the connected component of the identity in Mk. Because mk ⊆ mm for all k ≤ m,
we see that (Mk)0 ≤ (Mm)0. It is thus sufficient to show that Fk ≤Mm for k ≤ m.
In fact, since Fk ⊆ exp(iak) ⊆ exp(iam), it is clear that Fk centralizes ak. Since
Fk ⊆ Kk ⊆ Km, we see that Fk ≤Mm, and the result follows.

At this point we do not know whether every propagated direct limit of non-
compact-type Riemannian symmetric spaces is admissible, but in any case this
assumption is not a restrictive one, as it is satisfied by each of the classical direct
limits, as we demonstrate in the next section.

4.6 Admissiblility of Classical Direct Limits
The classical propagated direct systems of Riemannian symmetric spaces may be
found in Table 4.4, where each row gives a noncompact-type symmetric space
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Gn/Kn and its simply-connected compact dual space Un/Kn, and where the re-
stricted roots exhibit the Dynkin diagram Ψn. For each row, the limit G∞/K∞ =
lim−→Gn/Kn is propagated and also that it is possible to choose Cartan subalgebras
of Un for each n ∈ N so that U∞ = lim−→Un is a propagated direct-limit group (see,
for instance, [39, Section 2] or [54, Section 3]).

Note that in each row of Table 4.4, the symmetric space Un/Kn is simply-
connected. However, in certain rows the group Un is not simply-connected. We
may remove this obstruction simply by passing to the universal cover Ũn of Un.
In fact, that the involution θn on un integrates to an involution θ̃n on Ũn. Denote
the fixed-point subgroup for θ̃n in Ũn by K̃n. By simply-connectedness all of the
inclusions on the Lie algebra level integrate to inclusions on the group level, so
that Ũn/K̃n forms a propagated direct system of compact-type symmetric spaces.

Furthermore, one sees that if p : Ũn → Un is the covering map, then p
(
K̃n

)
⊆ Kn.

Hence p factors to a covering map from Ũn/K̃n to Un/Kn (see [21, p. 213]). Since

Un/Kn is already simply-connected, we see that Ũn/K̃n is diffeomorphic to Un/Kn.
While we do not know whether it is possible to show that all propagated direct

systems of Riemannian symmetric spaces are admissible in the sense of 4.7, the
aim of this section is to show that each classical example is admissible. For the
explicit matrix realizations of the compact-type Riemannian symmetric spaces, see
[21, p. 446, 451–455].

Classical direct systems of irreducible Riemannian symmetric spaces

Gn Un Kn Ψn

1 SL(n,C) SU(n)× SU(n) diag SU(n) An−1

2 Spin(2n+ 1,C)
Spin(2n+ 1)×
Spin(2n+ 1)

diag Spin(2n+ 1) Bn

3 Spin(2n,C)
Spin(2n)×
Spin(2n)

diag Spin(2n) Dn

4 Sp(n,C) Sp(n)× Sp(n) diag Sp(n) Cn
51 SU(p, n− p) SU(n) S(U(p)×U(n− p)) Cp
52 SU(n, n) SU(2n) S(U(n)×U(n)) Cn
61 SO0(p, n− p) SO(n) SO(p)× SO(n− p) Bp
62 SO0(n, n) SO(2n) SO(n)× SO(n) Bn
71 Sp(p, n− p) Sp(n) Sp(p)× Sp(n− p) Cp
72 Sp(n, n) Sp(2n) Sp(n)× Sp(n) Cn
8 SL(n,R) SU(n) SO(n) An−1

9 SL(n,H) SU(2n) Sp(n) An−1

101 SO∗(4n) SO(4n) U(2n) Cn
102 SO∗(2(2n+ 1)) SO(2(2n+ 1)) U(2n+ 1) Cn
11 Sp(n,R) Sp(n) U(n) Cn

(4.4)

4.6.1 A General Strategy for Proving Admissibility
The embedding Gn ↪→ Gn+1 takes the form

A 7→

 I
A

I

 (4.5)
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for the systems in rows 52, 62, and 72. In all other cases in Table 4.4, the embedding
Gn ↪→ Gn+1 takes the form

A 7→
(
A

I

)
, (4.6)

where I is a 1× 1, 2× 2, or 4× 4 identity matrix.
Suppose we can choose an for each n in such a way that

an+1 ⊆

 ∗ 0 ∗
0 an 0
∗ 0 ∗

 (4.7)

or

an+1 ⊆
(

an 0
0 ∗

)
(4.8)

(depending on the type of embedding Gn ↪→ Gn+1). In this case, since an com-
mutes with Mn = ZKn(an) by definition, it follows from (4.7) and (4.8) that an+1

commutes with

Mn
∼=

 I 0 0
0 Mn 0
0 0 I


or

Mn
∼=
(
Mn 0
0 I

)
,

respectively, depending on the type of embedding Gn ↪→ Gn+1. In other words,
Mn ≤ ZKn+1(an+1) = Mn+1

Hence, in order to prove that a propagated direct limit is admissible, it is suffi-
cient to show that either (4.7) or (4.8) holds. In most cases, our proof of admissi-
bility will take this form.

4.6.2 Un = Ln × Ln and Kn = diag Ln
This case corresponds to the first four rows in Table 4.4. In this case, one sees that

un = ln × ln

kn = {(X,X) ∈ un|X ∈ ln}
ipn = {(X,−X) ∈ un|X ∈ ln}.

Furthermore, if we fix a Cartan subalgebra hn ⊆ ln for each n, then we can choose

ian = {(X,−X) ∈ un|X ∈ hn}.

Now suppose that g ∈ Ln and that (g, g) ∈ Mn = ZKn(an). Then g ∈ ZLn(hn);
that is, g centralizes the Cartan subalgebra hn of ln. Since Kn is connected, it
follows that g ∈ Hn ≡ exp(hn). Thus Mn = diag Hn for each n. It follows that
Mk ≤Mn for k ≤ n.

70



4.6.3 Rank(G∞/K∞) ≡ dim a∞ <∞
This case corresponds to rows 51, 61, and 71 in Table 4.4. If dim a∞ <∞, then for
k large enough, one has ak = a∞. Suppose k ≤ n and g ∈Mk. That is, g ∈ Kk and
g centralizes ak. But ak = an = a∞ and Kk ≤ Kn. Thus g ∈Mn.

4.6.4 Rank(Gn/Kn) = Rank(Gn) for all n ∈ N
This case corresponds to rows 8 and 11 in Table 4.4. One has that an is a Cartan
subalgebra for gn. In particular, Zgn(an) = an. Since an ∩ kn = {0}, one has that
mn ≡ Zkn(an) = {0} for all n ∈ N.

For example, if we let Gn = SL(n,R) and Kn = SO(n) and make the standard
choice of an = {diag(a1, . . . , an)|ai ∈ R}, then one has Mn = {diag(±1, . . . ,±1)}.
Thus Mk ≤Mn for k ≤ n.

4.6.5 Un/Kn = SU(2n)/S(SU(n)× SU(n))
This case corresponds to row 52 in Table 4.4. One has gn = su(n, n), un = su(2n),
and kn = s(su(n)⊕ su(n)). The involution is given by θn : A 7→ JnAJ

−1
n , where

Jn =

(
In
−In

)
.

More explicitly, one has

un =

{(
A B
−B∗ D

)
∈ M(2n,C)

∣∣∣∣ A∗ = −A, D∗ = −D,
and Tr(A) + Tr(D) = 0

}
kn =

{(
A 0
0 D

)
∈ M(2n,C)

∣∣∣∣ A∗ = −A, D∗ = −D,
and Tr(A) + Tr(D) = 0

}
ipn =

{(
0 B
−B∗ 0

)
∈ M(2n,C)

}
.

We choose

ian =




an

. . .

a1

−a1

. . .

−an



∣∣∣∣∣∣∣∣∣∣∣∣
ai ∈ R


Thus condition (4.7) is satisfied and so G∞/K∞ is admissible.

4.6.6 Un/Kn = SO(2n)/(SO(n)× SO(n))
This case corresponds to row 62 in Table 4.4. One has gn = so(n, n), un = so(2n),
and kn = so(n)⊕ so(n). The involution is given by θn : A 7→ JnAJ

−1
n , where

Jn =

(
In
−In

)
.
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More explicitly, one has

un =

{(
A B
−BT D

)
∈ M(2n,R)

∣∣∣∣AT = −A and DT = −D
}

kn =

{(
A 0
0 D

)
∈ M(2n,R)

∣∣∣∣AT = −A and DT = −D
}

ipn =

{(
0 B
−BT 0

)
∈ M(2n,R)

}
.

We choose

ian =




an

. . .

a1

−a1

. . .

−an



∣∣∣∣∣∣∣∣∣∣∣∣
ai ∈ R


.

Thus condition (4.8) is satisfied and so G∞/K∞ is admissible.

4.6.7 Un/Kn = Sp(2n)/(Sp(n)× Sp(n))
This case corresponds to row 72 in Table 4.4. One has gn = sp(n, n), un = sp(2n),
and kn = sp(n)⊕ sp(n). The involution is given by θn : A 7→ JnAJ

−1
n , where

Jn =

(
In
−In

)
.

More explicitly, one has

un =

{(
A B
−B∗ D

)
∈ M(2n,H)

∣∣∣∣A∗ = −A and D∗ = −D
}

kn =

{(
A 0
0 D

)
∈ M(2n,H)

∣∣∣∣A∗ = −A and D∗ = −D
}

ipn =

{(
0 B
−B∗ 0

)
∈ M(2n,H)

}
.

We choose

ian =




an

. . .

a1

−a1

. . .

−an



∣∣∣∣∣∣∣∣∣∣∣∣
ai ∈ R


.

Thus condition (4.7) is satisfied and so G∞/K∞ is admissible.
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4.6.8 Un/Kn = SU(2n)/Sp(n)
This case corresponds to row 9 in Table 4.4. One has gn = sl(n,H), un = su(2n)
and kn = sp(n). The involution is given by θn : A 7→ JnAJ

−1
n , where Jn is given by

Jn =


0 −1
1 0

. . .

0 −1
1 0

 . (4.9)

One can also obtain the same symmetric space by using the involution θ̃n : A 7→
J̃nAJ̃

−1
n , where

J̃n =



−1
. . .

−1
1

. . .

1


. (4.10)

The calculations will be easier if we use θ̃n instead of θn. However, we must use θn
in order for the inclusions Un → Un+1 to take the form of (4.6). We can move freely
between these pictures, however, because Jn = EσnJnE

−1
σn , where Eσn ∈M(2n,C)

is the permutation matrix corresponding to the permutation

σ = (1 n)(2 (n+ 1)) · · · ((n− 1) 2n) ∈ S2n.

In other words, the rows and columns are interwoven, so that the first n basis
elements of C2n are mapped to odd-numbered basis elements and the final n basis
elements of C2n are sent to even-numbered basis elements.

We proceed by using θ̃n. We have

su(2n) = un =

{(
A B
−B∗ D

)
∈ M(2n,C)

∣∣∣∣ A∗ = −A, D∗ = −D, and
Tr(A) + Tr(D) = 0

}
sp(n) ∼= kn =

{(
A B
−B A

)
∈ M(2n,C)

∣∣∣∣ A∗ = −A
and BT = B

}
ipn =

{(
A B
B −A

)
∈ M(2n,C)

∣∣∣∣ A∗ = −A,BT = −B,
and Tr(A) = 0

}
.

There is a θ̃n-stable Cartan subalgebra

h̃n =


 ia1

. . .

ia2n


∣∣∣∣∣∣∣ ai ∈ R and

2n∑
i=1

ai = 0


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for gn = so∗(4n), and we can choose

iãn =





ia1

. . .

ian
ia1

. . .

ian



∣∣∣∣∣∣∣∣∣∣∣∣∣
ai ∈ R and

n∑
i=1

ai = 0


.

We now proceed to the θn picture. Conjugation of h̃n by Eσn (followed by renum-
bering the indices) yields the θn-stable Cartan subalgebra

hn = h̃n =


 ia1

. . .

ia2n


∣∣∣∣∣∣∣ ai ∈ R and

2n∑
i=1

ai = 0

 .

Finally, conjugation of ãn by Eσn yields

ian =





ia1

ia1

ia2

ia2

. . .

ian
ian



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ai ∈ R and

n∑
i=1

ai = 0


.

While condition (4.8) is not quite satisfied, we do have that

an+1 ⊆
(

an + CId 0
0 ∗

)
. (4.11)

Since mn centralizes an, it follows that mn commutes with an+CId. Thus by (4.11),
it follows that mn commutes with an+1. Thus mm ⊆ mn for m ≤ n, and it follows
that G∞/K∞ is admissible.

4.6.9 Un/Kn = SO(4n)/U(2n)
This case corresponds to row 101 in Table 4.4. One has gn = so∗(4n), un = so(4n)
and kn = u(2n). The involution is given by θn : A 7→ JnAJ

−1
n , where Jn is given

by (4.9). As in the previous example, one can also obtain the same symmetric

space by using the involution θ̃n : A 7→ J̃nAJ̃
−1
n , where J̃n is given by (4.10).
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We work first on the θ̃n-side. We have

so(4n) = un =

{(
A B
−BT D

)
∈ M(4n,R)

∣∣∣∣AT = −A and DT = −D
}

u(2n) ∼= kn =

{(
A B
−B A

)
∈ M(4n,R)

∣∣∣∣ AT = −A
and BT = B

}
ipn =

{(
A B
B −A

)
∈ M(4n,R)

∣∣∣∣ AT = −A
and BT = −B

}
.

There is a θ̃n-stable Cartan subalgebra

h̃n =





0 a1

−a1 0
0 a2

−a2 0
. . .

0 a2n

−a2n 0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ai ∈ R


and we can choose

iãn =





0 a1

−a1 0
. . .

0 an
−an 0

0 −a1

a1 0
. . .

0 −an
an 0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ai ∈ R



.

Moving to the θn-picture, we conjugate everything by Eσn and renumber the
indices to arrive at the θn-stable Cartan algebra

hn =





0 0 a1 0
0 0 0 a2

−a1 0 0 0
0 −a2 0 0

0 0 a3 0
0 0 0 a4

−a3 0 0 0
0 a4 0 0

. . .

0 0 a2n−1 0
0 0 0 a2n

−a2n−1 0 0 0
0 −a2n 0 0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ai ∈ R


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and finally

ian =





0 0 a1 0
0 0 0 −a1

−a1 0 0 0
0 a1 0 0

0 0 a2 0
0 0 0 −a2

−a2 0 0 0
0 a2 0 0

. . .

0 0 an 0
0 0 0 −an
−an 0 0 0

0 an 0 0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ai ∈ R



.

Hence an is block-diagonal, and moving from an to an+1 is simply a matter of
adding another 4× 4 block. Thus we see that condition (4.8) is satisfied and hence
G∞/K∞ is admissible.

4.6.10 Un/Kn = SO(2(2n+ 1))/U(2n+ 1)
This case corresponds to row 102 in Table 4.4. One has gn = so∗(2(2n + 1)),
un = so(4n) and kn = u(2n). As in the previous example, one can also obtain the

same symmetric space by using the involution θ̃n : A 7→ J̃nAJ̃
−1
n , where J̃n is given

by (4.10).

We first work on the θ̃n side. We then have

so(2(2n+ 1)) = un =

{(
A B
−BT D

)
∈ M(2(2n+ 1),R)

∣∣∣∣ AT = −A
and DT = −D

}
u(2n+ 1) ∼= kn =

{(
A B
−B A

)
∈ M(2(2n+ 1),R)

∣∣∣∣ AT = −A
and BT = B

}
ipn =

{(
A B
B −A

)
∈ M(2(2n+ 1),R)

∣∣∣∣ AT = −A
and BT = −B

}
.

There is a θ̃n-stable Cartan subalgebra

h̃n =





0 a1

0 a2

−a2 0
. . .

0 an+1

−an+1 0
−a1 0

0 an+2

−an+2 0
. . .

0 a2n+1

−a2n+1 0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ai ∈ R



.
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and we can choose

iãn =





0
0 a1

−a1 0
. . .

0 an
−an 0

0
0 −a1

a1 0
. . .

0 −an
an 0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ai ∈ R



.

Moving to the θn-picture, we conjugate everything by Eσn and renumber the
indices to arrive at the θn-stable Cartan algebra

hn =





0 a1

−a1 0
0 0 a2 0
0 0 0 a3

−a2 0 0 0
0 −a3 0 0

. . .

0 0 a2n−1 0
0 0 0 a2n

−a2n−1 0 0 0
0 −a2n 0 0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ai ∈ R


and finally

ian =





0 0
0 0

0 0 a1 0
0 0 0 −a1

−a1 0 0 0
0 a1 0 0

. . .

0 0 an 0
0 0 0 −an
−an 0 0 0

0 an 0 0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ai ∈ R



.

Hence an is block-diagonal, and moving from an to an+1 is simply a matter of
adding another 4× 4 block. Thus we see that condition (4.8) is satisfied and hence
G∞/K∞ is admissible.
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Chapter 5
Representations of Direct-Limit Groups

In this chapter we review some important results about representations for direct-
limit groups and lim-Riemannian symmetric spaces. See [45] for a quite compre-
hensive overview of representation theory for classical direct limits of symmetric
spaces. See also [11] and [35] for many basic results on representations of direct-
limit groups.

We begin this chapter by reviewing how one can construct representations of a
direct-limit group by forming a direct limit of representations of finite-dimensional
Lie groups. This construction provides the simplest way to construct unitary or
even irreducible unitary representations for direct-limit groups.

Next we begin to tackle the issue of smoothness for representations of direct-
limit groups. We review several useful results from the literature (especially from
[33] and [11]) which provide equivalent conditions for smoothness.

Next we discuss a generalization of Weyl’s unitary trick which identifies smooth
representations of a lim-compact symmetric space U∞/K∞ with smooth repre-
sentations of its c-dual G∞/K∞. This brings up the question of unitarizability of
representations of the lim-compact group U∞, which is unfortunately rather subtle.

Making things more concrete, we follow earlier constructions in [39],[54], and [56]
to define highest-weight representations for U∞. We end the chapter by recalling
the main result of [7] on spherical representations.

5.1 Direct Limits of Representations
Suppose that G∞ = lim−→Gn is a direct-limit group with inclusion maps pn+1

n : Gn →
Gn+1 and that for each n ∈ N we are given a continuous Hilbert representation
(πn,Hn) and partial isometries jn+1

n : Hn → Hn+1 such that the diagram

Gn+1 ×Hn+1
πn+1 //Hn+1

Gn ×Hn

pn+1
n ×jn+1

n

OO

πn //Hn

jn+1
n

OO

commutes (see Section 2 in [33]). A continuous map π∞ : G∞ × H∞ → H∞
is induced, where H∞ = lim−→Hn. It may be readily shown that π∞ is in fact a
continuous representation of G∞ on H∞.

Suppose further that for all g ∈ G∞, π(g) is a bounded operator on H∞ under
the natural pre-Hilbert space structure on H∞. Then π∞ extends by continuity to
a continuous representation on the Hilbert space completion H∞ (see, for instance,
Proposition B.10 in [35]). One can also show that if πn is unitary for each n ∈ N,
then π∞ is a unitary representation of G∞ on H∞.
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For a more intuitive perspective on this situation, suppose that {Gn}n∈N is an in-
creasing sequence of Lie groups (i.e., Gn is a closed subgroup of Gm for n ≤ m) and
that for each n we are provided with a continuous Hilbert representation (πn,Hn)
such that (πn,H) is equivalent (by a unitary intertwining operator) to a subrepre-
sentation of (πn+1|Gn ,Hn+1). Then one has a direct system of representations and
may form a direct-limit representation (π∞,H∞) of G∞.

One of the key tools in representation theory is the study of intertwining oper-
ators for representations. It is clear that an operator T ∈ B(H) is an intertwining
operator for a Hibert representation (π,H) of a direct-limit group G∞ = lim−→Gn if
and only if it is an intertwining operator for π|Gn for each n. If π is a direct-limit
representation, then we can say more:

Lemma 5.1. ([28]) If (π,H) = (lim−→ πn, lim−→Hn) is a direct limit of Hilbert repre-
sentations, then a bounded operator T ∈ B(H) is an intertwining operator for π if
and only if T |Hn is an intertwining operator for π|Gn for each n ∈ N.

Proof. One direction is obvious. To prove the other direction, we suppose that
T |Hn is an intertwining operator for π|Gn for each n ∈ N. It is thus clear that
Tπ(g)v = π(g)Tv for any g ∈ G∞ and any v in the algebraic direct limit space
H∞ = lim−→Hn. The lemma follows since H∞ is a dense subspace of H and since
π(g) is continuous for each g ∈ G∞.

Direct-limit representations are the easiest representations to construct for G∞.
The following theorem shows that they may be in fact be used to construct a large
class of irreducible unitary representations:

Theorem 5.2. ([28]) Suppose that {Gn}n∈N is a direct system of locally compact
groups and that {(πn,Hn)}n∈N is a compatible direct system of irreducible unitary
representations of Gn for each n ∈ N. Then (π,H) ≡ (lim−→ πn, lim−→Hn) is an irre-
ducible unitary representation of G∞.

Proof. Suppose that T ∈ B(H) is an intertwining operator for π. Then T |Hn is
a Gn-intertwining operator for πn. Since πn is irreducible, it follows from Schur’s
Lemma that T |Hn = c Id for some constant c ∈ C. Because Hn ⊆ Hk for n ≤ k, we
see that the constant is independent of n. Thus, T |H∞ = c Id, where H∞ = lim−→Hn

is the algebraic direct limit space. By continuity we then have that T = c Id since
H∞ is a dense subspace of H. Because the intertwining operator T ∈ B(H) was
arbitrary, it follows immediately that H is an irreducible representation.

We caution the reader that there are many examples of irreducible represen-
tations of direct-limit groups which are not given by direct limits of irreducible
representations (see [11, p. 971]).

5.2 Smoothness and Local Finiteness
Just as for finite-dimensional Lie groups, it is natural to try to gather information
about a representation of a direct-limit group by differentiating it to obtain a
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representation of its Lie algebra. We begin by defining a notion of smoothness for
representations of direct-limit groups1.

Definition 5.3. Suppose that (π,H) is a continuous Hilbert representation of a
direct-limit group G∞ = lim−→Gn and that v ∈ H. We say that v is a smooth
vector for π if it is a smooth vector for the restricted representation (π|Gn ,H) of
Gn for each n ∈ N. We denote by H∞ the space of all smooth vectors for π.

Similarly, we say that v is a locally finite vector for π if it is a Gn-finite
vector for the restricted representation (π|Gn ,H) of Gn for each n ∈ N. We denote
by Hfin the space of locally finite vectors for π. Note that Hfin ⊆ H∞.

Given a Hilbert representation (π,H) of G∞, we may construct a representation
of g∞ on H∞ as follows. For each n ∈ N, we have the differentiated representation
d(π|Gn) of gn on Hn with

d(π|Gn) = lim
t→0

π|Gn(exp tX)v − v
t

.

for each X ∈ gn and v ∈ H∞. We see that

d(π|Gn+1)(X)v = lim
t→0

π|Gn+1(exp(tX))v − v
t

= lim
t→0

π|Gn(exp tX)v − v
t

= d(π|Gn)(X)v,

and thus there is a well-defined map dπ(X) : H∞ → H∞ for each X ∈ g∞ = lim−→ gn,
given by dπ(X)v = d(π|Gn)v for each X ∈ gn. It is a straightforward argument to
show that

dπ(X + Y )v = π(X)v + π(Y )v

and
dπ([X, Y ])v = π(X)π(Y )v − π(X)π(Y )v

for all v ∈ H∞ and X, Y ∈ g∞.
It is not at all clear from the definitions that a representation of G∞ is guaran-

teed to possess any smooth vectors or locally-finite vectors. In fact, the existence
of smooth vectors is far more subtle for representations of infinite-dimensional Lie
groups than for finite-dimensional Lie groups, where every continuous represen-
tation on a Frechet space admits a dense subspace of smooth vectors. There are
examples of unitary representations of Banach-Lie groups which do not possess any
C1 vectors, much less any smooth vectors (see [3]). For direct-limit groups, how-
ever, a beautiful theorem of Danilenko shows that unitary representations always
admit smooth vectors.

1 The question of how to put a smooth structure on direct limit groups such asG∞ has been explored extensively
in [15] and [33], where it is shown that under certain technical growth conditions on the Gn’s, it is possible to put
a smooth structure on G∞ that is consistent with Definition 5.3:
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Theorem 5.4. ([6]; see also [36, Theorem 11.3]) Suppose that (π,H) is a unitary
representation of a countable direct limit of locally compact topological groups. Then
H∞ is a dense subspace of H.

We may thus consider the space H−∞ = (H∞)′ of distribution vectors for a
unitary representation (π,H) of G∞ and obtain dense embeddings

H∞ ↪→ H ↪→,H−∞

as we saw for representations of finite-dimensional Lie groups.
Some representations may consist entirely of smooth vectors:

Definition 5.5. Suppose that G∞ is a direct-limit Lie group. We say that a con-
tinuous Hilbert representation (π,H) of G∞ is smooth if H∞ = H.

If G∞ is a direct limit of complex Lie groups, then a continuous Hilbert repre-
sentation (π,H) of G∞ is holmorphic if π|Gn is holomorphic for each n ∈ N.

In fact, we will be primarily concerned with smooth representations in this thesis.
They play a role for direct-limit groups that is similar to the role played by finite-
dimensional representations for finite-dimensional Lie groups. There are several
conditions which are equivalent to smoothness:

Theorem 5.6. Let (π,H) be a continuous Hilbert representation of a Lie group
G. Then the following are equivalent:

1. π is smooth

2. There is a Lie algebra representation dπ : g → B(H) (for which g acts by
bounded operators) such that

π(expX) = exp(dπ(X)) (5.1)

for each X ∈ g (i.e., π is analytic).

3. π is norm-continuous.

Proof. First we prove (1) → (2). Suppose that π is smooth. Then H∞ = H and it
follows that for each X ∈ g, we have a strongly-continuous one-parameter group
{Q(t)}t∈R of bounded operators on H given by

Q(t) = π(exp tX).

Since H∞ = H, we see that the limit

dπ(X)v = lim
t→0

π(exp tX)v − v
t

exists in H for all v ∈ H. Following the terminology of [51, p. 375], we have that
the domain of dπ(X) is all of H (i.e., D(dπ(X)) = H). By [51, Theorem 13.36],
this implies that dπ(X) ∈ B(H) and that

π(exp tX) = exp(tdπ(X))
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for all X ∈ g and t ∈ R. This establishes (5.1).
Next we demonstrate that (2) → (3). Suppose that (5.1) holds. Then

||π(exp(X))− Id|| = || exp(dπ(X))− Id||

=

∣∣∣∣∣
∣∣∣∣∣
∞∑
n=1

dπ(X)n

n!

∣∣∣∣∣
∣∣∣∣∣

≤
∞∑
n=1

||dπ(X)||n

n!

= exp(||dπ(X)||)− 1

for all X ∈ g.
Let X1, . . . , Xd be a basis for g, where d = dim g, and set

M = max
1≤i≤d

||dπ(Xi)||.

It follows that ∣∣∣∣∣
∣∣∣∣∣dπ

(
d∑
i=1

ciXi

)∣∣∣∣∣
∣∣∣∣∣ ≤

(
d∑
i=1

ci

)
M

whenever ci ∈ R for 1 ≤ i ≤ d. Hence, it follows that if X =
∑d

i=1 ciXi with∑d
i=1 ci < ε, then ||π(exp(X)) − Id|| ≤ exp(εM) − 1. Thus, we see that X 7→

π(expX) is norm-continuous. The result then follows that π is norm-continuous
from the fact that exp : g→ G is a local diffeomorphism.

Finally, (3)→ (1) is a straightforward application of [51, Theorem-13.36], which
says that if limt→0 ||π(exp(tX)) − Id|| = 0 for all X ∈ g, then the infinitesimal
generator is a bounded operator (that is, the differential exists everywhere).

It is certainly possible to construct continuous unitary representations of direct-
limit groups which possess no locally finite vectors. This behavior is already present
for finite-dimensional Lie groups, however: an irreducible infinite-dimensional rep-
resentation of a noncompact Lie group G does not possess any G-finite vectors.
More surprisingly, it is possible to construct an irreducible unitary representation
of a lim-compact group which has no locally finite vectors ([37]). However, Corol-
lary ?? will show that smooth representations of connected lim-compact groups
always consist entirely of locally finite vectors.

It is well known that every continuous, finite-dimensional representation of a
Lie group is smooth. However, it is also possible to construct infinite-dimensional
Hilbert representations which are smooth. Suppose that U is a compact Lie group
and that (π, V ) is a finite-dimensional representation of U . Without loss of gener-
ality, we may assume that π is unitary. Now consider the representation

(∞ · π,∞ · V ) ≡

(⊕
n∈N

π,
⊕
n∈N

V

)
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constructed by taking a Hilbert space direct sum of countably many copies of
(π, V ). For each v ∈ ∞ · V , we consider the closed invariant subspace

W = 〈(∞ · π)(U)v〉

generated by v. Then W gives a cyclic primary representation of U and decomposes
into a direct sum of representations equivalent to (π, V ). From [17] we see that every
cyclic primary representation of the compact group U is finite-dimensional. Thus
dimW <∞ and so v is a U -finite vector.

In fact, the next theorem shows that in a certain sense, primary representations
(or more precisely, finite direct sums of them) provide the only way to obtain
infinite-dimensional smooth representations of U :

Theorem 5.7. Let (π,H) be a unitary representation of a compact Lie group U .
Then the following are equivalent.

1. π is smooth.

2. π decomposes into a finite direct sum of primary representations of U .

3. π is locally finite.

Before we prove this theorem, we need to introduce the following useful lemma,
which we will also make use of several times in the next chapter:

Lemma 5.8. Let G be a topological group and let (π,H) be a unitary representation
of G. Let A be a finite or countably infinite index set, and suppose that

v =
∑
i∈A

vi,

where vi ∈ H for each i ∈ A and where 〈π(G)vi〉 and 〈π(G)vj〉 give mutually
distinct irreducible representations of G for i 6= j. Then

〈π(G)v〉 =
⊕
i∈A

〈π(G)vi〉.

Proof (of Lemma 5.8). Write V = 〈π(G)v〉. The fact that Vi = 〈π(G)vi〉 and Vj =
〈π(G)vj〉 give disjoint representations of G for i 6= j implies that Vi ⊥ Vj. It is
obvious that

〈π(G)v〉 ⊆
⊕
i∈A

〈π(G)vi〉,

so we prove the opposite containment. It suffices to show that vi ∈ V for all i ∈ A.
Suppose that vi /∈ V for some i ∈ A. Define

w =
∑
j 6=i

vj and W = 〈π(G)w〉 ⊆
⊕
j 6=i

Vj.
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Then Vi ⊥ W and v = vi+w. Furthermore, Vi and W give disjoint representations
of G.

Now let c1, . . . ck ∈ C and g1, . . . gk ∈ G. Then

k∑
j=1

cjπ(gj)v =

(
k∑
j=1

cjπ(gj)vi

)
+

(
k∑
j=1

cjπ(gj)w

)
.

Because vi /∈ V and Vi is irreducible, we see that V ∩ Vi = ∅. It follows that

k∑
j=1

cjπ(gj)vi = 0 if and only if
k∑
j=1

cjπ(gj)w = 0.

Hence there is a well-defined, nonzero intertwining operator L : Vi → W such that
L(vi) = w, which contradicts the fact that Vi and W give disjoint representations
of G.

Proof (of Theorem 5.7). Let (π,H) be a unitary representation of U . Then we can
write

H ∼=G

⊕
δ∈Ĝ

Hδ,

where Hδ is the space of δ-isotypic vectors for each δ ∈ Ĝ (that is, vectors in Hδ

generate primary representations that are direct sums of copies of δ). Then π is
a finite direct sum of primary representations if and only if Hδ = {0} for all but

finitely many δ ∈ Ĝ.
We begin by showing that (2) =⇒ (3). Suppose that

H ∼=U

n⊕
i=1

Hδi ,

where δi ∈ Û for each i. We will show that π is smooth. For each v ∈ H, we can
write v = v1 + · · ·+ vn, where vi ∈ Hδi . Then

〈π(U)v〉 ⊆
n⊕
i=1

〈π(U)vi〉.

However, because each space 〈π(U)vi〉 gives a cyclic primary representation of U ,
we see that it is finite-dimensional (see [17]). Thus v is U -finite. Because v ∈ H
was arbitrary, it follows that π is locally finite.

Next we prove (3)⇐⇒ (1); that is, π is smooth if and only if it is locally finite.
If Hfin = H then it is obvious that H∞ = H. For the other direction, recall from
the highest-weight theorem that irreducible representations of compact connected
Lie groups are parametrized by a discrete semilattice Λ+(g, h) ⊆ ih∗ of dominant
integral weights, where h denotes a Cartan subalgebra of g. Let S denote the
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set of all weights λ ∈ Λ+(g, h) such that λ appears as the highest weight of a
subrepresentation of π.

If λ ∈ S, then λ(X) is an eigenvalue of dπ(X) for each X ∈ h. But Theorem 5.6
implies that ||dπ(X)|| <∞ for each X ∈ h. Thus, since Λ+(g, h) is a semilattice, it
follows that {λ(X) : λ ∈ S} is finite for each X. Hence S is finite because h is finite-
dimensional. Because π is a direct sum of finitely many primary representations,
we see that π is locally finite by the above argument.

Finally, we show that (1) =⇒ (2); that is, if π is smooth, then it decomposes
into a finite direct sum of primary representations. Suppose

H ∼=U

∞⊕
i=1

Hδi ,

where δi ∈ Û and Hδi 6= {0} for each i. We will show that π is not smooth.
For each i ∈ N, choose a nonzero unit vector vi ∈ Hδi such that 〈π(U)vi〉 is

irreducible. Note that vi ⊥ vj for i 6= j. Furthermore, 〈π(U)vj〉 give primary
representations of type δi and δj, respectively, and are therefore disjoint. Consider
the vector

v ≡
∞∑
i=1

1

2i
vi ∈

∞⊕
i=1

Hδi .

For each i ∈ N, we define

wj ≡
∑
i 6=j

1

2i
vi ∈

⊕
i 6=j

Hδi .

It is clear that the representation of U on 〈π(U)vi〉 is disjoint from the represen-
tation on 〈π(U)wi〉. Since v = vi + wi, Lemma 5.8 implies that vi ∈ 〈π(U)v〉.
Because this is true for each i ∈ N and vi ⊥ vj for i 6= j, it follows that 〈π(U)v〉 is
infinite-dimensional. Therefore, π is not smooth, since we have already shown that
a representation is smooth if and only if it is locally finite.

Corollary 5.9. Suppose that (π,H) is a continuous Hilbert representation of a
connected lim-compact group U∞. Then H∞ = H if and only if Hfin = H.

The following corollaries restate the conclusion of the previous theorem in terms
of weights. A slightly different proof may be found in Lemma 3.5 and Proposition
3.6 of [35].

Corollary 5.10. Fix a Cartan subalgebra h in u, and suppose that (π,H) is a
unitary representation of U . Then π is smooth if and only if #∆(π) <∞ (that is,
π has only finitely many weights).

Proof. Let H ≤ U be the maximal torus corresponding to h. If π is smooth, then
in particular π|H is smooth and thus there are only finitely many equivalence
classes of irreducible (i.e., one-dimensional) representations of Hn which appear in
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(π|H ,H). Thus H decomposes under dπ|h into finitely many weight spaces and we
are done.

Now suppose that π is not smooth. By Theorem 5.7, there are infinitely many
inequivalent equivalence classes of irreducible representations of Gn which appear
in (π,H). Because they are mutually inequivalent, these irreducible representations
have mutually distinct highest weights and hence ∆(π) is an infinite set.

Corollary 5.11. Suppose that U∞ is a lim-compact group. As before, we fix a
subalgebra h∞ = lim−→ hn in u∞, where each hn is a Cartan subalgebra of un. Suppose
that (π,H) is a unitary representation of U . Then π is smooth if and only if
#∆(π|Un) <∞ (that is, π has only finitely many weights) for each n ∈ N.

Proof. This result follows immediately from Corollary 5.10 and the definition of
smoothness for direct-limit groups.

Suppose now that U∞ is a propagated lim-compact group. We recursively choose
a countable orthonormal basis {ei}i∈N for h∞ as in Section 4.4. Consider the supre-
mum norm of a weight λ ∈ ih∗n, given by

||λ||∞ = max
1≤i≤rn

|λ(ei)|

We then obtain the following useful theorem, which is a modification of Proposition
3.14 in [35].

Theorem 5.12. A unitary representation (π,H) of a propagated direct limit U∞
of simply-connected compact semisimple Lie groups is smooth if and only if there
is M > 0 such that for all n one has ||λ||∞ < M for each weight λ ∈ ih∗n that
appears as the highest weight for an irreducible subrepresentation of π|Un.

Proof. First we prove the theorem in the case that U∞ is a direct limit of compact
simple Lie groups.

Let (π,H) be a unitary representation of U∞. Suppose there is M ∈ N such that
for all n one has ||λ||∞ < M for each weight λ ∈ ih∗n that appears as the highest
weight for an irreducible subrepresentation of π|Un . If λ ∈ ih∗ is a highest weight
which appears in π|Un , then it has the form

λ =
rn∑
i=1

aiei, where ai ∈ Z and −M ≤ ai ≤M.

Thus, there are only (2M)rn possible values for λ. In other words, π|Un may be
written as a direct sum of finitely many primary representations and is thus smooth
by Theorem 5.7. Because n ∈ N was arbitrary, we have that π is smooth.

To prove the other direction, suppose that for each M > 0 there is n ∈ N and
a highest weight λ ∈ ih∗n of an irreducible subrepresentation of π|Un such that
||λ||∞ > M . Fix M > 0 and pick n ∈ N and λ ∈ ih∗n satisfying those conditions.
Then λ =

∑rn
i=1 ciei, where ci ∈ Z for each i. Because ||λ||∞ > M , we see that

there is some index j such that |cj| > M .
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From the details in Section 4.4, there is a Weyl group element w ∈ W (gn, an)
such that w(e1) = ei and w(ei) = e1. Then |wλ(e1)| = |cj| > M . By the Highest-
Weight Theorem, we see that wλ ∈ ∆(π|Un); that is, wλ is a hn-weight for π|Un . It
is then clear that (wλ)|hk is an hk-weight for π|Uk whenever k ≤ n (since every wλ-
weight vector in H is automatically a (wλ)hk-weight vector). Furthermore, since
|(wλ|kn)(e1)| = |cj| > M , we see that ||wλ|kn||∞ > M .

Thus, if k ∈ N is fixed, then for each M ∈ N there is a weight λ ∈ ∆(π|Uk) such
that ||λ|| > M . Hence ∆(π|Uk) is not a finite set and thus by Corollary 5.11 it
follows that π is not smooth.

Suppose more generally that U∞ is a propagated direct limit of semisimple Lie
groups. Then we can write Uk = U1

k×U2
k×· · ·×Ud

k for all k ∈ N in such a way that
{U i

n}n∈N is a propagated direct system of compact simple Lie groups for each 1 ≤
i ≤ d. We can then recursively choose Cartan subalgebras hn = hin⊕ h2

n⊕ · · · ⊕ hdn,
where hin is a Cartan subalgebra of uin for each i and n. A weight in λ ∈ ih∗n is
dominant integral if and only if λ|hin is dominant integral for each 1 ≤ i ≤ d. Since
U i
∞ is a propagated direct limit of compact simple Lie groups, it follows that there

is Mi > 0 such that for all n ∈ N one has that ||λ||∞ < Mi for each highest weight
λ ∈ h∗n appearing in π|U in . Since max1≤i≤dMi <∞, we are done.

We end the section with the following remarkable result, which implies that the
smoothness of a representation of a direct limit of simple groups is controlled by the
smoothness of the restriction to any nontrivial one-dimensional analytic subgroup.

Theorem 5.13. Let U be a compact simple Lie group. Then a unitary represen-
tation (π,H) of U is smooth if and only if there is X ∈ u\{0} such that dπ(X) is
a bounded operator on H.

Proof. One direction is obvious. To show the other direction, suppose that (π,H)
is a non-smooth unitary representation of U . We will show that dπ(X) has an
unbounded spectrum. Let h be any Cartan subalgebra for U .

Because π is not smooth, it follows that there is for each M > 0 weight λ ∈ ∆(π)
with ||λ||∞ > M . As in the proof of Theorem 5.12, we see that for each Weyl-group
element w ∈ W (u, h), the weight wλ is in ∆(π). If we write λ =

∑r
i=1 aiei, then

there is some j such that |aj| > M . We can use the Weyl group to permute the
basis elements so that aj appears as the ith coefficient of a weight in ∆(π|U). Thus
we have that the set

{〈λ, ei〉|λ ∈ ∆(π)}
of ith coefficients of weights of π is unbounded for all i ≤ r.

In other words, one has for each n ∈ N that the set of weights in ∆(π) is un-
bounded in every direction on h. It follows that dπ(X) has an unbounded spectrum
for all X ∈ h. Because every element of u is contained in some Cartan subalgebra,
the result follows.

Corollary 5.14. Let U∞ be a direct limit of compact simple Lie groups. Then a
unitary representation (π,H) of U∞ is smooth if and only if there is X ∈ u\{0}
such that dπ(X) is a bounded operator on H.
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Proof. This corollary follows immediately by applying Lemma 5.13 to Un for each
n in N.

Note that this result is false for non-simple compact groups: suppose that J and
T are compact Lie groups, that (π,H) is a smooth unitary representation of J ,
and that (σ,K) is a non-smooth unitary representation of T . Then the outer tensor
product representation (π�σ,H⊗K) of J×T has the property that π|J is smooth
but π|T is non-smooth.

5.3 Generalizing Weyl’s Unitary Trick
Weyl’s Unitary Trick plays a crucial role in understanding finite-dimensional repre-
sentations of finite-dimensional Lie groups. There is a natural extension of Weyl’s
Unitary Trick to smooth representations of direct-limit groups. The first step is to
extend Weyl’s unitary trick to smooth representations of finite-dimensional groups.
We begin with a well-known lemma on intertwining operators of smooth represen-
tations.

Lemma 5.15. Suppose that (π,H) is a smooth Hilbert representation of a Lie
group G. Then the derived representation dπ : g → B(H) possesses the same
algebra of intertwining operators as π.

Proof. Suppose that T is an intertwining operator for dπ. That is, dπ(X)T =
Tdπ(X) for all X ∈ g. It immediately follows that π(exp(X))T = Tπ(exp(X))
for all X ∈ g and thus T is an intertwining operator for π by Theorem 5.6. Next
suppose that T is an intertwining operator for π. Then Tπ(exp tX) = π(exp(tX))T
for all X ∈ g and t ∈ R. It follows by differentiation at t = 0 that Tdπ(X) =
dπ(X)T for all X ∈ g.

Now we are ready to extend Weyl’s Trick to smooth representations of finite-
dimensional groups.

Theorem 5.16. Suppose that U is a compact Lie group and that G is a (not nec-
essarily compact) closed subgroup of UC such that UC is a complexification of G.
There are one-to-one correspondences between the following categories of represen-
tations on H which preserve the algebras of intertwining operators:

1. Locally-finite representations of G on H

2. Holomorphic representations of UC on H

3. Smooth representations of U on H

Proof. We will construct the correspondences (1)→ (2) and (2)→ (1). The proofs
for (2)→ (3) and (3)→ (2) are identical.

One passes from (2) to (1) quite easily: if (π,H) is a holomorphic representation
of UC, then it is clear that π|G is a smooth representation of G.

To construct (1)→ (2), we suppose that (π,H) is a smooth representation of G.
We wish to construct a holomorphic representation πC of UC onH such that πC|G =
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π. First we notice that each vector v ∈ H is contained in a finite-dimensional G-
invariant subspace W . Write πW for the subrepresentation of π corresponding to
W . By the finite-dimensional Weyl Trick, we see that πW uniquely extends to a
holomorphic representation πWC of UC on W . We define πC(g)v = πWC (g)v for each
v ∈ W and g ∈ UC. If V and W are finite-dimensional invariant subspaces of H
and v ∈ V ∩ W , then the uniqueness of the holomorphic extension shows that
πWC (g)v = πVC (g)v and thus πC is well-defined.

It is clear that πC is a vector space representation of UC on H, but we must still
show that πC acts by bounded operators and that it acts holomorphically. Since
π is smooth, Theorem 5.6 implies the existence of a Lie algebra representation
dπ : g→ B(H) such that

π(expX) = exp(dπ(X))

for all X ∈ B(H). Notice that dπ uniquely extends to a complex-linear Lie algebra
representation dπC : uC → B(H) by setting

dπC(X + iY ) = dπ(X) + idπ(Y )

for all X, Y ∈ g.
By restricting to finite-dimensional invariant subspaces of H and applying the

finite-dimensional Unitary Trick, we verify that

πC(expX)v = exp(dπC(X))v (5.2)

for all X ∈ uC and v ∈ H. In particular, we see that πC(g) ∈ B(H) for all g ∈ UC
and also that πC is smooth.

Next, we note that πC gives a holomorphic representation on W for every finite-
dimensional U -invariant subspace of H. Since every vector in H is contained in
such a finite-dimensional invariant subspace, we see that the map

UC 7→ H
g 7→ πC(g)v

is holomorphic for each v ∈ V . Thus πC is holomorphic.
It is clear that the real Lie algebra representation dπ and the complex Lie algebra

representation dπC possess the same algebra of intertwining operators. Thus π and
πC possess the same algebra of intertwining operators by Lemma 5.15. Furthermore,
the uniqueness of the complexification πC follows from its uniqueness on every
finite-dimensional invariant subspace of H.

Our infinite-dimensional version of Weyl’s Trick is then an immediate corollary
(see [35, Proposition 3.6] for a partial version of this result and a different proof):
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Corollary 5.17. Suppose that G∞/K∞ is a lim-noncompact Riemannian sym-
metric spaces which is the c-dual of a lim-compact symmetric space U∞/K∞ where
Un/Kn and Un are simply-connected for each n. Finally, let H be a Hilbert space.
There are one-to-one correspondences between the following categories of represen-
tations on H which preserve the algebras of intertwining operators:

1. Locally-finite representations of G∞ on H

2. Holomorphic representations of (U∞)C on H

3. Smooth representations of U∞ on H

Proof. This corollary follows immediately by applying Theorem 5.16 to represen-
tations of Gn, (Un)C, and Un on H for each n ∈ N.

There is one crucial aspect of the finite-dimensional version of Weyl’s Unitary
Trick which we have as yet failed to mention: every smooth (i.e., norm-continuous)
Hilbert representation of a compact Lie group is unitarizable. This key property
is what gives Weyl’s Trick much of its power, since it allows us to treat finite-
dimensional representations of noncompact semisimple Lie groups as if they were
unitary. We take a moment, therefore, to explore what can be said about unitariz-
ability of representations of U∞.

The first thing we note is that the representation (π|Un ,H) may be unitarized
for each n ∈ N, because Un is a compact group. Furthermore, a unitarization of
π|Un automatically unitarizes the restrictions π|Uj for j ≤ n. However, it is not
clear a priori whether or not it is possible to simultaneously unitarize π|Un for all
n ∈ N, which is what would be required in order to unitarize π.

Recall that the trick we used to show that representations of compact groups are
unitarizable was to integrate an inner product over the group using Haar measure.
While U∞ is not locally compact, and thus does not possess a Haar measure, one
can show that it possesses the next-best thing:

Theorem 5.18. ([49, Proposition 13.6]). Let UCB(U∞) denote the Banach space
of uniformly-continuous, bounded functions on G, then there is a continuous func-
tional µ ∈ UCB(U∞)∗ such that

1. µ(1) = 1, where 1 is the constant-one function

2. µ(f) ≥ 0 whenever f ≥ 0

3. |µ(f)| ≤ ||f ||∞ for all f ∈ UCB(U∞)

4. µ(Rgf) = µ(Lgf) = µ(f) for all g ∈ U∞ and f ∈ UCB(U∞)

We say that µ is an invariant mean for U∞.
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Proof. For each ∈ N, we define a functional µn ∈ UCB(U∞)∗ by

µn(f) =

∫
Un

f |Un(g)dg

for each f ∈ UCB(U∞). It is clear that each µn satisfies the first three conditions
of an invariant mean. Furthermore, we see that µn(Rgf) = µn(Lgf) = f whenever
g ∈ Un ≤ U∞. Thus, any weak-∗ cluster point of the set {µn}n∈N ⊆ UCB(U∞)∗

will possess property (4). But by the Banach Alaoglu theorem, the unit ball in
UCB(U∞)∗ is weak-∗ compact and thus our sequence must possess a cluster point
(property (3) shows that the sequence is contained in the unit ball).

Because UCB(U∞) is not separable, the unit ball in UCB(U∞)∗ is not guaran-
teed to be weak-∗ sequentially compact. Thus there is no reason to expect that
{µn}n∈N ⊆ UCB(U∞)∗ will possess a convergent sequence. In fact, an application
of the Axiom of Choice is required to construct an invariant mean on U∞. There
are also an uncountable number of distinct invariant means on U∞, so we are far
from the uniqueness properties of Haar measures.

Invariant means in some ways behave as finitely-additive invariant integrals on
U∞. For that reason, we often us the notation

µ(f) =

∫
U∞

f(g)dµ(g),

although we must be careful to note that µ is not in any sense a countably-additive
measure on U∞.

Nevertheless, once a group G possesses an invariant mean, it is possible to use
the “integration” trick to show that all uniformly bounded representations of G
are unitarizable:

Theorem 5.19. ([49, Proposition 17.5]). Suppose that G is an amenable group
and that π is a uniformly bounded continuous representation of G on a separable
Hilbert space H (that is, supg∈U∞ ||π(g)|| <∞). Then π is equivalent to a unitary
representation.

Proof. Let M = supg∈U∞ ||π(g)||. Clearly, M = supg∈U∞ ||π(g)−1||; it follows that

M−1||u|| ≤ ||π(g)u|| ≤M ||u||

for all g ∈ U∞.
Now let µ be a bi-invariant mean on G. We denote the inner product on H by
〈, 〉H and define a new inner product 〈, 〉µ on H by

〈u, v〉µ =

∫
G

〈π(g)u, π(g)v〉Hdµ(g)

for all u, v ∈ H. We use the fact that g 7→ 〈π(g)u, π(g)v〉H is a uniformly continu-
ous, bounded function on G (since π is continuous and uniformly bounded). It is
clear that 〈, 〉µ provides a positive semi-definite Hermitian form on H.

91



Note that for u ∈ H one has that

0 < M−2||u||2H ≤ ||u||2µ =

∫
G

||π(g)u||2Hdµ(g) < M2||u||2H.

Thus 〈, 〉µ is strictly positive-definite and continuous with respect to 〈, 〉H.

Taking stock again of our situation, we see that all uniformly-bounded Hilbert
representations of U∞ are unitarizable. Furthermore, if a continuous Hilbert rep-
resentation (π,H) is unitarizable, then π is uniformly bounded. In fact, if an in-
vertible bounded intertwining operator T ∈ GL(H) unitarizes π, then we see that
Tπ(g)T−1 is unitary and thus ||π(g)|| < ||T ||||T−1|| for all g ∈ U∞.

Unfortunately, it is not possible to say much more, because it is possible to
construct a smooth Hilbert representation of U∞ which is not unitarizable, as we
now show.

Consider the group U∞ = SU(∞) = lim−→ SU(2n). For each n ∈ N, consider the
standard representation πn of SU(2n) on Hn = C2n (that is, πn(g)v = g · v for all
g ∈ SU(2n)). By taking the direct limit, we may form a unitary representation π =
lim−→ πn of SU(∞) on the Hilbert space H = `2(C) = lim−→C2n of square-summable
sequences of complex numbers. Note that SU(2n) acts trivially on the orthogonal
complement of Hn. It follows that π|SU(2n) decomposes into a direct sum of the
standard representation πn and infinitely many copies of the trivial irreducible
representation. That is,

π|SU(2n) = πn ⊕∞ · IdSU(2n),

where IdSU(2n) denotes the trivial irreducible representation of SU(2n) on C. Thus,
by Theorem 5.7, it follows that π|SU(2n) is smooth for each n ∈ N and hence that
π is smooth.

Now let V1 = H1 and define Vn = Hn	Hn−1 for each n > 1. Note that dimVn = 2
for each n ∈ N. We now completely discard unitarity and choose some new inner
product 〈, 〉Vn on Vn under which ||π(g)|Vn|| ≥ n for some g ∈ SU(2n). For instance,
if π(g)v = w, where v, w ∈ Vn are linearly independent, then we can choose any
inner product 〈, 〉Vn on Vn such that ||v||Vn = 1 and ||w||Vn = n.

Next we define for each n ∈ N the finite-dimensional Hilbert space

Kn =
n⊕
i=1

Vi,

where each Vi is given the new inner product we just defined. As vector spaces,
Kn = Hn, but they possess different inner products. Now {(πn,Kn)}n∈N forms a
direct system of continuous Hilbert representations. We consider the representa-
tion (π̃∞,K∞) = (lim−→ πn, lim−→Kn). Note that π|SU(2n) and π̃|SU(2n) possess the same
irreducible subrepresentations for each n ∈ N. In particular, π̃ is smooth. Finally,
it is clear that π̃ is not uniformly bounded (since supg∈SU(2n) ||π(g)|| ≥ n for each
n ∈ N), and is therefore not unitarizable.
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Heuristically, it seems that the smooth Hilbert representations of U∞ which
are not unitarizable have in some sense been given an unnatural or “incorrect”
topology. For that reason, we will for the rest of the thesis work only with unitary
representations of U∞ and with smooth representations of G∞ which correspond
to smooth unitary representations of U∞ under Weyl’s Trick.

5.4 Highest-Weight Representations
Now suppose that G∞/K∞ is an admissible lim-noncompact symmetric space
which is the c-dual of a lim-compact symmetric space U∞/K∞. We wish to con-
struct irreducible spherical and conical representations for G∞/K∞ and U∞/K∞.
The most natural way to do this would be to construct a direct limit of spheri-
cal/conical representations. The following lemma provides the foundation for this
construction and is a generalization of a result proved by Ólafsson and Wolf in
Lemma 5.8 of [42].

Theorem 5.20. Let U∞/K∞ be a propagated lim-compact symmetric space such
that Un/Kn is simply connected for each n ∈ N. Fix indices n < m and dominant
weights λ ∈ Λ+(gn, an) and µ ∈ Λ+(gm, am) such that µ|an = λ. Consider the irre-
ducible spherical representations (πµ,Hµ) and (πλ,Hλ) of Um and Gn, respectively,
with respective highest weights µ and λ. Let w be a highest-weight vector for πµ.

Then the representation of Un on W = 〈πµ(Un)w〉 is equivalent to πλ.

Proof. For each dominant weight ν in Λ+(gn, an), let wν be the orthogonal projec-
tion of w onto the space of πν-isotypic vectors in W . Then w =

∑
ν wν (note that

wν = 0 for all but finitely many choices of ν).
Write Wν = 〈πµ(Un)wν〉 for each ν. Because Wν consists of Un-isotypic vectors

of type ν, we see that the action of Un on Wν is Un-isomorphic to a direct sum of
copies of the irreducible representation (πν ,Hν) with highest-weight ν.

Since w is a Um-highest-weight vector for πµ, π(MmNm)w = w. In particular,
π(MnNn)w = w. Since the space of isotypic vectors in W of type πν is invariant
under Gn, it follows that wν is fixed under MnNn for each ν ∈ Λ+(gn, an). Thus
Lemma 3.35 shows that if wν 6= 0, then Wν is a Un-irreducible subspace of W that
is Un-isomorphic toHν and that wν is a highest-weight vector for Wν . In particular,
wν is a weight vector of weight ν.

On the other hand, since w is a Um-weight vector of weight µ, it follows that it
is a Un-weight vector of weight λ = µ|an . But we also have that w =

∑
ν wν , where

each wν is a weight vector of weight ν. Hence w = wλ and W = Wλ, and so we are
done.

We follow the construction in [54, p. 464–466], and more details may be found at
that source. For each n, we denote the set of fundamental weights by ξn,1, . . . ξn,rn ,
where rn = dim an and where we have numbered the fundamental weights accord-
ing to the roots as in Section 4.4. Suppose k ≤ n. One can show that

ξn,i|ak = ξk,i (5.3)
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for all n ∈ N and i ≤ rk. Furthermore, one can check that ξn,i|ak = 0 for rk < i ≤ rn.
Thus

Λ+(gn, an) = Nξn,1 + · · ·+ Nξn,rn =

{
rn∑
j=1

cjξn,j

∣∣∣∣∣ cj ∈ N

}
(5.4)

and (
rn∑
j=1

cjξn,j

)∣∣∣∣∣
ak

=

(
rk∑
j=1

cjξk,j

)
∈ Λ+(gk, ak) (5.5)

whenever k ≤ n.
We can thus form a projective limit

Λ+ ≡ Λ+(g∞, a∞) = lim←−Λ+(gn, an).

We say that Λ+(g∞, a∞) is the set of dominant integral weights for the re-
stricted root system Σ(g∞, a∞). That is, Λ+ consists of the elements λ of a∗∞ =
lim←− a∗n such that λ|an is dominant and integral for every n. Notice that (5.3) implies
that for each i ∈ N there is a weight ξi ∈ a∗∞ such that ξi|an = ξn,i for each n ∈ N.

If dim a∞ = ∞, then (5.4) and (5.4) imply that Λ+(g∞, a∞) is equal to the set
of formal sums

∑
i∈N ciξi where (ci) ∈ N is any sequence in N. On the other hand,

if a∞ is finite-dimensional, say with dimension r, then Λ+(g∞, a∞) is equal to the
set of sums

∑r
i=1 ciξi where c1, . . . , cr ∈ N.

Just as in the finite-dimensional case, weights in Λ+ can be used to create highest-
weight representations of U∞. To see this, fix µ ∈ Λ+. For n in N, let (πµn ,Hµn)
be the irreducible representation of Un with highest weight µn ≡ µ|an , and let
vn ∈ Hµn be a nonzero highest-weight vector. By Theorem 5.20, we see that πµn
may be embedded unitarily into πµn+1 by identifying the respective highest-weight
vectors vn with vn+1. The corresponding unitary representation of U∞ constructed
by the direct limit of πµn , n ∈ N is denoted by

(πµ,Hµ) =
(
lim−→ πµn , lim−→Hµn

)
,

where Hµ = lim−→Hµn is the Hilbert completion of the algebraic direct limit lim−→Hµn

of Hilbert spaces. We refer to πµ as the highest-weight representation with
highest weight µ. Note that a direct limit of irreducible representations of Un is
an irreducible representation of U∞ by 5.2.

If dim a∞ =∞, then we can write elements of a∗ as sequences (ai) ∈ Z of integers,
so that a sequence (ai) ∈ Z corresponds to the formal sum

∑
i∈N aiei ∈ a∗∞. We

now use this notation to write down the fundamental weights for Σ(g∞, a∞) for
some infinite Dynkin-diagram types.

If Σ(g∞, a∞) has type A∞, then

ξi = (0, . . . , 0, 2, 2, 2, . . .)

where the first i entries in ξi are zeros.
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If Σ(g∞, a∞) has type B∞, then

ξ1 = (1, 1, 1, . . .) and ξi = (0, . . . , 0, 2, 2, 2, . . .) for i > 1,

where the first i− 1 entries in ξi are zero for i > 1.
If Σ(g∞, a∞) has type C∞, then

ξi = (0, . . . , 0, 2, 2, 2, . . .),

where the first i− 1 entries in ξi are zero.
If Σ(g∞, a∞) has type D∞, then

ξ1 = (1, 1, 1, . . .), ξ2 = (−1, 1, 1, . . .) and ξi = (0, . . . , 0, 2, 2, 2, . . .) for i ≥ 3,

where the first i− 1 entries in ξi are zero for i ≥ 3.
By examining the fundamental weights in each case and extending them to

weights on h∞, it follows from the boundedness condition in Theorem 5.12 that a
highest-weight representation (πµ,Hµ) for λ ∈ Λ+(g∞, a∞) will be smooth if and
only if we can write λ as a finite linear combination

λ =
n∑
i=1

ciξi,

where ci ∈ N for each n. In particular, if dim a∞ < ∞, then every highest-weight
representation (πµ,Hµ) for λ ∈ Λ+(g∞, a∞) is smooth.

5.5 Spherical Representations for Lim-Compact

Symmetric Spaces
In preparation for our study of conical representations, we end this chapter by
reviewing the main result of our earlier paper [7], which concerned spherical rep-
resentations for propagated lim-compact symmetric spaces.

Suppose that U∞/K∞ is a lim-compact symmetric space (as usual, we assume
that Un/Kn is simply-connected for each n ∈ N for the sake of clarity). The defi-
nitions of spherical representations and spherical functions are entirely analogous
to the definitions for finite-dimensional symmetric spaces.

Definition 5.21. A continuous unitary representation (π,H) of U∞ is said to be
(K∞-)spherical if there is a nonzero cyclic vector v ∈ H such that π(Kn)v = v
for each n ∈ N.

Definition 5.22. (See [13]) A continuous, bi-K∞-invariant function φ : U∞ → C
is said to be a spherical function if

φ(x)φ(y) = lim
n→∞

∫
Kn

φ(xky)dk

for all x, y ∈ U∞.
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It is natural to ask whether one may form an irreducible K∞-spherical repre-
sentation of U∞ merely by taking a direct limit of irreducible unitary spherical
representations of the Kn’s. The most appealing candidates would be the unitary
highest-weight representations constructed in the previous section. In [7] we showed
that this scheme only works for certain symmetric spaces:

Theorem 5.23. ([7, Theorem 4.5]) Let µ ∈ Λ+(u∞, k∞) and consider the corre-
sponding unitary highest-weight representation (πµ,Hµ) of U∞. (Recall that πµ was
constructed as a direct limit of spherical representations.) Then πµ is a spherical
representation if and only if

Rank U∞/K∞ = dim a∞ <∞,

that is, if U∞/K∞ is a symmetric space with a finite rank.
In the case that U∞/K∞ has finite rank, the function φµ : U∞ → C defined by

φµ(g) = 〈e, π(g)e〉,

where e ∈ HK
µ is a unit vector, is a positive-definite spherical function.

As a side note, the only classical finite-rank lim-compact symmetric spaces
are the finite-rank Grassmannian spaces SO(p + ∞)/SO(p) × SO(∞), SU(p +
∞)/S(SU(p)× SU(∞)), and Sp(p+∞)/Sp(p)× Sp(∞), which correspond to the
space of p-dimensional subspaces of R∞, C∞, and H∞, respectively. The other
classical lim-compact symmetric spaces in Table 4.4 all have infinite rank.

Theorem 5.23 demonstrates that there is a striking difference in behavior be-
tween finite-rank lim-Riemannian symmetric spaces and infinite-rank lim-Riem-
annian symmetric spaces, and we shall note this divergence of behavior again in
the next chapter.

Finally, we note that for the case of a finite-rank lim-compact symmetric space
U∞/K∞, the classification of spherical functions in [50] implies that the highest-
weight representations (πµ,Hµ) with highest-weight µ ∈ Λ+(g∞, k∞) exhaust all
irreducible spherical representations of U∞.
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Chapter 6
Conical Representations for Admissible
Direct Limits

This chapter contains the main results of the thesis. In the first section, we give
a natural definition for conical representations of admissible lim-noncompact sym-
metric spaces G∞/K∞. As before, we assume that G∞/K∞ is the c-dual of a
propagated lim-compact symmetric space U∞/K∞. By using the generalization of
Weyl’s Unitary Trick from the previous chapter, each smooth cyclic representa-
tion of U∞ gives rise to a smooth cyclic representation of G∞, and it is natural
to say that a smooth cyclic representation of U∞ is conical if the corresponding
representation of G∞ is conical.

In fact, we will see that in some cases it is possible to define nonsmooth uni-
tary representations of U∞ which are conical but do not correspond to continuous
Hilbert representations of G∞. This is a strange situation which does not occur in
the finite-dimensional case.

With these definitions, we classify all of the irreducible cyclic unitary representa-
tions of U∞ which are conical. Next we see that smooth conical unitary representa-
tions of U∞ decompose into a discrete direct sum of highest-weight representations.

Combining our results with Theorem 5.23, we will show that, if Rank U∞/K∞ =
∞, then there are no smooth unitary representations of U∞ which are both spher-
ical and conical. On the other hand, if Rank U∞/K∞ <∞, then we will see that a
smooth irreducible unitary representation of U∞ is spherical if and only if it is con-
ical. This situation is also in stark contrast to the situation for finite-dimensional
symmetric spaces, for which finite-dimensional representations are spherical if and
only if they are conical.

In the final section, we show how to disintegrate (possibly nonsmooth) conical
representations into direct integrals of irreducible representations by integrating
over a set of paths in a tree of highest weights. We also show that cyclic conical
representations are always multiplicity-free representations (and hence are Type I
representations).

6.1 Definition of Conical Representations
We begin by presenting our definition of conical representations for lim-Riemannian
symmetric spaces. Let G∞/K∞ be the c-dual of a propagated lim-compact sym-
metric space U∞/K∞ such that Un/Kn and Un are simply-connected for each n
and assume that G∞/K∞ is admissible.

For finite-dimensional symmetric spaces, it is possible to consider a finite-dimen-
sional conical representation to be a representation of either G or U (where G/K
is the c-dual of the compact symmetric space U/K). On the one hand, many
harmonic analysis applications of conical representations appear on the horocycle
space G/MN , so in a certain sense it is most natural to speak of conical represen-
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tations of G. On the other hand, these representations are only unitary if we move
to the compact group U .

Similarly, because unitarity is crucially important in the arguments which fol-
low, we will mainly consider unitary conical representations of U∞. However, it
is important to remember that holomorphic representations of U∞ correspond to
holomorphic representations of G∞ under Theorem 5.16, and vice versa.

We are now ready to present the definition:

Definition 6.1. A unitary representation (π,H) of U∞ is conical if there is a
nonzero cyclic vector v ∈ Hfin such that π(MnNn)v = v for all n ∈ N. In that case,
we say that v is a conical vector for π.

Notice that we do not require that conical representations of U∞ be smooth.
This opens the door to the possibility of constructing conical representations of
U∞ which do not correspond to representations of G∞ under the generalized uni-
tary trick, and indeed we will construct many examples of such representations in
Section 6.5.

6.2 Classification of Conical Representations
In this section we begin to classify the unitary conical representations of U∞. We
determine which representations are irreducible and show how conical representa-
tions decompose into subrepresentations.

Theorem 6.2. Suppose that U∞/K∞ is a propagated lim-compact symmetric space
with Un and Un/Kn simply-connected for each n and such that the c-dual G∞/K∞
is admissible. Suppose further that (π,H) is a conical representation with a conical
vector v. For each n, write Γn(π, v) for the set of highest weights µ in Λ+(un, an)
such that the projection vµ = prHµ v of v onto the space of Un-isotypic vectors of
type µ is nonzero. Then

1. For each n ∈ N and µ ∈ Γn(π, v), the action of U∞ on 〈π(U∞)vµ〉 gives a
conical representation of U∞ with conical vector vµ.

2. π decomposes into an orthogonal direct sum of disjoint conical representations
as follows:

H = 〈π(U∞)v〉 =
⊕

µ∈Γn(π,v)

〈π(U∞)vµ〉

3. If π is irreducible, then π is equivalent to a highest-weight representation πµ
for some µ ∈ Λ+(g∞, a∞).

4. If π is irreducible, then dimHM∞N∞ = 1.

Proof. For each n ∈ N, the set Γn(π, v) is finite because v is Un-finite for all n.
Then the decomposition of v into Un-isotypic vectors may be written

v =
∑

µ∈Γn(π,v)

vµ,
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FIGURE 6.1. Example of a highest-weight tree
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// . . .

33
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++

where vµ = prHµ v. Since each isotypic subspace is Un-invariant, it follows that vµ ∈
HMnNn for each µ ∈ Γn(π, v). Note that 〈π(Un)vµ〉 gives a primary representation
of Un of type µ. Hence, by Lemma 3.35, it is an irreducible representation with
highest-weight vector vµ.

We repeat the same process for Un+1, writing the decomposition of v into Un+1-
isotypic vectors as

v =
∑

λ∈Γn+1(π,v)

vλ (6.1)

By Theorem 5.20 it follows for each λ ∈ Γn+1(π, v) that 〈π(Un)vλ〉 is a Un-
irreducible subspace for which vλ is a highest-weight vector of weight λ|hn . In
other words, vλ is also a Un-isotypic vector, so λ|hn ∈ Γn(π, v). Furthermore, since
(6.1) is a decomposition of v into Un- and Un+1-isotypic vectors, we see that for
each µ ∈ Γn(π, v) there is λ ∈ Γn+1(π, v) such that λ|hn = µ.

In other words, if we consider all the highest weights of irreducible subrepresen-
tations π(Un) and allow n ∈ N to vary, then the highest weights may be naturally
arranged into a tree, as in Figure 6.1.

Next we prove (1). First note that Vλ = 〈π(U∞)vλ〉 is a U∞-invariant subspace
of H for each λ ∈ Γn(π, v). Suppose m > n, and write

uλ =
∑

ν∈Γm(π,v) s.t. ν|an=λ

vν

for each λ ∈ Γn(π, v). Then uλ is a Un-isotypic vector of type λ. Because v =∑
ν∈Γm(π,v) vν , we see that v =

∑
λ∈Γn(π,v) uλ since every Um-highest-weight vector

vν appears as a summand in exactly one uλ. Since v =
∑

λ∈Γn(π,v) vλ is also a
decomposition of v into Un-isotypic vectors, it follows that vλ = uλ for each λ ∈
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Γn(π, v). In particular, vλ is MmNm-invariant for all m ≥ n. It follows that Vλ =
〈π(U∞)vλ〉 gives a conical representation of U∞, proving (1).

To prove (2), we need to show that Vµ1 ⊥ Vµ2 for all µ1 6= µ2 in Γn(π, v). It is
sufficient to show that V m

µ1
= 〈π(Um)vµ1〉 and V m

µ2
= 〈π(Um)vµ2〉 are orthogonal for

all m. We apply Lemma 5.8 to see that

〈π(Um)vλ〉 =
⊕

ν∈Γm(π,v) s.t ν|an=λ

〈π(Um)vν〉.

It follows that 〈π(Um)vµ1〉 and 〈π(Um)vµ2〉 are orthogonal for all m and hence
that V =

⋃
m〈π(Um)vµ1〉 and W =

⋃
m〈π(Um)vµ2〉 are orthogonal G-invariant

subspaces of H, proving (2). Figure 6.2 demonstrates how the decomposition of
Um-representations matches the tree structure of the highest weights that was
exhibited in Figure 6.1.

To prove (3), we assume that π is irreducible. Suppose that there is n such that
#Γn(π, v) > 1 (that is, there is more than one Um-highest weight in π|Um). Then
(2) produces orthogonal, nonzero invariant subspaces of H, which contradicts the
assumption that π is irreducible. Hence #Γn(π, v) = 1 for all m.

For each n, let µn refer to the single element of Γn(π, v). From this it follows that
v is a Um-highest-weight vector of weight µm for each m with the property that
µm|an = µn for m ≥ n. Furthermore, Vn = 〈π(Un)v〉 is a Un-irreducible subspace
of H for each n, and we can write π = lim−→ πn, where πn is the representation of Un
on Vn induced by π. Thus π is a highest-weight representation and (3) is proved.

To prove that dimHM∞N∞ = 1, suppose that v and w are nonzero conical vectors
for π such that v ⊥ w. Write Vn = 〈π(Un)v〉 and Wn = 〈π(Un)w〉 for each n. We
see that Vn and Wn are both equivalent to πµn and have v and w as respective
highest-weight vectors. By Lemma 3.35, it follows that Vn ⊥ Wn for each n. Hence
v and w generate nonzero, orthogonal invariant subspaces of H, contradicting the
irreducibility of π.

Notice that the maps pn+1
n : Γn+1(π, v)→ Γn(π, v) defined by pn(λ) = λ|an define

a projective system. We refer to the set Γ(π, v) = lim←−Γn(π, v) ⊆ Λ+(u∞, a∞) as
the highest-weight support of π. If we arrange the highest weights in a tree as
in Figure 6.1, then we see that elements of Γ(π, v) correspond to infinite paths.

We now examine the connection between conical and spherical representations
of G. Recall that for a finite-dimensional Riemannian symmetric space the irre-
ducible finite-dimensional conical and spherical representations are identical. The
situation is much different for infinite-dimensional symmetric spaces, as the follow-
ing corollary shows.

Corollary 6.3. If Rank(U∞/K∞) <∞, then a unitary irreducible representation
is spherical if and only if it is conical. If Rank(U∞/K∞) = ∞, then no unitary
irreducible representation is both spherical and conical.

Proof. By part (3) of Theorem 6.2, we see that the irreducible conical represen-
tations are precisely the highest-weight representations of U∞ with highest weight
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FIGURE 6.2. Example of a decomposition of 〈π(Un)v〉 into Un-isotypic subspaces (direct
sums are taken vertically)
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4〉 // 〈π(U3)v3
7〉 // . . .

µ ∈ Λ+(U∞, K∞). By Theorem 5.23, it follows that these highest-weight represen-
tations of U∞ are spherical if and only if Rank(U∞/K∞) < ∞. Furthermore, if
Rank(U∞/K∞) < ∞, then the spherical representations of U∞ are exhausted by
the irreducible highest-weight representations.

6.3 Highest-Weight Supports of Conical

Representations
In this section we explore some of the properties of the highest-weight trees as-
sociated with conical representations. These trees form an invariant for conical
representations, but as we shall see it is possible for two distinct conical represen-
tations to possess the same highest-weight tree.

First we show that the tree set of a conical representation is independent of the
choice of conical vector:

Theorem 6.4. Let (π,H) be a unitary conical representation of U∞.
Then Γn(π, v) = Γn(π,w) for any conical vectors v, w in H.

Proof. Suppose that both v and w are conical vectors in H and that µ ∈ Γn(π,w)
but µ /∈ Γn(π, v). Write wµ for the projection of w onto the µ-isotypic vectors
in H. Since µ ∈ Γn(π,w), it follows that wµ 6= 0. Define W = 〈π(U∞)wµ〉 and
V = 〈π(U∞)v〉. We claim that W ⊥ V , which will be a contradiction since V is
dense in H.

Note that W =
⋃
m≥n〈π(Um)wµ〉 and V =

⋃
m≥n〈π(Um)v〉. It is sufficient to

show that 〈π(Um)wµ〉 ⊥ 〈π(Um)v〉 for m ≥ n. As before, we see from Lemma 3.35
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and Theorem 5.20 that

〈π(Um)v〉 =
⊕

λ∈Γm(π,v)

〈π(Um)vλ〉 ∼=Um

⊕
λ∈Γm(π,v)

Hλ

and
〈π(Um)wµ〉 =

⊕
ν∈Γµm(π,w)

〈π(Um)wν〉 ∼=Um

⊕
ν∈Γm(π,w)

Hν ,

where Γµm(π,w) = {ν ∈ Γm(π,w) s.t. ν|an = µ}.
Fix m ≥ n. Since µ /∈ Γn(π, v), it follows that λ|an 6= µ for all λ ∈ Γ(π, v). Thus

Γm(π, v) and Γµm(π,w) are disjoint. This means that 〈π(Um)vλ〉 ⊥ 〈π(Um)wν〉 for
each λ ∈ Γm(π, v) and ν ∈ Γµm(π,w). Hence 〈π(Um)v〉 ⊥ 〈π(Um)wµ〉 for all m, as
we wanted to show.

From now on, we write Γn(π) ≡ Γn(π, v) and Γ(π) = lim←−Γn(π, v), where v is
any conical vector of a conical representation π of U∞.

Corollary 6.5. Let (π,H) and (ρ,K) be unitary conical representations of (U∞, K∞).
If there is n ∈ N such that Γn(π) 6= Γn(ρ), then π 6∼= ρ.

In particular, we have shown that having the same highest-weight tree is a
necessary condition for two conical representations to be equivalent. Later we will
provide examples of inequivalent conical representations with the same highest-
weight trees. However, two conical representations with the same highest-weight
trees are nonetheless almost equivalent in a certain sense, as the following theorem
shows.

Theorem 6.6. Let (π,H) and (ρ,K) be conical representations of (U∞, K∞) with
respective conical vectors v and w such that Γn(π) = Γn(ρ) for each n. Consider
V = 〈π(U∞)v〉 and W = 〈ρ(U∞)w〉. Write πV and ρW for the representations of
U∞ given by restricting π and ρ to the dense invariant subspaces V and W of H
and K, respectively. Then

1. πV ∼= ρW

2. π|Un ∼= ρ|Un for each n.

Proof. We begin by proving (1). We claim that the map L : V → W induced by
π(g)v 7→ ρ(g)w is a well-defined invertible U∞-intertwining operator.

As before, write Vm = 〈π(Um)v〉 and Wm = 〈π(Um)w〉, so that V =
⋃
m≥n Vm

and W =
⋃
m≥nWm. Then

Vm =
⊕
λ∈Γm

〈π(Um)vλ〉 ∼=Um

⊕
λ∈Γm

Hλ

and
Wm =

⊕
λ∈Γm

〈ρ(Um)wλ〉 ∼=Um

⊕
λ∈Γm

Hλ,
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where Γm = Γm(π) = Γm(ρ). Thus Vm and Wm are Um-isomorphic. We must show
that there is an invertible Um-intertwining operator Lm : Vm → Wm that maps v
to w.

In fact, we note that for each λ ∈ Γm there is a (not necessarily unitary) Um-
intertwining operator Lλ : 〈π(Um)vλ〉 → 〈ρ(Um)wλ〉 given by π(g)vλ 7→ ρ(g)wλ.
We can then define

Lm =
⊕
λ∈Γm

Lλ : Vm =
⊕
λ∈Γm

〈π(Um)vλ〉 →
⊕
λ∈Γm

〈ρ(Um)wλ〉 = Wm.

Hence Lmv = Lm(
∑

λ∈Γm
vλ) =

∑
λ∈Γm

wλ = w.
Since v and w are cyclic vectors in Vm and Wm, respectively, Lm is in fact

uniquely determined as an intertwining operator by the fact that it maps v to w. In
particular, Lm|Vn = Ln for all n ≤ m. Thus the family {Lm}m∈N is a direct system
of intertwining operators that induces a continuous U∞-intertwining operator

L : V = lim−→Vm → lim−→Wm = W

such that Lv = w.
Next we prove (2). Fix n ∈ N. Define Ṽn = Vn and Ṽm = Vm 	 Vm−1 for

m > n, where the orthogonal complement is taken with respect to the Hilbert
space structure inherited by Vn as a closed subspace ofH. Notice that Ṽm is a finite-
dimensional Un-invariant subspace of H for each m ≥ n. We define Un-invariant
spaces W̃m ⊆ K for each m ≥ n in exactly the same way.

Recall that Vm and Wm give equivalent representations of Un for each m ≥ n
under the intertwining operator Lm. It follows that Ṽm = Vm 	 Vm−1 and W̃m =
Wm 	Wm−1 are Un-isomorphic for all m > n. Note that

H =
⊕
m≥n

Ṽm and K =
⊕
m≥n

W̃m,

where the direct sums are orthogonal. Since there is a unitary Un intertwining
operator between Ṽm and W̃m for all m ≥ n, it follows that there is a unitary
Un-intertwining operator between H and K.

6.4 Smooth Conical Representations
Next we consider smooth conical representations of U∞. These are of interest be-
cause they are precisely the conical representations which extend to smooth conical
representations of the c-dual G∞. Our next theorem classifies the smooth repre-
sentations.

Theorem 6.7. Suppose that (π,H) is a smooth conical representation of U∞.
Then π decomposes into a direct sum of irreducible smooth highest-weight repre-
sentations.
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Proof. Let v be a conical vector for π. For each Un, write

v =
∑

λ∈Γn(π)

vλ

as before. As in Section 4.4, we recursively construct a countable basis {ei}n∈N for
a∞ such that {e1, . . . , ern} is a basis for an for each n. For each λ ∈ a∗n, write

||λ||∞ = max
1≤i≤n

|λ(ei)|.

In fact, if λ ∈ Λ+(gn, an) and λ =
∑rn

i=1 aiei, then we see from the data in Sec-
tion 4.4 that ai ≤ aj when i ≤ j; thus ||λ||∞ = arn .

For each µ ∈ Γn(π), let Γµn+1(π) = {λ ∈ Γn+1(π) : λ|an = µ}. Hence we have
||λ||∞ ≥ ||µ||∞ for each λ ∈ Γµn+1,.

Now suppose that µ ∈ Γn(π) and that there are distinct weights λ1, λ2 ∈ Γµn+1(π).
In this case we say that µ splits with respect to π. Because λ1 and λ2 in Λ+(gn, an)
are by assumption distinct and agree on the first rn coordinates, we see that they
must differ on a coordinate i with rn < i ≤ rn+1. Since the coefficients of dominant
weights form an increasing sequence, we see that either ||λ1||∞ > ||λ2||∞ ≥ ||µ||∞
or ||λ2||∞ > ||λ1||∞ ≥ ||µ||∞

In other words, if a highest weight µ ∈ Γn(π) splits, then there is a Un+1-highest
weight in Γµn+1(π) with a coefficient which is strictly greater than all the coefficients
in µ. It follows that unless there is a weight µn ∈ Γn(π) for some n which does
not split and such that each λ ∈ Γµm(π) for any m ≥ n does not split, then we
can repeat this process to obtain arbitrarily large coefficients of highest weights of
representations appearing in π, contradicting Lemma 5.12. Hence, there is some
highest weight µ ∈ Γn(π) such that, for each m ≥ n, the vector vµ is a Um-highest-

weight vector. Thus 〈π(U∞)vµ〉 gives a highest-weight representation of U∞.
Furthermore, we see that

v − vµ =
∑

λ∈Γn(π)\µ

vλ

generates a conical representation by Theorem 6.2 and that

H = 〈π(U∞)vµ〉 ⊕ 〈π(U∞)(v − vµ)〉.

We have shown that every smooth unitary conical representation possesses an
irreducible subrepresentation and that the orthogonal complement is also a smooth
unitary conical representation. A standard Zorn’s Lemma argument then shows
that H decomposes into an orthogonal direct sum of irreducible smooth conical
representations.

It follows from Theorems 5.12 and 6.7 that every smooth unitary conical rep-
resentation (π,H) of U∞ is an orthogonal direct sum of smooth highest-weight
representations:

π ∼=
⊕
i∈A

πµi ,
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where µi ∈ Λ+ for each i ∈ A. Write each highest weight µi in terms of fundamental
weights as in Section 5.4:

µi =

ki∑
n=1

ainξi,

where ain ∈ N for each i and n (each µi is a finite sum over the fundamental weights
is finite because πµi is a smooth highest-weight representation). By Theorem 5.12,
the smoothness of π is equivalent to the existence of a bound M > 0 such that∑ki

n=1 a
i
n < M for all i ∈ A.

6.5 Disintegration of Conical Representations
If we remove the assumption in Theorem 6.7 that the conical representation (π,H)
is smooth, then we can no longer be assured that π has an irreducible subrepre-
sentation. However, we would still like to describe general conical representations
in terms of the irreducible ones. This sort of description is possible with a direct-
integral decomposition.

Recall that
Λ+ ≡ Λ+(u∞, a∞) ≡ lim←−Λ+(un, an) ⊆ a∗∞

denotes the set of dominant integral weights for the root system Σ(u∞, a∞). We
start by putting a topology on Λ+. Each lattice Λ+(un, an) carries the discrete
topology. We then consider the projective limit topology on Λ+, which we shall
refer to as the tree topology. This topology is defined by a basis consisting of the
cylinder sets Bλ = {µ ∈ Λ+|µ|an = λ}, where λ is a dominant integral weight on an.
We refer to these cylinder sets as node sets for reasons that will become apparent
later. Note that any two node sets are disjoint or else one contains the other, so
that our basis is closed under intersections. Furthermore, Λ+ is second-countable
under this topology, since there are only countably many dominant integral weights
on ian, for each fixed n ∈ N, so that our basis is a countable union of countable
sets.

Because it is second-countable, this topology is described entirely by sequences.
Note that a sequence {µn}n∈N in Λ+ converges to µ exactly when for each m ∈ N
there is N such that µn|am = µ|am for all n ≥ N .

This topology is also Hausdorff; if µ and λ are distinct elements of Λ+, then
there is m such that µ|am 6= λ|am . Hence Bµ|am and Bλ|am are disjoint open sets
containing µ and λ, respectively.

In fact, Λ+ is highly disconnected; every node set is both open and closed. To
see this, if we consider Bλ for some λ ∈ Λ+

n , then we note that

Λ+\Bλ = {µ ∈ Λ+|µ|an 6= λ} =
⋃

µ∈Λ+
n \{λ}

Bµ,

and hence Λ+\Bλ is open.
Next consider closed subsets Γ of Λ+ with the property that, for each n ∈ N,

we have Γ
⋂
Bλ = ∅ for all but finitely many λ in Λ+

n . We will refer to such sets
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as tree sets because, as we shall soon see, they are in one-to-one correspondence
with trees of a certain type. We give each tree set Γ the subspace topology, so
that it inherits the second-countability and Hausdorff properties from Λ+. Write
Γλ = Bλ

⋂
Γ = {µ ∈ Γ|µ|an = λ} for each n and each λ ∈ Λ+

n . We refer to
these sets as node sets for Γ. If λ ∈ Λ+

n and Γλ 6= 0 (that is, there is µ ∈ Γ
such that µ|an = λ), then we say that λ is a node of the tree set Γ. We write
Γn = {µ|an|µ ∈ Γ} for the set of all nodes of Γ that lie in Λ+

n .
Now we spend a few moments explaining our tree-centric choice of terminology.

For each tree set Γ, we can construct a tree as follows. Each element of Γn for each
n ∈ N forms a node of the tree. Draw an edge from a node λ in Γn to a node µ
in Γn+1 if µ|an = λ. There is a correspondence between infinite paths in this tree
and elements of Γ. Each infinite path {λn ∈ Γn}n∈N of nodes of the tree defines a
dominant weight λ ∈ Λ+, since λm|an = λn for m > n. Because Γ is closed in the
projective limit topology on Λ+, it follows that λ ∈ Γ. Similarly, each dominant
weight λ in Γ defines a path {λ|an ∈ Γn}n∈N in the tree. Hence, if λ is a node of Γ,
then the node set Γλ corresponds to the set of all infinite paths in the tree which
pass through the node λ.

It may also be readily seen that if π is a conical representation of U∞, then the
highest-weight tree Γ(π) ⊆ Λ+ is a tree set.

Every tree set Γ is sequentially compact (and hence compact, since Λ+ is second-
countable). In fact, suppose that {µn}n∈N is a sequence in Γ. Now Γn = {µ|an

∣∣µ ∈
Γ} is finite for each n. In particular, there is a subsequence µk1m such that µk1m |a1 =
µk1n|a1 for each m and n. Repeating the process on this subsequence, we form a
nested family of subsequences {µksn}n∈N such that µksm |as = µksn|as for each m and n.
Then {µknn}n∈N is a subsequence that converges in the tree topology on Γ. Similarly,
every node set in Γ is compact.

The complement of a node set in Γ is a finite union of node sets since Γn is
finite for each n. The collection F of finite unions of node sets for Γ thus forms an
algebra of sets which generates the Borel σ-algebra B for the tree topology on Γ.

We can use Γ to define a measurable family of Hilbert spaces λ 7→ Hλ over λ ∈ Γ.
For each λ ∈ Γ, consider the representation (πλ,Hλ) of U∞ with highest-weight λ.
For each such representation, pick out a unit highest-weight vector vλ ∈ Hλ.

To tie these Hilbert spaces together in a measurable way, we consider the family
{sg|g ∈ U∞} of maps sg : Γ →

⋃̇
λ∈ΓHλ given by sg(λ) = πλ(g)vλ. Now choose

a countable dense subset E ⊆ U∞ (recall that U∞ = lim−→Un is separable) and
consider the countable family

{sg|g ∈ E}

of sections. We shall use this family as a measurable frame for our family of Hilbert
spaces. Hence, we need to show that

λ 7→ 〈sg(λ), sh(λ)〉 = 〈πλ(g)vλ, πλ(h)vλ〉 (6.2)

is B-measurable for each g, h ∈ E. Suppose that g, h ∈ Un for some n ∈ N. Then
the representation of Un on 〈πλ(Un)vλ〉 is equivalent to πλ|an for each λ. Thus the
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map in (6.2) is constant on each node set Γλ|an where λ ∈ Γ and is hence B-
measurable. Finally, note that 〈{sg(λ) = πλ(g)vλ|g ∈ E}〉 is dense in Hλ since πλ
is irreducible and E is dense in U∞. Thus, λ 7→ Hλ is a measurable field of Hilbert
spaces.

Next, we note that sg is a measurable section for all g ∈ U∞. In fact, every
g ∈ U∞ is a limit of a sequence {gi}i∈N ⊆ E. Hence, we have that

λ 7→ 〈sg(λ), sh(λ)〉 = lim
i→∞
〈sgi(λ), sh(λ)〉

is a measurable function for all h ∈ E, so that sg is a measurable section.
In order to construct a direct integral of representations (πλ,Hλ) over λ ∈ Γ,

we still need a suitable choice of measure on (Γ,B). In particular, we need to
choose a finite measure whose support is all of Γ (we will refer to such measures as
having full support). The compactness of the node sets makes this easy because
any finitely additive measure on (Γ,F) extends uniquely to a countably additive
measure on (Γ,B).

This last claim follows from the E. Hopf Extension Theorem from measure the-
ory, which states that a finitely additive measure µ on an algebra F of subsets of X
extends to a countably additive measure on the σ-algebra B generated by F if the
measure is countably additive on F. That is, we must show that if A =

⋃̇
n∈NAn,

where A ∈ F and An ∈ F for each n, then

µ(A) =
∑
n∈N

µ(An).

However, in our case, the algebra F consists of finite disjoint unions of node sets,
and since every set in F is compact, it follows that there is no decomposition of a
set in F into an infinite disjoint union of node sets.

Hence, all that we need to do is specify a (finitely additive) measure on the
algebra of finite disjoint unions of node sets. We can do this rather easily. Start
with the “top-level” node sets; that is, the node sets Γν for ν ∈ Γ1. We can assign
a measure µ(Γν) to each set in any way such that µ(Γν) > 0 for each ν ∈ Γ1 and∑

ν∈Γ1
µ(Γν) = 1. Next, for each λ ∈ Γ1, consider

Γλ2 = {ν ∈ Γ2

∣∣ν|a1 = λ}.

We can then assign µ(Γν) for each ν ∈ Γλ2 in any way such that µ(Γν) > 0 and∑
ν∈Γλ µ(Γν) = µ(Γλ). We can repeat this process, defining

Γλn+1 = {ν ∈ Γn+1

∣∣ν|an = λ}

for each λ ∈ Γn. Then we can assign µ(Γν) for all ν ∈ Γλn+1 in such a way that
µ(Γν) > 0 for each ν and

∑
ν∈Γλn+1

µ(Γν) = µ(Γλ). Doing this for all λ ∈ Γn defines

the measures of all node sets for wrights in Γn+1. This procedure always produces
a Borel measure on Γ, and every finite Borel measure of full support on Γ can be
constructed this way.
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For instance, we can assign µ(Γν) = 1
#Γ1

for each ν in Γ1. Then, for ν ∈ Γn+1,

recursively define µ(Γν) = 1
#Γλn+1

µ(Γλ) if λ ∈ Γn and ν ∈ Γλ. We have now defined

the measures of all node sets from weights in Γ2. This same method can be repeated
recursively to define the measures of every node set in Γ. We will refer to this
example method of assignment as giving the recursively uniform measure.

Given a finite Borel measure µ on Γ of full support, we may consider the direct
integral H =

∫ ⊕
Γ
Hµdµ(λ). Elements of this direct integral consist of measurable

sections x : λ 7→ x(λ) of the field λ 7→ Hλ such that the norm given by ||x||2 =∫
Γ
||x(λ)||2Hλdµ(λ) is finite.
Our next task is to show that λ→ πλ is a µ-measurable family of representations.

Let x ∈ H, and fix g in U∞. We need to show that λ
π(x)7→ πλ(g)x(λ) is in H. Now

λ 7→ 〈πλ(g)x(λ), sh(λ)〉 = 〈πλ(g)x(λ), πλ(h)vλ〉
= 〈x(λ), πλ(g

−1h)vλ〉
= 〈x(λ), sg−1h(λ)〉

is measurable for all h in U∞ since x is a measurable section of λ 7→ Hλ. Thus

λ
π(g)x7→ πλ(g)x(λ) is a measurable section of λ 7→ Hλ. Furthermore, since each πλ

is unitary, it follows that ||π(g)x||H = ||x||H < ∞ . Hence π =
∫⊕

Γ πλdµ(λ) is
a unitary representation of U∞. Our next task is to show that π is conical and
classify all of its conical vectors.

The essential support of a function f : Γ→ C is defined to be the complement
in Γ of the union of all open sets on which f vanishes µ-almost everywhere. That
is, ess supp f = Γ\

⋃
{A ⊆ Γ|A is open and f |A = 0 a.e.}.

Theorem 6.8. Let Γ be a tree set and let µ be a finite Borel measure of full support
on Γ. Consider the representation

(π,H) ≡


⊕∫

Γ

πλdµ(λ),

⊕∫
Γ

Hλdµ(λ)


and suppose that w is any nonzero vector in H. Then w generates a unitary con-
ical representation of U∞ if and only if there is f ∈ L2(Γ, µ) such that w =∫ ⊕

Γ
f(λ)vλdµ(λ). Furthermore, in that case w generates a conical representation

with highest-weight support ess supp f and

〈π(U∞)w〉 =

⊕∫
Γ\f−1(0)

Hλdµ(λ)

In particular, π is a conical representation with conical vector v =
∫ ⊕

Γ
vλdµ(λ).

Proof. (⇒) Suppose that w is a conical vector for a subrepresentation of π and
fix n in N. Then Vn ≡ 〈π(Un)w〉 is finite-dimensional, say with dimension d. We
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must show that w(λ) is a conical vector in Hλ for almost all λ ∈ Γ. Our first task
is to show that Vn(λ) = 〈π(Un)w〉 is finite-dimensional for almost all λ ∈ Γ. It
is intuitively obvious that dimVn(λ) ≤ dimVn for almost all λ. The next three
paragraphs contain the technical details necessary to prove this statement..

Write d = dimVn. Fix an orthonormal basis w1, . . . wd for Vn and write W (λ) =
〈w1(λ), . . . wd(λ)〉. We will show that W (λ) = Vn(λ) (and hence dimVn(λ) ≤ d) for
almost all λ. Apply a Gram-Schmidt orthonormalization process to the collection
w1(λ), . . . , wd(λ) for each λ. We then obtain a collection w̃1(λ), . . . , w̃d(λ) with the
property that 〈w̃i(λ), w̃j(λ)〉 = 0 for i 6= j and 〈w̃i(λ), w̃i(λ)〉 ∈ {0, 1}. One can
show that λ 7→ w̃i(λ) is measurable and thus that w̃i ∈ H for each i.

Now W (λ) = Vn(λ) if and only if π(g)w(λ) ∈ W (λ) for all g in U∞. Choose a
countable dense subset {gn}n∈N in U∞ (one notes that U∞ is separable because it
is a countable direct union of separable spaces). By the strong continuity of π, we
see that W (λ) = Vn(λ) if and only if π(gm)w(λ) ∈ W (λ) for all m in N (recall
that W (λ) is closed because it is finite-dimensional). In turn, this happens exactly
when π(gm)w(λ) is equal to its orthogonal projection onto W (λ). In other words,
W (λ) = Vn(λ) if and only if Fm(λ) = 0 for all m ∈ N, where Fm is the non-negative
measurable function on Γ defined by

Fm : λ 7→ ||π(gm)w(λ)||2 −
d∑
i=1

|〈π(gm)w(λ), w̃i(λ)〉|2.

for all m ∈ N.
Write A = {λ ∈ Γ|W (λ) 6= Vn(λ)} and Am = {λ ∈ Γ|π(gm)w(λ) /∈ W (λ)}. Then

A =
⋃
m∈NAm. Furthermore, Am is measurable for each m since Am = F−1

m (0) and
Fm is a measurable function.

Suppose that it is not true that W (λ) = Vn(λ) for almost all λ in Γ. Then
µ(A) > 0. Since A =

⋃
m∈NAm, it follows that µ(Am) > 0 for some m. Since

π(gm)w(λ) /∈ W (λ) for all λ ∈ Am, we see that π(gm)w /∈ 〈w1, . . . , wd〉, which
contradicts the assumption that w1, . . . , wd is a basis for Vn = 〈π(gm)w〉. Therefore,
W (λ) = Vn(λ) (and, in particular, dimVn(λ) ≤ d) for almost all λ. In particular,
w(λ) is Un-finite for almost all λ ∈ Γ.

Fix n ∈ N. Since π(Mn)w = w, it follows that π(Mn)w(λ) = w(λ) for almost all
λ. Next, π(nn)w = w because π(Nn)w = w. In fact, π(X)w =

∫ ⊕
Γ
π(X)w(λ)dµ(λ)

for X ∈ uCn by [1]. Thus π(nn)w(λ) = w(λ) for almost all λ, from which it follows
that π(Nn)w(λ) = w(λ) for almost all λ.

Since π(MnNn)w(λ) = w(λ) for all n and almost all λ ∈ Γ, it follows from part
(4) of Theorem 6.2 that for almost all λ there is f(λ) ∈ C such that w(λ) = f(λ)vλ.
Since λ 7→ f(λ) = 〈w(λ), vλ〉 is measurable and

||f ||2 =

∫
Γ

|f(λ)|2dµ(λ) =

∫
Γ

||w(λ)||2dµ(λ) = ||w||2,

we see that f ∈ L2(Γ, µ), as was to be shown.
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(⇐) Now suppose that w =
∫ ⊕

Γ
f(λ)vλdµ(λ), where f ∈ L2(Γ, µ). We show that

w generates a conical representation of U∞ with highest-weight support ess supp f .
Consider Vn = 〈π(Un)w〉. We will show that Vn is finite-dimensional. As before,

π ∼=
⊕
µ∈Γn


⊕∫

Γµ

πλdµ(λ)

 .

Write w =
∑
µ∈Γn

wµ, where wµ = 1Nµw ∈
∫⊕

Γµ Hλdµ(λ) ⊆ HΓ for each µ.

Of course, if f |Γµ = 0, then wµ = 0. On the other hand, we claim that if f |Γµ 6= 0,
then 〈π(Un)wµ〉 ∼=Un πµ. In fact,

k∑
i=1

ciπ(gi)wµ =

∫
Γµ

k∑
i=1

ciπ(gi)f(λ)vλdµ(λ).

where ci ∈ C and gi ∈ Un. Fix λ ∈ Γµ such that f(λ) 6= 0. Since λ|an = µ, we see
that 〈π(Un)f(λ)vλ〉 is Un-isomorphic to πµ.

Now
∑k

i=1 ciπ(gi)wµ = 0 in H if and only if
∑k

i=1 ciπ(gi)f(λ)vλ = 0 in Hλ for
µ-almost all λ in Γµ. For any λ in Γµ such that f(λ) = 0, it follows automatically
that

∑k
i=1 ciπ(gi)f(λ)vλ = 0. But for any fixed λ in Γµ such that f(λ) 6= 0, we see

that
∑k

i=1 ciπ(gi)f(λ)vλ = 0 in Hλ if and only if
∑k

i=1 ciπ(gi)vµ = 0 in Hµ.

Since f is not almost-everywhere zero on Γµ, we see that
∑k

i=1 ciπ(gi)wµ = 0

in H if and only if
∑k

i=1 ciπ(gi)vµ = 0 in Hµ. Hence there is an injective Un-
intertwining operator L : 〈π(Un)wµ〉 → Hµ with the property that Lwµ = vµ.
Since πµ is irreducible, it follows that 〈π(Un)wµ〉 ∼=Un πµ, as we wanted to show.

It follows from Lemma 5.8 that

〈π(Un)w〉 ∼=Un

⊕
µ∈Γn s.t. wµ 6=0

〈π(Un)wµ〉.

Furthermore, since w =
∑

µ∈Γn
wµ and each wµ is MnNn-invariant, we see that w

is MnNn-invariant. Since this holds for all n, it follows that w generates a conical
subrepresentation of π. The fact that this subrepresentation has highest-weight
support ess supp f follows from the fact that wµ = 0 if and only if f |Γµ = 0 (recall
that wµ is the projection of w onto the µ-isotypic vectors in H).

Our final task is to prove the statement about the subrepresentations generated
by conical vectors. Next suppose that f ∈ L2(Γ, µ) such that w = fu : λ→ f(λ)vλ
is a conical vector in HΓ. We need to show that

〈π(U∞)w〉 =

⊕∫
Γ\f−1(0)

Hλdµ(λ).
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It suffices to show that

〈π(U∞)w〉
⊥

=

⊕∫
f−1(0)

Hλdµ(λ).

One direction of containment is clear: for any x ∈ 〈π(U∞)w〉, we see that x(λ) = 0
for almost all λ such that f(λ) = 0 (since w(λ) = 0 if and only if f(λ) = 0). Hence,
if y ∈ H such that y|Γ\f−1(0) = 0, then 〈x, y〉 =

∫
Γ
〈x(λ), y(λ)〉dµ(λ) = 0. In other

words,
∫⊕
f−1(0)Hλdµ(λ) ⊆ 〈π(U∞)w〉

⊥
.

To prove the other containment, we first show that hw ∈ 〈π(U∞)w〉 for all h ∈
L∞(Γ, µ). We begin by showing that 1Γµw ∈ 〈π(U∞)w〉 for every node set Γµ. As be-
fore, we choose c1, . . . , cd ∈ C and g1, . . . , gd ∈ U∞ such that

∑k
i=1 ciπµ(gi)vµ = vµ

and
∑k

i=1 ciπν(gi)vν = 0 for all ν 6= µ in Γn. We claim that 1Γµw =
∑k

i=1 ciπµ(gi)w.
If f(λ) = 0, then w(λ) = 0 and hence equality holds automatically. On the other
hand, if f(λ) 6= 0, then recall that 〈π(Un)w〉 is equivalent to πλ|an by identify-

ing w(λ) = f(λ)vλ with vλ|an . Hence
∑k

i=1 ciπµ(gi)vλ = vµ if λ|an = µ (i.e., if

λ ∈ Γµ) and
∑k

i=1 ciπµ(gi)vλ = 0 otherwise. Thus 1Γµw =
∑k

i=1 ciπµ(gi)w and so
1Γµw ∈ 〈π(U∞)w〉.

Next we see that 1Aw ∈ 〈π(U∞)w〉 for all open sets A in Γ. Every open set A can
be written as a disjoint union A =

⋃∞
i=1 Ni of node sets. Write An =

⋃n
i=1Ni for

each n and note that 1An =
∑k

i=1 1Ni is in 〈π(U∞)v〉 by the previous paragraph.
One then sees that∫ ⊕

Γ
1An(λ)f(λ)vλdµ(λ) = 1Anw → 1Aw =

∫ ⊕
Γ

1A(λ)f(λ)vλdµ(λ)

in H since 1Anf → 1Af in L2(Γ, µ). Thus 1Av ∈ 〈π(U∞)v〉.
Next we show that 1Bv ∈ 〈π(U∞)v〉 for every Borel set B in Γ. This follows since

µ(B) = inf

{
µ

(
∞⋃
i=1

Fi

)∣∣∣∣∣B ⊆
∞⋃
i=1

Fi and Fi ∈ F

}
= inf{µ(A)|B ⊆ A and A open}.

Thus 1Bf can be approximated in L2(Γ, µ) by a sequence 1Anf given by open sets
An, so that 1Anw → 1Bw in H. Hence 1Bw ∈ 〈π(U∞)w〉.

Finally, note that if hn → h in L∞(Γ, µ), then hnf → hf in L2(Γ, µ) and hence
hnw → hw in HΓ. Because the measurable simple functions are dense in L∞(Γ, µ)
(recall that µ is a finite measure), we see that hw ∈ 〈π(U∞)w〉 for all h ∈ L∞(Γ, µ).

Now suppose that x ⊥ 〈π(U∞)w〉. Define h ∈ L∞(Γ, µ) by

h(λ) =
〈x(λ), πλ(g)f(λ)vλ〉
|〈x(λ), πλ(g)f(λ)vλ〉|

.

Then
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0 = 〈x, π(g)hw〉 =

∫
Γ

|〈x(λ), πλ(g)f(λ)vλ〉|dµ(λ).

for all g. Hence, for almost all λ, 〈x(λ), πλ(g)f(λ)vλ〉 = 0 for all g ∈ U∞. It follows
that, for almost all λ, either x(λ) = 0 or f(λ) = 0. Hence, x(λ) = 0 for almost all

λ such that f(λ) 6= 0. In other words, x ∈
∫⊕
f−1(0)Hλdµ(λ), and we are therefore

done.

Corollary 6.9. Every unitary conical representation of U∞ is multiplicity-free and
hence of Type I.

Proof. Let (π,H) ≡
(∫⊕

Γ πλdµ(λ),
∫⊕

Γ Hλdµ(λ)
)

be a conical representation and

suppose that L : H → H is a U∞-intertwining operator. Consider the conical vector
v =

∫ ⊕
Γ
vλdµ(λ). Then Lv is a conical vector for a subrepresentation of π and can

thus be written Lv = fv for some f ∈ L2(Γ, µ). It follows that

L(π(g)v) = π(g)(fv) =

∫ ⊕
Γ

π(g)f(λ)vλdµ(λ) = fπ(g)v

for all g ∈ U∞ and hence Ly = fy for all y ∈ H. In other words, intertwining
operators for π may be identified with multiplier operators, and thus the ring of
intertwining operators for π is commutative. Hence π is multiplicity-free.

We now show that every unitary conical representation of U∞ disintegrates into
highest-weight representations as in the last theorem.

Theorem 6.10. Suppose that (π,H) is a unitary conical representation of U∞
and w ∈ H\{0} is a conical vector. Then there is a unique Borel measure µ on its
highest-weight support Γ(π) such that there is a unitary intertwining operator

U : H →
∫ ⊕

Γ(π)

Hλdµ(λ)

such that Uw =
∫ ⊕

Γ(π)
vλdµ(λ).

Proof. Without loss of generality, suppose that ||w|| = 1. We begin by constructing
a suitable measure µ. For each λ in Γn(π), define µ(Γλ) = ||wλ||2. Observe that
wλ =

∑
ν∈Γλm

wν and hence

µ(Γλ) = ||wλ||2 =
∑

ν∈Γλm(π)

||wν ||2 =
∑

ν∈Γλm(π)

µ(Γλ).

Similarly, ∑
ν∈Γn(π)

µ(Γν) =
∑

ν∈Γn(π)

||wν ||2 = ||w||2 = 1
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Thus µ extends uniquely to a Borel measure on Γ(π).

Consider the representation (π̃, H̃) ≡
(∫ ⊕

λ∈Γ(π)
πλdµ(λ),

∫ ⊕
λ∈Γ(H)

Hλdµ(λ)
)

and

let w̃ ≡
∫

Γ(π)
vλdµ(λ). Then π̃ is conical with conical vector w̃ and highest-weight

support Γ(π). We construct a unitary intertwining operator U : H → H̃ such that
Uw = w̃.

By Theorem 6.6 (i), there is a U∞-intertwining operator L : 〈π(U∞)w〉 →
〈π̃(U∞)w̃〉 given by Lw = w̃. For each n and each ν ∈ Γn(π), L restricts to an
intertwining operator between 〈π(Un)wν〉 and 〈π̃(Un)w̃ν〉 such that L(wν) = w̃ν .
Furthermore,

||w̃ν ||2 =

∫
Γν
||w̃λ||2dµ(λ) =

∫
Γν

1dµ(λ) = µ(Γν) = ||wν ||2.

Hence, L restricts to a unitary operator on 〈π(Un)wν〉 for every n and every ν ∈
Γn(π). Because 〈π(U∞)wν〉 and 〈π(U∞)w̃ν〉 are dense in H and H̃, respectively, L

extends to a unitary intertwining operator from H to H̃.
Now suppose that µ′ is any Borel measure on Γ(π) such that the representation

(π′,H′) ≡
(∫ ⊕

λ∈Γ(π)
πλdµ

′(λ),
∫ ⊕
λ∈Γ(H)

Hλdµ
′(λ)
)

is equivalent to (π,H) via a unitary

intertwining operator U : H → H′ such that Uw = w′, where w′ =
∫

Γ(π)
vλdµ

′(λ).

Then Uwν = w′ν for all ν ∈ Γn(π) and all n ∈ N by Theorem 6.6. In particular,
||wν || = ||w′ν || and so we have that

µ′(Γν) =

∫
Γν
||vλ||2dµ′(λ) = ||w′ν ||2 = ||wν ||2 = µ(Γν).

Since µ and µ′ agree on all node sets, it follows that µ = µ′.

As promised before, we now show that there are typically a very large number
of inequivalent conical representations of U∞ with a given highest-weight support
Γ. By Theorem 6.8, this problem is equivalent to finding a large number of Borel
measures with full support on Γ that are absolutely discontinuous with respect to
each other.

We have already discussed the recursively-uniform measure µrec on Γ. One can
see quite easily that the atoms of µrec are precisely the isolated points of the
topological space Γ. All other singleton sets have measure zero under µrec. We now
show that for any point x in Γ we can construct a Borel measure µx of full support
on Γ whose atoms are precisely the isolated points of Γ and x. Thus, if x 6= y are
non-isolated points in Γ, then µx, µy, and µrec lie in distinct measure classes since
their null sets do not agree:

µx({x}) > 0, µx({y}) = 0
µy({x}) = 0, µy({y}) > 0
µrec({x}) = 0, µrec({y}) = 0

There are many ways to construct µx given x ∈ Γ, but we shall use the following
method, which involves a simple modification to the recursively uniform measure.
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For λ ∈ Γ1, define µx(Γ
λ) = 3

4
if x|an = λ and µx(Γ

λ) =
(

1
#Γ1−1

)
1
4

otherwise. Next

suppose that µx(Γ
ν) has been defined for all ν ∈ Γn. For λ ∈ Γn+1, we define

µx(Γ
λ) =


1
2

+ 1
2n+1 if x ∈ Γλ(

1
2
− 1

2n+1

)
1

(#Γ
λ|an
n )−1

if x /∈ Γλ and x ∈ Γλ|an

1

#Γ
λ|an
n

µ(Γλ|an ) otherwise,

where, as before, Γνn = {γ ∈ Γn| γ|an = ν}. We have thus recursively defined a
countably additive Borel measure µx on Γ. Note that µx has full support on Γ
because µx(Γ

λ) > 0 for every open basis set Γλ ⊆ Γ. Furthermore, one can easily
check that µx({x}) = 1

2
and that µx({y}) = 0 if y 6= x and y is not an isolated

point of Γ.
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Chapter 7
Closing Remarks and Further Research

We have managed to prove several results for the unitary conical representations of
U∞, including the classification of unitary smooth conical representations, which
generalize the finite-dimensional conical representations of finite-dimensional sym-
metric spaces. However, the question remains of whether it is possible to construct
unitary conical representations of G∞, in the sense of the following definition:

Definition 7.1. A unitary representation (π,H) of G∞ is conical if there is a
cyclic distribution vector v ∈ H−∞ such that π(mn)v = v for all m ∈ M∞ and
n ∈ N∞.

The most likely approach would be to construct a sort of unitary spherical prin-
cipal series representation, perhaps by a direct limit of unitary principal series
representations. See also [57] for one approach to constructing an analogue of the
principal series for direct-limit groups.

Several questions about harmonic analysis on the symmetric space G∞/K∞ and
G∞/M∞N∞ remain. While neither of these infinite-dimensional spaces possess G∞-
invariant measures, there is a possibility of constructing G∞-invariant measures on
larger spaces. We briefly overview this construction now.

Consider a direct system {Gn}n∈N of Lie groups and suppose that there are
measurable (not necessarily continuous) projections pn : Gn+1 → Gn such that pn
is Gn-equivariant and pn(g) = g for g ∈ Gn. In other words, one has a projective
system of σ-algebras dual to the direct system of groups. The resulting projective-
limit space G∞ = lim←−Gn is acted on by the direct-limit group G∞ = lim−→Gn. Each
group Gn possesses a Gn-quasi-invariant probability measure µn.

It is then possible to define a projective-limit probability measure µ∞ = lim←−µn
on G∞ using Kolmogorov’s theorem. If this measure is quasi-invariant under the
action of G∞ on G∞ then it is possible to define a unitary “regular representation”
of G∞ on L2(G∞, µ∞). This “regular representation” can then be decomposed into
irreducible representations.

In fact, precisely this scheme was used by Doug Pickrell in [46] to study analysis
on an infinite-dimensional Grassmannian space and later by Olshanski and Borodin
in [4] to develop a theory of harmonic analysis on the infinite-dimensional unitary
group U(∞). The role played by probability theory in the latter context was crucial.
In fact, the problem was shown to be related to the study of infinite point processes.
Most intriguingly, probabilistic models from statistical mechanics appeared.

It would be interesting to consider a similar analysis on the infinite-dimensional
symmetric space G∞/K∞ and the horocycle space G∞/M∞N∞. That is, one would
construct projective-limit spaces G∞/K∞ and G∞/M∞N∞ which possess G∞-
quasi-invariant measures. The problem, then, would be to decompose the corre-
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sponding unitary representations of G∞ on L2(G∞/K∞) and L2(G∞/M∞N∞) into
irreducible subrepresentations. One interesting question is whether those represen-
tations decompose into direct integrals of unitary spherical and conical represen-
tations of G∞, respectively.

Also of interest is whether a sort of Radon transform may be constructed be-
tween functions on G∞/K∞ and functions on G∞/M∞N∞. In fact, for spaces of
regular functions this has been done in the recent paper [24]. However, it would
be interesting if it were possible to develop a Hilbert space analogue of the Radon
transform, perhaps mapping between functions in L2(G∞/K∞) and functions in
L2(G∞/M∞N∞).
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