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Chapter 1

Motivation and Basic Tools

1.1 What is a group representation?

• A representation of a group is nothing more or less than an action of a
group on a vector space.

• In other words, it is a way to realize a particular group as a collection of
linear operators on a vector space.

• They appear in physics, because quantum mechanics sayst that the state
of a physical system should be identified with a vector in a Hilbert space.
Thus, any group of transformations to the system should correspond to a
group of linear operators.

• They appear in the theory of linear PDEs, because the study of linear
PDEs is basically equivalent to studying the spectral decomopsition of the
linear operator which gives the equation. Sometimes, the equation possesses
certain symmetries (i.e., the linear operator is invariant under a certain
group of transformations). In that case, the solution spaces to the equation
correspond to group representations.

• They appear in probability theory, through the Langlands program and
automorphic forms, which pertain to harmonic analysis over the quotients
of semisimple Lie groups by certain discrete subgroups.

1.2 The Definition of Group Representations

We begin with the definition of a representation of a group on a vector space:

Definition 1.2.1. A representation of a group G is a pair (π, V ), where V is
a vector space over a field F and π is a homomorphism

π : G→ GL(V ),

2
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where as usual GL(V ) denotes the group of invertible linear operators from V to
V .

In other words, a representation is just an action of a group G in the category
of vector spaces over some field F.

For finite groups, this definition is quite sufficient. However, when we consider
a continuous group like R, talking about all representations is basically as difficult
as talking about all functions on R. What we really care about are continuous
functions on R and continuous representations of R. Of course, this requires a
notion of topological groups and topological vector spaces :

Definition 1.2.2. A topological group is a group G with a topology such that the
maps

G×G → G
(g, h) 7→ gh

and
G → G
g 7→ g−1

are continuous.
A vector space V over F (where F = R or C) is a topological vector space if

the maps
V × V → V
(v, w) 7→ v + w

and
F× V → G
(λ, v) 7→ λv

are continuous.

We will always assume that our topological groups are Hausdorff, locally
compact, and second-countable (and hence separable). On the other hand, our
topological vector spaces will always be Hausdorff, complete, and locally convex
(that is, every neighborhood of a point contains a smaller neighborhood of that
point which is convex and balanced). However, we will have occasion to discus
group representations on a locally convex topological vector space which is not
even first-countable.

So a representation of a topological group G on a topological vector space
V (over F = R or C) should be a continuous homormoprhism

π : G→ GL(V ),

where GL(V ) now denotes the group of continuous linear maps from V to V with
continuous inverses.

For a finite-dimensional vector space V , there is only one useful topology we
can put on GL(V ). But there are many choices of topologies which we may put
on GL(V ) if V is infinite-dimensional. Which one should we use here? If V
is a Banach space, then GL(V ) may be turned into a Banach space under the
operator norm. Or we could give GL(V ) the strong operator topology or even
the weak operator topology.

The answer to which topology is “correct” for defining continuous represen-
tations comes down to practical experience: the representations which are most
important to us tend to be continuous in certain topologies and discontinuous
in others. We will see this in a moment when we begin to talk about regular
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representations, but for now, it suffices to say that we will always use the strong
operator topology on GL(V ). (That is the topology under which a sequence
{Tn}n∈N ⊆ GL(V ) converges to an operator T ∈ GL(V ) if and only if

lim
n→∞

Tnv = Tv

for all v ∈ V .) Thus, the “correct” definition of a representation of a topological
group is:

Definition 1.2.3. A strongly continuous representation of a topological
group G on a topological vector space V over R or C is a homomorphism π :
G→ GL(V ) such that the maps

G → V
g 7→ π(g)v

are continuous for each v ∈ V .

We will always assume that our group representations are strongly continuous.
Note that a strongly continuous representation π : G → GL(V ) has the

property that
G× V → V
(g, v) 7→ π(g)v

is separately continuous—that is, continuous in each parameter when the other
is fixed (continuity of the maps v 7→ π(g)v for each g ∈ G follows from the fact
that π(g) : V → V is continuous). However, strongly continuous representations
usually satisfy a stronger continuity condition:

Theorem 1.2.4. A representation π of a topological group G on a Frechét space
V is strongly continuous if and only if the map

G× V → V
(g, v) 7→ π(g)v

is jointly continuous (i.e., continuous as a map from G× V to V ).

Exercise 1. Prove Theorem 1.2.4. Hint: Use the Banach-Steinhaus Theorem
(also known as the Uniform Boundedness Principle), which holds true for all
Frechét spaces.

Suppose that (π, V ) is a strongly continuous representation of a group G on
a complete topological vector space V over R or C. Now suppose that there is a
closed subspace W ⊆ V such that π(g)W ⊆ W for all g ∈ G. Then we say that
W is a closed invariant subspace of V and notice that we can define a new
continuous representation πW of G on W by setting πW (g)w = π(g)w for each
g ∈ G and w ∈ W . The fact that πW is a strongly continuous representation of
G then follows from the fact that W is a closed subspace of V . We say that πW

is a subrepresentation of π.
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As in any good mathematical category, we can use this notion of subrepre-
sentations to define quotient representations. Suppose that (π, V ) is a strongly
continuous representation of G with a subrepresentation (πW ,W ) is a subrepre-
sentation. The fact that W is a closed subspace of V means that V/W is again
a topological vector space. We can define the quotient representation π/πW

on V/W by setting:

(π/πW )(g)(v +W ) = π(g)v +W.

We leave it to the reader to show that this representation is well-defined and
continuous.

A representation (π, V ) of G is irreducible if V possesses no closed, invariant
subspaces besides V and {0}. Irreducible representations should be thought of
as the “basic building blocks” of representations.

To see why irreducible representations are important, we assume for now that
V is finite-dimensional. Then V possesses a maximal invariant subspace V1 ( V .
It follows that the quotient representation (π/πV1 , V/V1) is irreducible [prove
this! Hint: any invariant subspace of V/V1 corresponds to an invariant subspace
of V which contains V1]. if V1 6= {0}, then we choose a maximal invariant
subspace V2 ( V1 and note that (πV2/πV2 , V1/V2) is irreducible. Because V is
finite-dimensional, we can continue this process until Vi = {0} for some i. We
thus arrive at the so-called composition series for (π, V ):

{0} = Vi ( Vi−1 ( V2 ( V1

where each Vk is an invariant subspace of V such that (πVk/πVk+1 , Vk/Vk+1) is an
irreducible representation of G. We made several choices of Vk’s throughout the
process, but one can show that the length of the composition series will always
be the same, and that we will always get the same quotient representations of G,
up to a permutation on the order.

Speaking of representations being “the same,” what do we mean be that?
We need a notion of morphisms and isomomorphisms for representations, to bor-
row category theory language. Those will be called intertwining operators and
equivalences of representations, respectively:

Definition 1.2.5. Suppose that (π, V ) and (σ,W ) are both continuous represen-
tations of a group G. Then we say that a continuous linear map L : V → W is
an intertwining operator if

Lπ(g) = σ(g)L

for all g ∈ G. The vector space of all intertwining operators from V to W
is denoted by HomG(V,W ) or HomG(π, σ), depending on whether we want to
emphasize the vector space or the representation.

We say that (π, V ) and (σ,W ) are equivalent if there is an intertwining
operator L : V → W which is continuously invertible, so that L−1 : W → V is
an intertwining operator. We write π ∼= σ or V ∼=G W if (π, V ) and (σ,W ) are
equivalent.
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Exercise 2. Suppose that (π, V ) and (σ,W ) are both continuous representations
of a group G. Show that HomG(π, σ) is a closed subspace of B(V,W ) under the
strong operator topology. (Here B(V,W ) is the space of all continuous operators
from V to W .)

If V and W are Banach spaces, then this immediately implies closedness of
HomG(π, σ) in the operator norm topology on B(V,W ). As another consequence,
this implies that the space HomG(π, π) is a closed subalgebra of the algebra B(V )
of lienar maps from V to V (under the strong operator topology, of course). These
two facts are very important for the connection between unitary representations
of groups and representations of C∗-algebras.

1.3 Unitary Representations and Schur’s Lemma

To motivate the definition of unitary representations, we begin with a simple
method for constructing new representations from old ones. Suppose that (π, V )
and (σ,W ) are continuous representations of G. We form the topological vector
space V ⊕W and now define a new representation, called π ⊕ σ, on V ⊕W as
follows:

π ⊕ σ(g)(v, w) = (π(v), σ(w)).

We leave it to the reader to show that π is continuous.
Now suppose that (π, V ) is a continuous representation of G and that (σ,W )

is a subrepresentation. We have seen how σ and π/σ can provide information
about π, but it would be very nice if we could write V = W ⊕ U , where U is
another closed invariant subspace of V . It would then follow that

π ∼= σ ⊕ ρ,

where (ρ, U) is a subrepresentation of (π, V ). Unfortunately, it is not always
possible to find such a complement U for W .

However, if we assume that V is a Hilbert space and that π acts by unitary
operators on V , then such a complement can always be found.

Definition 1.3.1. A unitary representation (π,H) of a group G on a Hilbert
space H is a strongly continuous homomorphism

π : G→ U(H),

where U(H) is the group of unitary operators on the Hilbert space H.

Lemma 1.3.2. If (π,H) is a unitary representation of a group G and W is a
closed invariant subspace of H, then W⊥ is also a closed invariant subspace and
H ∼=G W ⊕W⊥.

Proof. Recall that

W⊥ = {v ∈ H|〈v, w〉 = 0 for all w ∈ W}.
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Now suppose that v ∈ W⊥. We want to show that W⊥ is an invariant subspace of
H, and so we need to show that π(g)v ∈ W⊥ for all g ∈ G. Now, for all w ∈ W ,
we see that 〈π(g)v, w〉 = 〈v, π(g)−1w〉 because π(g) is a unitary operator. It then
follows that 〈v, π(g)−1w〉 = 0 because π(g)−1w = π(g−1)w ∈ W (here we use the
fact that W is an invariant subspace of H). Hence π(g)v ∈ W⊥ and so we are
done.

In other words, the advantage of unitary representations is that if they are
not irreducible, then they can always be decomposed into direct sums of subrep-
resentations. In fact, we get the following corollary:

Corollary 1.3.3. If (π, V ) is a unitary representation of G, where V is a finite-
dimensional Hilbert space, then π may be decomposed into a direct sum of irre-
ducible subrepresentations.

From the standpoint of category theory, the category of unitary representa-
tions of a group G is distinct from the category of representaions of G over Hilbert
spaces. Thus, in order for two unitary representations (π,H) and (σ,K) to be
equivalent, we should require that there be a unitary operator L : H → K such
that Lπ(g) = σ(g)L for all g ∈ G. A priori, we might imagine it possible that two
unitary representations could possess in invertible intertwining operator H → K
but not a unitary intertwining operator H → K. Then π and σ would be equiva-
lent as representations but not as unitary representations of G. Fortunately, this
scenario can never occur:

Lemma 1.3.4. Suppose that (π,H) and (σ,K) are unitary representations and
that L : H → K is an invertible intertwining operator. Then there is a unitary
intertwining operator U : H → K

Exercise 3. Prove Lemma 1.3.4. Hint: Note that H and K must be isomorphic
as Hilbert spaces. Thus, it suffices to consider the simpler case where (π,H) and
(σ,H) are representations of G on the same space H. We then have an invertible
intertwining operator L ∈ GL(H). Now use the polar decomposition of L as
L = PU , where P =

√
L∗L is positive-definite and U = P−1L is unitary. Show

that U is a unitary intertwining operator.

We now give two examples of unitary representations. Thus far, everything
we have said has applied equally to representations on real vector spaces and
complex vector spaces. However, these two examples will exemplify fundamental
difference in behavior between real and complex group representations. This
difference in behavior is the reason for which we will discuss only representations
on complex vector spaces from here on out.

Example 1.3.5. Consider the group R of real numbers under addition, as well
as the real vector space R2 under the Euclidean inner product. We define a
representation π : R→ U(H) by setting

π(x) =

[
cos(x) − sin(x)
sin(x) cos(x)

]
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for each x ∈ R. Then π rotates the Euclidean plane R2 through an angle of x
radians. Since π acts by isometries, it is clear that π acts by orthogonal (i.e.,
real unitary) operators on R2. Furthermore, this representation is irreducible,
because every nontrivial subspace of R2 is a line through the origin, and no such
line is left invariant under rotations.

Example 1.3.6. As another example, we once again consider the group R of real
numbers, but this time we consider the complex vector space C. Then we define
a unitary representation σ on C by defining

σ(x)z = eixz

for all x ∈ R and z ∈ C.
Of course, C can also be thought of as a real vector space if we forget the

complex structure. Then C can be identified with R2, and we see that σ and the
representation π from the previous exercise are equivalent as representations of
G on real vector spaces.

The previous two examples demonstrated that an irreducible representation
of R on a real vector space need not be one-dimensional. However, we will show,
using Schur’s Lemma, that every irreducible representation of R on a complex
vector space must be one-dimensional.

Schur’s Lemma is an incredibly simple theorem with a relatively easy proof
which is nevertheless incredibly important to studying unitary representations.
We will use it countless times, and so will you if you do work in representation
theory.

Theorem 1.3.7 (Schur’s Lemma). Schur’s lemma has two parts:

1. If (π, V ) and (σ,W ) are inequivalent irreducible representations of G over
real or complex vector spaces V and W , then HomG(π, σ) = {0}.

2. If π is a representation of G on a Hilbert space H over F = R or C and

HomG(π, π) = {λId |λ ∈ F},

then π is irreducible.

3. If π is an irreducible unitary representation of G over a complex Hilbert
space H, then

HomG(π, π) = {λId |λ ∈ C}.

Proof. Part (1) of the theorem follows quickly from the fact that for any inter-
twining operator T : V → W , the closure T (V ) of its image must be a closed
invariant subspace of W .

For part (2), we suppose that π is a representation of G on a Hilbert space H
over F = R or C and that

HomG(π, π) = {λId |λ ∈ F}.
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Now if W is a closed invariant subspace of H, then the orthogonal projection
operator P : H → W is an intertwining operator in HomG(π, π). Since P must
be a multiple of the identity operator, it follows that W must be equal to H or
{0}.

For part (3), let π be an irreducible unitary representation of G over a com-
plex Hilbert space H and suppose that T ∈ B(H) is an intertwining operator.
Then π(g)∗ = π(g−1) for all g ∈ G and so one quickly shows that T ∗ is also an
intertwining operator. Then T = T+T ∗

2
+ iT−T

∗

2i
, where both T+T ∗

2
and T−T ∗

2i
are

self-adjoint operators. It thus suffices to consider the case where T is self-adjoint.
Now suppose that T is self-adjoint. By the spectral theorem, there is a

projection-valued measure E on C such that

T =

∫
C
λEλ dλ.

Because π(g)T = Tπ(g), it follows that each of the spectral projection operators
EA, where A ⊆ C, also commute with π(g).

But the image of any self-adjoint projection operator is a closed invariant
subspace of H, so the irreducibility of C implies that EA is equal to either 0 or
Id for all Borel sets A ⊆ C. It follows that the spectral measure is concentrated
on one point λ in C such that E{λ} = Id. Then T = λId.

From this point on, every representation will be presumed to be a complex
representation.

Corollary 1.3.8. If G is an abelian topological group and (π,H) is an irreducible
unitary representation of G, then dimH = 1.

Proof. Because G is abelian, we see that π(g) ∈ U(H) is an intertwining operator
for fixed g ∈ G (in particular, π(g)π(h) = π(h)π(g) for all h ∈ G). It follows that
π(g) = ξ(g)Id for some ξ(g) ∈ C. Unitarity requires that ξ(g) ∈ S1 = {z ∈ C :
|z| = 1}. Thus, we see that Cv = {λv|λ ∈ C} is a closed invariant subspace of H
for every v ∈ H. Hence, the irreducibility of π requires that dimH = 1.

We remark that ξ : G→ S1 from the above proof is a homomorphism. Such a
homomorphism is called a character of G. Thus, the irreducible representations
of G are, up to equivalence, simply the characters of G. We denote the set of all
characters of an abelian group G by Ĝ. By using pointwise multiplication and
pointwise convergence, it is possible to put an abelian topological group structure
on Ĝ. While G and Ĝ are not usually isomorphic to each other (the fact that

Rn ∼= R̂n is a rare exception), it is possible to construct a homomorphism

G→ ̂̂
G

g 7→ ĝ

by setting ĝ(h) = h(g) for all h ∈ Ĝ. Pointryagin’s famous duality theorem says
that this homomorphism is in fact an isomorphism of topological groups if G is
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locally compact. While the theorem is not true in general for abelian groups which
are not locally compact, it is still true for abelian groups which are constructed
as direct limits of locally-compact abelian groups. But that is another story for
another day. For now it suffices to say that this theory is basically “equivalent”
to the Gelfand theory of commutative C∗-algebras.

We end this section by defining two very important classes of representations.

Definition 1.3.9. A unitary representation (π,H) of a topological group G is
said to be multiplicity free if every decomposition π = π1 ⊕ π2 of π into a
direct sum of subrepresentations has the property that no subrepresentation of π1

is equivalent to a subrepresentation of π2.

One can show that a unitary representation π is multiplicity-free if and only
if its ring Hom(π, π) of intertwining operators is commutative. The term “mul-
tiplicity free” comes from the face that a direct sum π = ⊕i∈Iπi of irreducible
representations of a group G is multiplicity free if and only if each equivalence
class in Ĝ appears at most once in the collection of πi’s. This basic result is a
corollary of Schur’s lemma (see [4, p. 123]).

Definition 1.3.10. A unitary representation (π,H) of a topological group G is
said to be primary if the center of its ring of intertwining operators is trivial—
that is, if

Z(Hom(π, π)) = {λId|λ ∈ C}.

One can show (see [4, p. 122]) that a direct sum π = ⊕i∈Iπi of irreducible
representations of a group G is primary if and only if all the irreducible compo-
nents πi are equivalent to each other. However, for some groups it is possible
to construct primary representations which cannot be decomposed into a direct
sum of irreducible representations.

1.4 Fourier Analysis on R: A Brief Reminder

In this section we briefly remind the reader of the basic results from Fourier
analysis on R. From our point of view, the “correct” way to view classical Fourier
analysis is in terms of the decomopistion of a certain unitary representation of R,
so we begin by constructing some representations. Most of the material in this
section is covered very well in the first half of [6].

First of all, Schur’s lemma tells us that all irreducible representations have
dimension one. In other words, we can identify the irreducible representations
of R with its unitary characters, which are the continuous homomorphisms
R → S1, where S1 = {z ∈ C||z| = 1}. It is not difficult to see that the only
unitary characters are those of the form θξ : R→ S1, where

θξ(x) = e2πiξx,
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where ξ ∈ R. Then θξ may also be thought of as a unitary representation of R
on the one-dimensional Hilbert space C, where we define

θξ(x)z = e2πiξxz

for all z ∈ C.
Next, we define a representation (L,L2(R)), called the regular representa-

tion of R, as follows. For each y ∈ R, we set

(L(y)f)(x) = f(x− y).

for each f ∈ L2(R). In other words, L acts by shifting functions on R by trans-
lations. Because Lebesgue measure on R is translation-invariant, it is clear that
L(y) is a unitary operator on L2(R) for every y ∈ R:

||L(y)f ||2 =

∫
|f(x− y)|2 dx =

∫
|f(x)|2 dx = ||f ||2.

What is slightly less clear is that L is, in fact, a strongly continuous representa-
tion.

Lemma 1.4.1. The representation (L,L2(R)) is strongly continuous.

Proof. To show that L is strongly continuous, we fix f ∈ L2(R) and show that
R→ L2(R), x 7→ L(x)f is continuous. First, suppose that x, y ∈ G. Then

||L(x)f − L(y)f || = ||L(y)(L(x− y)f − f)|| = ||L(x− y)f − f ||,

where we use the fact that L(y) is a unitary operator. From this it follows that
it is sufficient to show that x 7→ L(x)f is continuous at 0 ∈ R.

Now fix ε > 0. First we assume that f ∈ Cc(R).Then there is M > 0 such
that supp f ⊆ [−M,M ]. Next we recall that every compactly-supported function
on a topological group is, in fact, uniformly continuous. That is, for each ε > 0
there is a δ > 0 of 0 such that |f(x)− f(y)| < ε/

√
4M for all x, y ∈ R such that

|x− y| < δ. In particular, we see that

||L(y)f − f ||∞ = sup
x∈R
|f(x− y)− f(x)| < ε/

√
4M

for all y ∈ (−δ, δ). Without loss of generality, we assume that δ < M . Then we
have that suppL(y)f ⊆ [−2M, 2M ].

||L(y)f −f ||2 =

∫
R
|f(x−y)−f(x)|2dx ≤

∫
[−2M,2M ]

|ε/
√

4M |2dx ≤ 4M
ε2

4M
= ε2.

and hence ||L(y)f − f || < ε for all |y| < δ.
Extending the proof to general f ∈ L2(R) requires only using a standard ε/3

argument and the fact that Cc(R) is dense in L2(R).
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1.4.1 Classical Fourier Analysis Results

We continue on to review the basic results of classical Fourier analysis. For
f ∈ L1(G), we define the Fourier transform F(f) ≡ f̂ of f to be a function on R
defined by

F(f)(ξ) ≡ f̂(ξ) =

∫
R
f(x)e−2πiξxdx (1.1)

for ξ ∈ R. One shows quickly that f̂ ∈ C0(R) (that is, f̂ is continuous and decays
to zero at infinity) for all f ∈ L1(R).

One of the basic tools for studying Fourier transforms is that of convolution.
Recall that if f, g ∈ Cc(R), then we define their convolution f ∗ g ∈ L1(R) by

(f ∗ g)(x) =

∫
R
f(y)g(x− y)dy,

for all x ∈ R such that the integral is well-defined (one can show that the integral
is well-defined for almost all x ∈ R). Young’s inequality shows that ||f ∗ g||1 ≤
||f ||1||g||1 for all f, g ∈ L1(R). One shows that the convolution product is bilinear
and associative, and in fact turns L1(R) into a Banach algebra. In fact, L1(R) is
a Banach-∗ algebra if we use the involution ∗ on L1(R) defined by

f ∗(x) = f(−x).

Unfortunately, L1(R) does not satisfy the equality ||f ∗ f ∗||1 = ||f ||2 for all
f ∈ L1(R), and so it is not a C∗-algebra, but it is possible to use the norm on
L1(R) to generate a C − ∗ algebra, called the group C∗-algebra of R.

The Fourier transform satisfies a number of basic properties:

1. F : L1(R)→ C0(R) is linear

2. f̂ ∗ g(ξ) = f̂(ξ)ĝ(ξ) for all f, g ∈ L1(R)

3. L̂(y)f(x) = e2πiξyf̂(ξ) for all f ∈ L1(R)

4. d̂
dx
f(ξ) = 2πiξf̂(ξ) for all f ∈ C∞c (R)

5. x̂f(ξ) = − 1
2πi

(
d
dξ
f̂
)

(ξ) for all f ∈ C∞c (R)

Another important tool in Fourier analysis is the Schwartz space S(R) of
rapidly decreasing smooth functions on R, defined by

S(R) =

{
f ∈ C∞(R) : sup

x∈R

∣∣∣∣xp dqdxq f(x)

∣∣∣∣ <∞ for all p, q ∈ N0

}
.

We give S(R) the topology of a Frechét space defined by the seminorms

||f ||p,q = sup
x∈R

∣∣∣∣xp dqdxq f(x)

∣∣∣∣
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for all p, q ∈ N0. Using properties (4) and (5), it is possible to show that the
Fourier transform extends to an isomorphism of vector spaces F : S(R)→ S(R).

One next shows that if f ∈ S(R), then there is an inversion formula which

recovers f from its Fourier transform f̂ :

f(x) =

∫
R
f̂(ξ)e2πiξxdξ. (1.2)

for all f ∈ S(R). Furthermore, one shows that∫
R
f(x)ĝ(x)dx =

∫
R
f̂(x)g(x)dx.

for all f, g ∈ S(R).
From this last result, it follows that the Fourier transform extends by con-

tinuity to a unitary operator F : L2(R) → L2(R). Furthermore, the inversion
formula (1.2) holds for all f ∈ L1(R) ∩ L2(R). However, we remind the reader
that the integral formula (1.1) holds only for f ∈ L1(R), because the integral
may fail to converge for f ∈ L2(R).

1.4.2 Distributions and Plancherel Formula, Version I

Recall that a distribution on R is an linear functional on the space D(R) ≡
C∞c (R). We denote the space of distributions by D′(R). (Recall that the space
D(R) may be embedded conjugate-linearly as a dense subspace of D′(R)). For a
distribution f ∈ D′(R), we often use the bracket-notation

〈φ, f〉 ≡ f(φ)

for φ ∈ D(R). We remind the reader that any locally integrable function f : R→
C may be considered a distribution in D′(R) by setting

〈φ, f〉 =

∫
R
φ(x)f(x)dx

for all φ ∈ D(R). It is possible to take arbitrary derivatives of distributions,
take convolutions with smooth functions, and even to take the convolution of two
compactly-supported distributions.

For Fourier analysis, however, there is a special class of distributions which is
especially useful, because the Fourier transform may be extended to this space.
We denote the dual of S(R) by S ′(R), which is said to be the space of tempered
distributions on R. Thus we have the following sequence of dense embeddings:

D(R) ⊆ S(R) ⊆ L2(R) ⊆ S ′(R) ⊆ D′(R),

where the overbars denote the fact that the embeddings of locally integrable
functions into the distribution spaces are conjugate linear and not linear. While
all locally integrable functions are distributions on R, not all of them are tempered
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distributions. However, locally integrable functions of slow growth are tempered
distributions. A function f : R→ C is said to be of slow growth if

sup
x∈R
|x+ 1|−p|f(x)| <∞

for some p ∈ N0. (The idea is that the functions grow no faster than a polyno-
mial.) In particular, our characters θξ, ξ ∈ R are tempered distributions.

We define the Fourier transform of a tempered distribution f ∈ S ′(R) by
setting 〈

φ, f̂
〉
≡
〈
φ̂, f

〉
for all φ ∈ S(R). Furthermore, if the weak-∗ topology is placed on S ′(R), then
the Fourier transform F : S ′(R) → S ′(R) becomes again an isomorphism of
topological vector spaces.

There is another way to write down the Fourier inversion formula which will
be useful to us in the future. Consider the Dirac delta function δ ∈ S ′(R) defined
by

〈φ, δ〉 = φ(0)

for all φ ∈ S(R). But from the inversion formula, we know that

〈φ, δ〉 = φ(0) =

∫
R
φ̂(ξ)dξ =

∫
R

∫
R
φ(x)e−2πiξxdxdξ

=

∫
R
〈φ, θ−ξ〉dξ.

In other words, it formally makes sense to write

δ =

∫
R
θ−ξdξ. (1.3)

Furthermore, it is easy to recover the Fourier inversion formula from this decom-
position of the delta distribution. If we define δy ∈ S ′(R) by 〈φ, δy〉 = φ(y), then
we see that

〈φ, δy〉 = φ(y) =

∫
R

〈φ, θ−ξ〉θx(ξ)dξ

and hence we can formally write

δx =

∫
R
θx(ξ)θ−ξdξ.

These decompositions of distributions as integrals of characters are one form of
the Plancherel Formula for R.

Next we show the other way of looking at the Fourier transform. Notice that
there are two different representations which we can define on L2(R): one of them
is the regular representation (L,L2(R)) which we have already defined. Another
is the representation (π, L2(R)) given by

π(y)f(x) = θx(y)f(x) = e2πiyxf(x). (1.4)

The Fourier transform F : L2(R)→ L2(R) is, in fact, a unitary intertwining op-

erator between this two representations since L̂(y)f(x) = e2πiyxf̂(x) = π(y)f̂(x).
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1.4.3 Direct Integrals and Plancherel Formula, Version II

Now that we have access to the intertwining operator F ∈ HomR(L, π), we can
describe the closed invariant subspaces of the regular representation (L,L2(R)).

In fact, if K is a closed L-invariant subspace of K, then K̂ is a closed π-invariant
subspace of L2(R). One can then show that there is a Borel subset A ⊂ R such
that K = L2(R)A, where

L2(R)A = {f ∈ L2(R)| supp f̂ ⊆ A},

where A denotes the closure of A ⊂ R. Furthermore, it is easy to show that
L2(R)A ⊥ L2(R)B if A ∩ B has measure 0. However, if L2(R)A 6= {0}, then A is
a set of nonzero measure. Thus there is a measurable subset B ⊂ A such that
both B and A\B have positive measure. Hecne,

L2(R)A = L2(R)B ⊕ L2(R)A\B

is a decomposition of L2(R)A into a direct sum of nontrivial subrepresentations.
As we just saw, (L,L2(R)) does not have any nontrivial closed invariant sub-

spaces, so it is impossible to write it as a direct sum of irreducible subrepresenta-
tions. nevertheless, it is possible to write L to be a “continuous orthogonal direct
sum” (that is, a direct integral) of irreducible subrepresentations.

Fix a Hilbert space H. Suppose that we have a measure space (X,µ). We say
that a function f : X → H is measurable if the the functions

X → H, x 7→ 〈f(x), v〉

is measurable for all v ∈ H. Then we define a new Hilbert space
∫ ⊕
X
Hdx by

setting∫ ⊕
X

H dx =

{
f : X → H

∣∣∣∣f is measurable and

∫
X

||f(x)||2H dµ(x) <∞
}

and then defining a new inner product by setting

〈f, g〉 =

∫
X

〈f(x), g(x)〉H dµ(x).

For example, it is easy to check that
∫ ⊕
R C dx = L2(R).

Sometimes we will use the notation

f ≡
∫
X

f(x)dµ(x)

to emphasize the fact that we are considering f to be a sort of “continuous linear
combination” of the values f(x) ∈ H for x ∈ X.

Next suppose that we have a topological group G and, for each x ∈ X, there
is a representation (πx,H). We further suppose that the maps

x 7→ 〈πx(g)(f(x)), v〉
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are measurable for all v ∈ H. Then we define a new representation
π ≡

∫ ⊕
G
πxdµ(x) on

∫ ⊕
X
Hdx by setting

(π(g)f)(x) = πx(g)(f(x))

for all g ∈ G, f ∈
∫ ⊕
X
Hdx, and x ∈ X. If we put this in our alternative notation,

we have

π(g)

(∫
X

f(x) dµ(x)

)
=

∫
X

πx(g)f(x) dµ(x).

Note that
∫ ⊕
G
πxdµ(x) is a unitary representation of G on

∫ ⊕
X
Hdx because

||π(g)f ||2 =

∫
X

||πx(g)f(x)||2H dµ(x)

=

∫
X

||f(x)||2H dµ(x) = ||f ||2,

where we have used the fact that πx is unitary for all x ∈ X. Strong continuity of∫ ⊕
G
πxdµ(x) follows from an elementary application of the Lebesgue Dominated

Convergence Theorem.
We now see that the representation (π, L2(R)) defined in (1.4) is nothing more

than the direct integral representation(∫ ⊕
R
θx dx,

∫
R

C dx
)
.

Finally, the equivalence of representations (L,L2(R)) ∼= (π, L2(R)) allows us to
write

L ≡
∫ ⊕
R
θx dx.

This decomposition of the regular representation into a direct integral of irre-
ducible subrepresentations is also often referred to as a Plancherel formula.

This version of the Plancherel formula is often said to be “soft,” however,
because the equivalence class of a representation

∫ ⊕
G
πxdµ(x) depends only on the

measure class µ. To see this, suppose that σ is measure on X which is absolutely
continuous with respect to µ. Then one can show that

T :

∫ ⊕
X

H dµ(x)→
∫ ⊕
X

H dσ(x)∫
X

f(x)dµ(x) 7→
∫
X

f(x)

√
dµ(x)

dσ(x)
dσ(x)

is a unitary intertwining operator in HomG

(∫ ⊕
X
πxdµ(x),

∫ ⊕
X
πxdσ(x)

)
.

Thus, we see that the equivalency

L ∼=
∫ ⊕
R
θx dµ(x).
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also holds for any Borel measure µ on R which is absolutely continuous with
respect to Lebesque measure. However, there is one property which sets apart
the Lebesgue measure on R: namely, Lebesque measure is the only measure on
R such that the inversion formula is given by

f(x) =

∫
X

f̂(ξ)θx(ξ)dξ.

For this reason, we often refer to (1.3) as being the “strong” plancherel formula.

1.5 Positive-Definite Functions

In this section we explore the connection between unitary representations and
positive-definite functions. We begin with a basic definition:

Definition 1.5.1. Let G be a group. We say that a function φ : G → C is
positive-definite if

n∑
i,j=1

φ(g−1
i gj)cicj > 0

where gi ∈ G and ci ∈ C for 1 ≤ i ≤ n. In other words, we require that the
matrix [g−1

i gj]ij be positive-definite for each choice of g1, . . . , gn ∈ G and n ∈ N.

Positive-definite functions have several basic properties which may be proved
directly from the definition (see [3, Lemma 5.1.8]):

Lemma 1.5.2. If φ : G→ C is a positive-definite function, then

1. φ(e) > 0

2. |φ(g)| ≤ φ(e) for all g ∈ G

3. φ(g−1) = φ(g) for all g ∈ G

Proof. For example, to prove (1), we choose n = 1, g1 = e, and c1 = 1. It follows
that φ(e) > 0. To prove (3), we fix g ∈ G and choose n = 2, g1 = g, g2 = e.
Hence the matrix (

φ(e) φ(g)
φ(g−1) φ(e)

)
is positive-definite. In particular, if we choose c1 = 1 and c2 = i, then we get the
condition

2φ(e) + i(φ(g−1)− φ(g)) > 0

From this it follows that Re (φ(g−1)−φ(g)) = 0. Similarly, choosing c1 = c2 = 1,
we obtain

2φ(e) + φ(g−1) + φ(g) > 0,
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and hence Im (φ(g−1) + φ(g)) = 0. Thus, φ(g−1) = φ(g). To prove (2), we note
that since the matrix (

φ(e) φ(g)
φ(g−1) φ(e)

)
=

(
φ(e) φ(g)

φ(g) φ(e)

)
is both self-adjoint and positive-definite, it must have a positive determinant. In
other words, φ(e)2 − |φ(g)|2 > 0.

The canonical examples of positive-definite functions are provided by matrix
coefficients of unitary representations. That is, if (π,H) is a unitary represen-
tation of a group G and v ∈ H\{0}, then the function φπ,v : G → C given
by

φπ,v(g) = 〈v, π(g)v〉 (1.1)

is continuous and positive-definite, as we now show straightforwardly using the
unitarity of π and the definition of positive-definite functions. Continuity of φπ,v
follows immediately from the strong continuity of the representation π. The fact
that it is positive-definite follows from the fact that if gi ∈ G and ci ∈ C for
1 ≤ i ≤ n, then

n∑
i,j=1

φπ,v(g
−1
i gj)cicj =

n∑
i,j=1

cicj〈π(g−1
i gj)v, v〉

=
n∑

i,j=1

cicj〈π(gj)v, π(gi)v〉

=

〈
n∑
j=1

ciπ(gj)v,
n∑
i=1

ciπ(gi)v

〉
=

∣∣∣∣∣
∣∣∣∣∣
n∑
j=1

ciπ(gj)v

∣∣∣∣∣
∣∣∣∣∣
2

> 0.

Note that we used the unitarity of π in an essential way.
The key insight of Gelfand-Naimark-Segal is that every continuous positive-

definite function arises in this way from a unitary representation. In particular,
given a continuous positive-definite function φ : G → C, one can define a repre-
sentation. We now show how this may be done.

For each g ∈ G, define the function g · φ : G→ C by

g · φ(x) = φ(g−1x)

for each x ∈ G. We can then define the vector space

Vφ = 〈{g · φ|g ∈ G}〉,

which is the algebraic span of all G-translates of φ. We define a pre-Hilbert space
structure on Vφ:〈

n∑
i=1

ci(gi · φ),
n∑
j=1

dj(hi · φ)

〉
=

n∑
i,j=1

φ(g−1
i hj)cidj (1.2)
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where ci, dj ∈ C and gi, hj ∈ G. One needs to prove that this bilinear form is
well-defined on Vφ (it is possible that an element of Vφ could be written as a linear
combination of the translates of φ in more than way), but this can be done. It
will then follow that Vφ is a pre-Hilbert space under 〈, 〉.

We can then define a representation πφ of G on Vφ by

πφ(g)v(h) = v(g−1h)

for all v ∈ Vf and g, h ∈ G. It is clear from (1.2) that πφ extends to a unitary
representation on the the Hilbert-space completion Hφ of Vφ. Then one has

φ(g) = 〈φ, π(g)φ〉Hφ .

Thus every positive-definite function may be given the form (1.1). In fact, a
stronger result may be proven:

Theorem 1.5.3. (Gelfand-Naimark-Segal; see [3, p. 54, 61]). The map

(π, v) 7→ φπ,v

is a surjection from the set of all pairs (π, v) of cyclic representations (π,H)
of G and cyclic vectors v ∈ H\{0} to the set of all continuous positive-definite
functions on G.

Furthermore, suppose that (π,H) and (σ,K) are unitary representations of G
such that v ∈ H and w ∈ K are cyclic vectors. Then one has

φπ,v = φσ,w

if and only if there is a unitary intertwining operator T : H → K such that
T (v) = w.

Let G be a locally-compact topological group. We write P(G) for the space
of all positive-definite functions φ on G such that φ(e) = 1. One can show that
P(G) is a closed convex subset of the space L∞(G) of almost-everywhere-bounded
measurable functions on G. The convexity may be shown by noticing that

λφπ,v + (1− λ)φσ,w = φπ⊕σ,
√
λv+
√

1−λw, (1.3)

where (π,H) and (σ,K) are unitary representations of G with cyclic vectors v ∈ H
and w ∈ K.

In fact, L∞(G) is the dual of the Banach space L1(G) by the Riesz Represen-
tation Theorem. One can show that P(G) is closed in the weak-∗ topology on
L∞(G). Since |φ(g)| ≤ φ(e) = 1 for all φ in P(G) and g ∈ G, we see that P(G)
is contained in the unit ball B1(L∞(G)). It follows from the Banach-Alaoglu
theorem that P(G) is a compact convex subset of L∞(G) in the weak-∗ topology.
Thus, the Krein-Milman theorem may be applied to P(G):
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Theorem 1.5.4. (Krein-Milman [3, Theorem 5.2.7]) If K is a compact, convex
subset of a locally convex topological vector space V , then

K = co(ex(K)),

where co denotes the convex hull and ex(K) denotes the set of extremal points of
K.

In other words, all normalized positive-definite functions may be formed by
taking a limit of convex combinations of normalized positive-definite functions.
In fact, by exploiting the identity in (1.3), one has the following result:

Theorem 1.5.5. Let G be a locally compact topological group. Then the ex-
tremal points of P(G) are given by functions of the form φπ,v, where (π,H) is an
irreducible representation of G and v is a cyclic unit vector in H.

Thus, positive-definite functions are generated in some sense by the ones com-
ing from irreducible representations. These are just a few examples of how pow-
erful theorems from functional analysis may be applied to provide insight into
the decomposition of unitary representations.

1.6 Haar Measures

Though often conflated with each other, harmonic analysis and representation
theory are not quite exactly the same fields of study. Representation theory
studies, well, representations, while harmonic analysis studies analysis on groups
and homogeneous spaces and is concerned specifically with understanding how to
take general functions and break them down into easier-to-understand component
parts. Nevertheless, harmonic analysis uses representation theory in an absolutely
unavoidable way. For more details on the material in this section, I recommend
Chapter 6 of [6] and Chapter 4 of [3].

First, we remind the reader that all locally-compact topological groups possess
translation-invariant measures, called Haar measures. That is, for each locally-
compact group G, there is a Radon measure µG such that∫

G

f(gx)dµG(x) =

∫
G

f(x)dµG(x) (1.1)

for all f ∈ Cc(G) and g ∈ G. Such measures, called Haar measures, are unique
up to multiplication by a constant. If G is a compact group, then µG is a finite
measure, which we will always normalize so that µG(G) = 1.

A natural question to ask is how Haar measures behave under right-translation.
Fix g ∈ G. Then we define a new measure µgG on G by setting µgG(A) = µG(Ag)
for each Borel subset A ⊆ G. Note that µgG is also a left-invariant measure on G.
Because left-invariant measures on G are unique up to constant multiple, there
must be a real number ∆G(g) > 0 such that µgG = ∆G(g)µG. Furthermore, one
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quickly checks that ∆G(gh) = ∆G(g)∆G(h) for each g, h ∈ G. We refer to the
homomorphism ∆G : G→ R+ as the modular function for G. One can further
show that ∆G is continuous.

If ∆G(g) = 1 for all g ∈ G, then the Haar measure µG is both left-and
right invariant, and we say that G is unimodular. It should be clear that the
left-invariant Haar measure on an abelian group G must also be right-invariant.
Furthermore, if G is compact, then the image of the modular function must be a
compact subgroup of the multiplicative group R+. Since {1} is the only compact
subgroup of R+, it follows that ∆G(g) = 1 for all g ∈ G.

In addition to compact groups and abelian groups, it can be shown that all
semisimple Lie groups and connected nilpotent Lie groups are unimodular [7, p.
88]. However, not all solvable groups are unimodular. While we are primarily
concerned with studying semisimple Lie groups in this class, we will have to
consider subgroups of semisimple groups which are not unimodular.

The existence of Haar measures has several important and useful conse-
quences. For example, the next theorem shows that every representation of a
compact group on a Hilbert space is equivalent to a unitary representation (this
is not true for noncompact groups, as we will later see). One very important
consequence of this result is that every finite-dimensional representation) of a
compact group may be divided into a direct sum of irreducible representations.

Theorem 1.6.1. (See also [17, Proposition 4.6]). If G is a compact topological
group, then every norm-continuous representation (π,H) of G on a Hilbert space
is equivalent to a unitary representation.

Proof. We denote the inner product on H by 〈, 〉H and construct a new inner
product 〈, 〉π on H by defining:

〈v, w〉π =

∫
G

〈π(g)v, π(g)w〉H dg

for all v, w ∈ H.
Now define

M = sup
g∈G
||π(g)||H

and note that M <∞ because π is norm-continuous and G is compact. We then
have ||π(g)−1||H < M for all g ∈ G. Thus

M−2||v||2H ≤ ||v||2π =

∫
G

||π(g)v||2H dg ≤M2||v||2H

for all v ∈ H. Hence the identity map on H forms a homeorphism between H
under 〈, 〉H and H under 〈, 〉π.
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Finally, for all h ∈ G and u, v ∈ H, we have that

〈π(h)u, π(h)v〉π =

∫
G

〈π(gh)v, π(gh)w〉H dg

=

∫
G

〈π(g)v, π(g)w〉H dg

= 〈u, v〉π.

Thus, we see that π is a unitary representation of G onH under the inner product
〈, 〉π.

The most important consequence of the existence of Haar measure, is that we
can define a unitary representation of G which acts on a space of functions on
G. It is this construction which provides the basic connection between harmonic
analysis and representation theory. With a Haar measure dg on G, we may
consider the Hilbert space L2(G). One can show that the action given by

(L(g)f)(x) = f(g−1x) (1.2)

for g ∈ G and f ∈ L2(G) gives a continuous representation of G on L2(G) that is
unitary by (1.1). This representation is called the (left) regular representation
of G. We note that the proof of strong continuity is very similar to the proof
for the regular representation of R. The basic questions of Harmonic analysis,
then, concern the decomposition of this representation into a direct sum or direct
integral of irreducible subrepresentations.

We can also ask about G-invariant measures on homogeneous spaces: Suppose
that H is a closed subgroup of G. Then G acts continuously and transitively on
the left-coset space G/H, which we call a homegeneous space. It is then
natural to ask whether there is a Borel measure µG/H on G/H such that∫

G/H

f(x · gH) dµG/H(gH) =

∫
G/H

f(gH) dµG/H(gH)

for all Cc(G/H) and x ∈ G. The answer is provided by the following theorem:

Theorem 1.6.2. Suppose that H is a closed subgroup of a locally-compact topo-
logical group G. Then there exists a G-invariant measure on G/H if and only
if ∆G(h) = ∆H(h) for all h ∈ H (in particular, this is always the case if H is
a compact subgroup of G or if both G and H are unimodular). Furthermore, in
that case the G-invariant measure is unique up to constant multiple and satisfies
the property that ∫

G

f(g) dg =

∫
G/H

∫
H

f(gh) dh dµG/H(gH)

For the sake of clarity we also use the notation dx in place of dµG/H(x).
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If H is a compact subgroup of G, then we can define the G-invariant measure
on G/H by using the canonical quotient map p : G→ G/H given by p(g) = gH.
In fact, we see that f ◦ p ∈ Cc(G) for all f ∈ Cc(G/H), and we can define the
invariant measure dx on G/H by∫

G/H

f(x)dx =

∫
G

(f ◦ p)(g)dg.

Once we have a G-invariant measure on L2(G/H), we construct a representa-
tion (L,L2(G/H)) of G in basically the same way as the regular representation
by setting

(L(g)f)(x) = f(g−1 · x)

for all g ∈ G and x ∈ G/H. Once again it is possible to show that this representa-
tion is strongly continuous. Unitarity follows immediately from the fact that the
measure on G/H is invariant. This representation is called the quasi-regular
representation of G on L2(G/H), and another basic problem of Harmonic anal-
ysis is the decomposition of this representation into irreducible components, when
possible.

Even if there is no G-invariant measure on G/H, all is not lost, and it is
still possible to define a quasi-regular representation. To begin, for each Borel
measure dµ(x) on G/H and g ∈ G we define a new measure dµ(g ·x) on G/H by
setting ∫

G/H

f(x)dµ(g · x) =

∫
G/H

f(g−1x)dµ(x)

for all f ∈ Cc(G/H).
It is possible to show that there is always a unique class of Borel measures µ

on G/H, called quasi-invariant measures, such that the the measures dµ(g ·x)
and dµ(x) are absolutely continuous with respect to each other for all g ∈ G. In
other words, for each g ∈ G there is a Radon-Nikodym derivative given by

ρ(g, x) =
dµ(g · x)

dµ(x)

for each g ∈ G and x ∈ G/H. In other words,∫
G/H

f(g−1 · x)dµ(x) =

∫
G

f(x)ρ(g, x)dµ(x), (1.3)

or, put in a different way,∫
G/H

f(g · x)ρ(g, x)dµ(x) =

∫
G

f(x)dµ(x),

This function ρ satisfies two important properties, called the cocycle identities,
which may be checked easily:

1. ρ(e, x) = 1 for almost all x ∈ G/H
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2. ρ(g1g2, x) = ρ(g2, x)ρ(g1, g2 · x) for almost all x ∈ G/H for each choice of
g1, g2 ∈ G.

We can now construct the quasi-regular representation (L,L2(G/H)) by set-
ting

L(g)f(x) = ρ(g−1, x)1/2f(g−1 · x).

We check that this gives a unitary representation by using the cocycle identities.
First, unitarity follows because

||L(g)f ||2 =

∫
G/H

|ρ(g−1, x)1/2f(g−1 · x)|2mu(x) (1.4)

=

∫
G/H

ρ(g−1, x)|f(g−1 · x)|2 dµ(x)

=

∫
G/H

|f(x)|2 dµ(x) = ||f ||2

If g1, g2 ∈ G, then

L(g1g2)f(x) = ρ(g−1
2 g−1

1 , x)1/2f(g−1
2 g−1

1 · x) (1.5)

= ρ(g−1
1 , x)1/2ρ(g−1

2 , g−1
1 · x)1/2f(g−1

2 g−1
1 · x) dµ(x)

= L(g1)
(
ρ(g−1

2 , ◦)1/2f(g−1
2 · ◦)

)
(x)

= L(g1)L(g2)f(x)

Finally, we leave it to the reader to show that any other choice of quasi-invariant
measure µ′ on G/H will produce a unitary representation equivalent to the one
produced by µ. (This follows from the fact that there is a unique class of quasi-
invariant measures on G/H, and thus µ′ and µ must be absolutely continuous
with respect to each other.)

1.7 General Definition of Direct Integrals

In Section 1.4.3, we introduced the concept of direct integrals of Hilbert spaces
and representations over a measure space. In that section, however, we considered
only the simpler situation in which all of the Hilbert spaces were the same. In
this section, we take a Borel measure space (X,µ) and suppose that we have a
Hilbert space Hx above each point x ∈ X. In other words, we have a fiber bundle
over X where the fibers are all Hilbert spaces. The direct integral of the Hilbert
spaces will then be the space of sections over this bundle. The tricky question
is what sort of structure to put on this bundle. Should it be something like
a smooth vector bundle or maybe merely a fiber bundle of topological spaces?
In fact, we will essentially place only a Borel algebra on this bundle. This is
the first example of a phenomenon in noncomutative harmonic analysis in which
some objects should be thought of merely as Borel spaces and not necessarily as
topological spaces or manifolds.
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We now move to the details. Suppose that µ is a Borel measure on a topo-
logical space X, and that for each x ∈ X we are given a unitary representa-
tion (πx,Hx) of a group G. Suppose we are also given a collection of maps
si : X → ∪̇x∈XHx for i in some countable index set I such that:

1. si(x) ∈ Hx for each x ∈ X and i ∈ I.

2. 〈si(x)|i ∈ I〉 is dense in Hx for all x ∈ X.

3. x 7→ 〈si(x), sj(x)〉Hx is a Borel-measurable function on X for all i, j ∈ I.

The set {si}i∈I is called a measurable frame. We then say that a map s : X →
∪̇x∈XHx is a measurable section if

1. s(x) ∈ Hx for each x ∈ X.

2. x 7→ 〈s(x), si(x)〉Hx is a Borel-measurable function on X for all i ∈ I.

Finally, we define a direct-integral Hilbert space by

H ≡
∫ ⊕
X

Hxdµ(x) =

{
measurable sections s

∣∣∣∣∫
X

||s(x)||2Hxdµ(x) <∞
}

where the inner product is given by

〈u, v〉 =

∫
X

〈u(x), v(x)〉Hxdµ(x)

for u, v ∈ H. We can also define a continuous unitary representation π ≡∫ ⊕
X
πxdµ(x) of G on H by

(π(g)s)(x) = πx(g)(s(x))

for all s ∈ H and g ∈ G. We say that π is a direct integral of the represen-
tations Hx for x ∈ X.

1.8 Classes of Bounded Operators on a Hilbert

Space

In this section, we introduce several different classes of bounded operators on a
Hilbert space which will be of great use to use in the future. Some of the theorems
are proved in detail, while others are only sketched or left to the reader. For more
details, I highly recommend the book [6].
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1.8.1 Compact Operators

Suppose that X and Y are Banach spaces. Then the space L(X, Y ) of bounded
linear operators from X to Y is also a Banach space under the operator norm.
A bounded linear operator T : X → Y satisfies the property that ||Tx||Y ≤
||T || · ||x||X for all x ∈ X. In other words, changing x by a small amount only
changes Tx by a small amount in the operator norm. In still other words, an
operator T : X → Y is bounded if and only if the image under T of a bounded
set in X is a bounded set in Y .

Sometimes, however, we want to impose an even stronger condition: that
bounded sets in X get mapped to precompact sets in Y . This is in general a very
strong condition, because compact sets in an infinite-dimensional vector space are
“very small.” In fact, if X is an infinite-dimensional Banach space, then its unit
ball is not compact (you should prove this). In other words, even the identity
operator Id : X → X is not a compact operator if X is infinite-dimensional.

To simplify the discussion, we will assume that H is a Hilbert space and con-
sider the space B(H) of bounded linear operators from H to H, even though some
of the basic theorems on compact operators generalize to the case of operators
between two Banach spaces.

Definition 1.8.1. Suppose that T ∈ B(H). We say that T is: compact if
T (U) ⊆ H is precompact (i.e., has a compact closure) for every bounded set
U ⊂ H. We denote by Bc(H) the space of all compact operators from H to H.

Remark 1.8.2. Note that it if T ∈ B(H), then it is enough to show that
T (B1(H)) ⊂ H. As another side remark, one must show that the compact
operators form a linear subspace of B(H). We leave the proof of this statement
to the reader.

Example 1.8.3. Suppose that H is a separable, infinite-dimensional Hilbert
space.

1. We have already seen that Id : H → H is not compact.

2. Suppose that v ∈ H. Then the operator Pv ∈ B(H) defined by

Pv(w) = 〈w, v〉v

for w ∈ H has a one-dimensional image. That is, the image of any vector
in H under Pv will be a multiple of v. Since Pv is bounded, we see that
bounded sets get mapped to bounded sets. But any bounded subset of Cv
must be compact. Thus Pv is compact.

3. More generally, suppose that T ∈ B(H) has a finite-dimensional image in
H. In this case, we say that T is a finite-rank operator. As in the
previous example, since bounded subsets of a finite-dimensional subspace
are always compact, it follows that T is in particular compact.
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4. Next we present an example of an operator which has an infinite-dimensional
image but is nevertheless compact. Consider `2, the Hilbert space of square-
integrable sequences of complex numbers. This space has a canonical
Hilbert space basis {ei}i∈N where ei is the sequence which is 1 for the
ith index and zero for the others. We define an operator T : `2 → `2 by
T (ei) = (1/i)ei. That is,

T

(
∞∑
i=1

ciei

)
=
∞∑
i=1

1

i
ciei

for any (c1, c2 . . .) ∈ `2. One can check quickly that ||T || = 1 and so, in
particular, T ∈ B(H).

To prove that T is, in fact, a compact operator, we must use the theorem
(which we will prove shortly) which says that a limit (in the operator norm)
of a sequence of compact operators is compact. To apply that theorem to
this example, we define for each n a finite-rank operator Tn : H → H by
Tn = PnT , where Pn is the orthogonal projection of H onto the finite-
dimensional subspace spanned by {e1, . . . , en}. In other words,

Tn(ei) =

{
1
i
ei, if i < n

0, if i > n.

We thus see that if ||x|| < 1, then

||(T − Tn)x|| =
∞∑
i=n

∣∣∣∣1i 〈x, ei〉
∣∣∣∣2

≤ 1

n
||x||2.

Thus, it follows that Tn → T as n → ∞ in the norm topology on B(H).
Our next theorem then shows that T is compact. Notice that we could have
replaced {1/i}i∈N in this problem with any other sequence which approaches
0.

Theorem 1.8.4. The space Bc(H) of compact operators on H is a closed subspace
of B(H) under the operator norm.

Proof. Suppose that Ti ∈ Bc(H) for each i ∈ N and that {Ti}i∈N converges to
a bounded operator T ∈ B(H) in the operator norm. We must show that T is
compact.

Let {vn}n∈N be a sequence of vectors in the unit ball B1(H). Because T1

is a compact operator, it follows that T1(B1(H)) ⊆ H is precompact, and thus
there is a subsequence {vk1,n}n∈N of {vn}n∈N such that {T1(vk1,n)}n∈N is a Cauchy
sequence. Similarly, because T2 is a compact operator, we see that T2(B1(H))
is precompact and so there is a subsequence {vk2,n}n∈N of{vk1,n}n∈N such that
{T2(vk2,n)}n∈N is Cauchy.
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Repeating this process indefinitely, we obtain for each m ∈ N a subsequence
{vkm+1,n}n∈N of {vkm,n}n∈N such that {Ti(vki,n)}n∈N converges for all i ≤ m. We
then consider the “diagonal” subsequence {vkn,n}n∈N, which is a subsequence of
all of the other subsequences. Thus, we see that {Ti(vkn,n)}n∈N is Cauchy H for
all i ∈ N.

Now fix ε > 0. Because Ti → T in the norm topology, there is N ∈ N
such that ||T − TN || < ε for all i > 0. But there is also M ∈ N such that
||TN(vkn,n)− TN(vkm,m)|| for all m,n ≥M . We thus see that

||T (vkn,n)− T (vkm,m)|| ≤ ||(T − TN)(vkn,n)||+ ||TN(vkn,n − vkm,m)||
+ ||(T − TN)(vkm,m)||
< 3ε

for all m,n > M . Thus, because H is complete, it follows that {T (vkn,n}n∈N is
a convergent subsequence of {T (vn)}n∈N. Hence, T (B1(H)) is precompact, and
thus T is compact.

Remark 1.8.5. The previous theorem shows that we can readily produce com-
pact operators by taking limits of finite-rank operators. Another well-known
theorem shows that, in fact, every compact operator is a limit in the operator
norm topology of a sequence of finite-rank operators (see [6]).

Next we collect some other properties of compact operators. One of the most
important is that the compact operators form a two-sided ideal in B(H):

Theorem 1.8.6. If T ∈ Bc(H) is a compact operator and S ∈ B(H) is a bounded
operator, then TS and ST are compact operators.

Proof. Student exercise.

Remark 1.8.7. One consequence of the last two theorems is that, as a closed
subalgebra of B(H) under the operator norm, Bc(H) is a C∗-algebra (that is, it is a
Banach-∗ algebra which satisfies the condition ||T ∗T || = ||T ||2 for all T ∈ Bc(H)).
However, it is not a von Neumann algebra, because it is not a closed subalgebra
in the weak topology.

Or, using the common definition of von Neumann algebra, we see that the
centralizer of Bc(H) within B(H) is the trivial algebra CId of multiples of the
identity matrix. Thus the double commutant of Bc(H) is all of B(H), and it
follows that Bc(H) is not a von Neumann algebra. This underlines the intuitive
idea that von Neumann algebras have to be “big enough” in some sense.

We do not have space to prove it here, but the following theorem is very
important and is the key to proving the Peter-Weyl theorem for compact groups:

Theorem 1.8.8 (Spectral Theorem for Compact Self-Adjoint Operators). Sup-
pose that T ∈ Bc(H) is a compact self-adjoint operator on H. Then there are
at most countably many eigenvalues in the spectrum of T , and the spectrum is
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either discrete or has a cluster point only at 0. Furthermore, each eigenspace Hλ

for λ ∈ Spec(T ) is finite-dimensional if λ 6= 0 and

H ∼=
⊕

λ∈Spec(T )

Hλ.

1.8.2 Hilbert-Schmidt Operators

In this section, we will talk about a class of operators which is even smaller
than the class of compact operators. To motivate the definition, we note that if
H is an infinite-dimensional separable Hilbert space with an orthonormal basis
{e1, e2, . . .}, then we can represent general bounded operators T ∈ B(H) by an
“infinite matrix” [Aij]i,j∈N, where the matrix components are given by Aij =
〈Aej, ei〉 for each i, j ∈ N. In particular, we note that the jth column in this
matrix gives the coefficients of Aej with respect to the chosen basis, while the ith

row gives the complex conjugates of the coefficients of A∗ei. Because the operator
A is bounded, it follows in particular that

||Aej|| =
∞∑
i=1

|Aij|2 <∞

for each j ∈ N. That is, each column in the infinite matrix forms a sequence in
`2. Similarly, each row forms a sequence in `2.

In general, however, we cannot conclude that the matrix coefficients Aij, taken
altogether, form a square-summable sequence. For example, if we take the iden-
tity operator Id, then Idij = δij, and hence

∑∞
i,j=1 |Idij|2 =∞. However, the class

of bounded operators A ∈ B(H) such that
∑∞

i,j=1 |Aij|2 < ∞ is very important,
because we can put an inner product on this space which turns it into a Hilbert
space.

Definition 1.8.9. We say that a bounded operator A ∈ B(H) over a Hilbert
Space H with orthonormal basis {e1, e2, . . .} is a Hilbert-Schmidt operator if

||A||2HS ≡
∞∑

i,j=1

|Aij|2 =
∞∑

i,j=1

|〈Aej, ei〉|2 =
∞∑
j=1

||Aej||2 <∞.

We denote the space of all Hilbert-Schmidt operators by BHS(H), and we say that
||A||HS is the Hilbert-Schmidt norm of the operator A.

The first thing which we have to do is show that this definition does not
depend on the choice of basis. Suppose that A ∈ BHS(H) and that{e1, e2, . . .}
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and {f1, f2, . . .} are orthonormal bases for H. Then

∞∑
j=1

||Aej||2 =
∞∑

i,j=1

|〈Aej, fi〉|2

=
∞∑

i,j=1

|〈ej, A∗fi〉|2

=
∞∑

i,j=1

|〈A∗fi, ej〉|2

=
∞∑

i,j=1

|〈A∗fi, fj〉|2 =
∞∑

i,j=1

|〈Afj, fi〉|2 =
∞∑
j=1

||Afj||2,

where we have repeatedly used the fact that ||v||2 =
∑∞

i=1 |〈v, ei〉|2 =
∑∞

i=1 |〈v, fi〉|2
for all v ∈ H. Thus, the definition does not depend on the choice of basis.

Remark 1.8.10. One must show that the Hilbert-Schmidt operators form a
subspace of the bounded operators and that the Hilbert-Schmidt norm satisfies
the triangle inequality. We leave this to the reader.

Theorem 1.8.11. Every Hilbert-Schmidt operator is a compact operator.

Proof. We sketch the proof here. LetH be a Hilbert space with orthonormal basis
{e1, e2, . . .} as usual, and let T ∈ BHS be a Hilbert-Schmidt operator. Consider
for each n the orthogonal projection operator Pn which projectsH onto the finite-
dimensional subspace generated by {e1, . . . , en}. In particular, we see that the
operator TPn is a finite-rank operator for each n ∈ N. We claim that TPn → T
as n→ N in the operator norm topology. It will then follow from Theorem 1.8.4
that T is a compact operator.

Fix ε > 0. We notice that

||TPnei||2 =

{
||Tei||2 if i < n
0 if i ≥ n

We also note that because
∑∞

i=1 ||Tei||2 < ∞, the sequence {||Tei||2}i∈N must
converge to 0. Thus, there is N ∈ N such that ||Tei||2 < ε for all i ≥ N . Next
suppose that x ∈ H, and consider the orthogonal expansion x =

∑∞
j=1 cjej where
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cj ∈ C for each j ∈ N.

||(T − TPn)x||2 =
∞∑
i=1

∣∣∣∣∣
〈

(T − TPn)
∞∑
j=1

cjej, ei

〉∣∣∣∣∣
2

=
∞∑
i=1

∣∣∣∣∣
〈
∞∑
j=n

cjTej, ei

〉∣∣∣∣∣
2

=
∞∑
j=n

∞∑
i=1

|cj〈Tej, ei〉|2

=
∞∑
j=n

|cj|2||Tej||2

≤ ε
∞∑
j=n

|cj|2 ≤ ε
∞∑
j=1

|cj|2 = ε||x||2.

Thus, TPn → T in norm and we are done.

Next we exam some important properties of Hilbert-Schmidt operators:

Theorem 1.8.12. Suppose that H is a separable Hilbert space, that S, T ∈
BHS(H), and that A,B ∈ B(H). Then:

1. ||T ∗||HS = ||T ||HS.

2. ||ST ||HS ≤ ||S||HS · ||T ||HS.

3. ||AT ||HS ≤ ||A|| · ||T ||HS and ||TA||HS ≤ ·||T ||HS · ||A||, where the norm on
A is the usual operator norm.

Remark 1.8.13. The first two properties in the above theorem show that BHS

is a Banach-∗ algebra under the norm || · ||HS, while the third shows that it is
a two-sided ideal in B(H), although it is not a closed ideal because its closure
under the norm topology turns out to be Bc(H).

Proof (of Theorem 1.8.12). We prove the second property and leave the others
to the reader. We note that

||ST ||2HS =
∞∑

i,j=1

|〈STej, ei〉|2

=
∞∑

i,j=1

|〈Tej, S∗ei〉|2

≤
∞∑

i,j=1

||Tej||2||S∗ei||2

=
∞∑
i=1

||Tej||2
∞∑
j=1

||S∗ei||2

= ||T ||2HS||S∗||2HS = ||S||2HS||T ||2HS.
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We next notice that one may put an inner product on H consistent with the
norm || · ||HS. The basic idea is to take two operators A,B ∈ BHS(H) and consider
the matrix coefficients [Aij] and [Bij] as sequences in `2, so that the inner product
should be defined by

〈A,B〉 =
∞∑

i,j=1

AijBij.

We can simplify the above formula a bit:

∞∑
i,j=1

AijBij =
∞∑

i,j=1

〈Aej, ei〉〈ei, Bej〉

=
∞∑

i,j=1

〈Aej, 〈Bej, ei〉ei〉

=
∞∑
j=1

〈Aej, Bej〉.

We leave it to the reader to prove that this definition indeed gives an inner product
which turns BHS(H) into a Hilbert space. Because a given norm may be given by
at most one inner product (you can use various polarization and parallelogram
identities to recover the inner product from the norm), it follows that this inner
product does not depend on the choice of basis.

There are several ways to look at Hilbert-Schmidt operators. Consider a
Hilbert spaceH. It turns out that there is a natural unitary isomorphism between
the Hilbert space BHS(H) and the tensor product space H⊗H∗, where H∗ ≡ H
is the linear dual of H.

The definition of the tensor product requires some care. We can, of course,
consider the algebraic tensor product H ⊗ H∗, which consists of finite linear
combinations of vectors of the form v⊗w, where v, w ∈ H. The fact that we are
considering the product H ⊗H∗ and not H ⊗H means that the simple tensors
will be linear in the first factor and conjugate-linear in the second factor (that
is, cv ⊗ w = c(v ⊗ w) but v ⊗ cw = c(v ⊗ w) for c ∈ C and v, w ∈ H). We then
place an inner product on H⊗H∗ such that

〈v1 ⊗ w1, v2 ⊗ w2〉H⊗H∗ = 〈v1, v2〉〈w2, w1〉

for all pairs of simple tensors, and then we extend the definition by linearity. We
remark to the reader that the ordering must be 〈w2, w1〉 and not 〈w1, w2〉 in the
above definition in order for the inner product to be linear in the first variable
and conjugate-linear in the second variable. In other words, the tensor product
space H⊗H has an inner product given by the property

〈v1 ⊗ w1, v2 ⊗ w2〉H⊗H = 〈v1, v2〉〈w1, w2〉.
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Of course, one must show that the inner product 〈 , 〉H⊗H∗ defined above
on simple tensors extends to a well-defined inner product on the space of all
finite linear combinations of simple tensors. One then takes the Hilbert space-
completion of this inner product to obtain the Hilbert space H ⊗ H∗. As an
example of a basis for this space, suppose that {e1, e2, . . .} and {f1, f, 2, . . .} are
both orthonormal bases for H. Then {ei ⊗ fj}i,j∈N forms an orthonormal basis
for H⊗H∗.

Finally, we demonstrate that there is a natural (i.e., coordinate-independent)
unitary isomorphism between U : H⊗H∗ → BHS(H). First we consider a simple
tensor v ⊗ w ∈ H ⊗ H∗. We define U(v ⊗ w) = Pv,w where Pv,w ∈ B(H) is the
rank-one operator defined by Pv,w(u) = 〈u,w〉v for all u ∈ H. Next one shows
that the expression Pv,w is linear in v and conjugate-linear in w. One then shows,
using the universal property of tensor products, that U extends to a well-defined
linear isomorphism from the algebraic tensor product spaceH⊗H∗ to the space of
finite-rank operators. Finally, we note that the inner product agrees on rank-one
operators and simple tensors:

〈v1 ⊗ w1, v2 ⊗ w2〉H⊗H∗ = 〈v1, v2〉〈w2, w1〉 = 〈Pv1,w1 , Pv2,w2〉BHS(H).

An argument from linearity then shows that U extends to a unitary isomorphism
from H⊗H∗ to BHS(H).

1.8.3 Trace-Class Operators

Recall that for a linear operator L : Cn → Cn, the trace is defined to be the
sum of the diagonal matrix coefficients: Tr(L) =

∑n
i=1〈Lei, ei〉. Furthermore, the

trace is linear, independent of the choice of basis, and satisfies the property that
Tr(AB) = Tr(BA) for all linear operators A,B on Cn. It would be nice to extend
this notion of trace to the infinite-dimensional context.

Suppose that H is a Hilbert space with an orthonormal basis {e1, e2, . . .}. It is
tempting to set Tr(T ) =

∑n
i=1〈Tei, ei〉 for each bounded operator T ∈ B(H), but

there is a problem—namely that this sum might diverge. Even worse, the sum
might converge conditionally, so that the value depends not only on the choice of
basis, but on the ordering of that basis! For instance, one can easily check that
this series diverges for the identity operator (whose matrix is diagonal with ones
along the diagonal) and converges conditionally for the operator whose matrix is
diagonal and has diagonal entries given by the sequence {(−1)n1/n}.

In other words, we need to find a condition which guarantees that the sum
Tr(T ) =

∑n
i=1〈Tei, ei〉 converges absolutely. We begin with the following initial

definition:

Definition 1.8.14. If A ∈ B(H) is positive-definite, then we say that A is a
trace-class operator if

∑n
i=1〈Aei, ei〉 <∞. In that case, we say that the value

of that sum is the trace of A and denote it by Tr(A).

We remind the reader that a self-adjoint operator A ∈ B(H) is said to be
positive-definite if 〈Av, v〉 > 0 for all v ∈ H. Thus, if A is positive-definite,
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then the series which defines the trace is a sum of positive numbers and thus
either diverges to infinity or converges absolutely. Furthermore, we notice that if
A is positive-definite, then

Tr(A) =
n∑
i=1

〈Aei, ei〉 =
n∑
i=1

〈A1/2ei, A
1/2ei〉 = 〈A1/2, A1/2〉HS = ||A1/2||2HS,

Thus, we arrive at the very important conclusion that a positive-definite operator
A is trace class if and only if its positive square root A1/2 is Hilbert-Schmidt. We
further conclude that the value of the trace is independent of the choice of basis.

More generally, suppose that A ∈ H(H). We define the modulus of A
to be the operator |A| =

√
A∗A. (We remind the reader that the operator

A∗A is always positive-definite and therefore has a unique positive-definite square
root.) It is a well-known theorem that one can decompose the operator A as
A = |A|U , where |A| is positive-definite and U is a partial isometry (that is, U∗U
and UU∗ are orthogonal projections). This decomposition is known as the polar
decomposition. In fact, in the case that A ∈ GL(H), then |A| ∈ GL(H) and
one easily shows that U = |A|−1A is a unitary operator.

Definition 1.8.15. If A ∈ B(H), then we say that it is a trace-class operator
if the operator |A| is trace-class in the sense of the previous definition and we set

Tr(A) =
∞∑
i=1

〈Aei, ei〉

for the trace of A.

We need to show that the series defining Tr(A) is absolutely convergent for
every trace-class operator and that its value is independent of the choice of basis.
Take a trace-class operator A and write A = |A|U where U is a partial isometry.
In particular, |A|1/2 is a Hilbert-Schmidt operator. Since U is a partial isometry,
we see that ||U || ≤ 1. Thus, |A|1/2U is also a Hilbert-Schmidt operator, and
|||A|1/2U ||HS ≤ |||A|1/2||HS by the basic properties of Hilbert-Schmidt operators.
Then we see that

|Tr(A)| =

∣∣∣∣∣
∞∑
i=1

〈|A|Uei, ei〉

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
i=1

〈
|A|1/2Uei, |A|1/2ei

〉∣∣∣∣∣
=
∣∣〈|A|1/2U, |A|1/2〉

HS

∣∣
≤ || |A|1/2U ||HS · || |A|1/2 ||HS

≤ || |A|1/2 ||HS · || |A|1/2 ||HS = || |A|1/2 ||2HS

= Tr(|A|) <∞
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and in particular that

Tr(A) =
〈
|A|1/2U, |A|1/2

〉
HS
,

whose value does not depend on the choice of basis.
In the course of the previous proof, we notice that a trace-class operator

may be written as a product of two Hilbert-Schmidt operators: namely, A =
|A|1/2 ·|A|1/2U . It thus follows that every trace-class operator is a Hilbert-Schmidt
operator. More generally, if a bounded operator T ∈ B(H) can be written as
T = RS, where both R and S are Hilbert-Schmidt operators, then one can show
that T is a trace-class operator. To round out our observations of the connections
with Hilbert-Schmidt operators, we note that a quick calculation shows that

〈R, S〉HS = Tr(S∗R).

for all Hilbert-Schmidt operators R and S.
Next, we note that it is possible to turn the set BTr(H) of trace-class operators

into a Banach-space. We leave the proof to the reader. First one must show that
it is indeed a linear subspace of B(H), which is not too difficult. The norm on
the trace-class operators is given by ||A||Tr = Tr(|A|) for all A ∈ BTr(H).

It can furthermore be shown that BTr(H) is a two-sided ideal and that ||AB||Tr ≤
||A||Tr · ||B|| and ||BA||Tr ≤ ||B|| · ||A||Tr for all A ∈ BTr(H) and B(H). Finally,
one has the equality Tr(AB) = Tr(BA). The reader is encouraged to prove these
statements.

We have the following embeddings of two-sided ideals:

Bfin(H) ⊆ BTr(H) ⊆ BHS(H) ⊆ Bc(H) ⊆ B(H)

where Bfin(H) is the algebra of finite-rank operators. Each of these embeddings
except the first and last are continuous dense embeddings of Banach spaces.

We round out this section by mentioning the so-called Schatten p-classes and
corresponding norms. Fix 1 ≤ p < ∞. We say that an operator A ∈ B(H) is
in the Schatten p-class if the operator |A|p is a trace-class operator (here we
must use the functional calculus to define general positive powers of a positive-
definite operator). We denote this class of operators by Bp(H) and give it the
Banach-space norm

||A||p = Tr(|A|p)1/p

for all A ∈ Bp(H). The reader should quickly check that B1(H) = BTr(H)
and B2(H) = BHS(H). Furthermore, it is natural in some sense to set B∞ ≡
Bc(∞) and set the norm || · ||∞ equal to the operator norm. One then has dense
embeddings of Banach spaces Bp(H) ⊆ Bq(H) for all p < q. One can even prove
a sort of Hölder inequality among these p-norms, which behave very similar to
Lp spaces.
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1.9 Integral Kernels for Hilbert-Schmidt Oper-

ators

In this section, we will show yet another way to view Hilbert-Schmidt operators
in the context of function spaces. Suppose that (X,µ) is a σ-finite measure space
and consider the Hilbert space L2(X,µ). We say that an operator T ∈ B(H) is an
integral operator with kernel K if K : X×X → X is an almost-everywhere-
defined function such that

(Tf)(x) =

∫
X

f(y)K(x, y)dµ(y)

for all f ∈ L2(X). You should think of the kernel K as providing a “continuous
collection of matrix coefficients.” In general, the question of which kernel func-
tions define bounded operators and which operators are given by integral kernels
is a delicate one (see [6] for more), but here we will restrict ourselves to the case
where K ∈ L2(X ×X). In fact, the main aim of this section is to motivate and
sketch the proof of the following theorem:

Theorem 1.9.1. There is a natural unitary isomorphism between L2(X × X)
and BHS(L2(X)) given by the correspondence K 7→ TK for all K ∈ L2(X ×X),
where TK is the operator given by

(TKf)(x) =

∫
X

f(y)K(x, y)dµ(y)

for all f ∈ L2(X).

Proof. The previous section provides a unitary map L2(X)⊗L2(X)∗ → BHS(L2(X)).
We will thus begin by constructing a unitary map L2(X×X)→ L2(X)⊗L2(X)∗.
The proof will be finished when we show that the composition of these two maps
is equal to the map K 7→ TK from L2(X ×X) to BHS(L2(X)).

Consider a simple tensor f ⊗ g ∈ L2(G) ⊗ L2(G)∗, where f, g ∈ L2(G). We
then map f ⊗ g to the function in L2(X, Y ) given by (x, y) 7→ f(x)g(y). Because
the value of this new function is linear in f and antilinear in g, we see that it
extends to a linear map from R : L2(X)⊗L2(X)∗ → L2(X ×X). The map is an
isometry because:∫

X×X
|f(x)g(y)|2dx dy =

∫
X

|f(x)|2dx
∫
X

|g(y)|2dy

= ||f ||2||g||2

= ||f ⊗ g||2

Thus, as soon as we show that R has a dense image, we will know that R :
L2(X) ⊗ L2(X)∗ → L2(X × X) is a unitary map. Suppose that {ei}i∈N is an
orthonormal basis for L2(X). Then so is {ei}i∈N. Thus {ei ⊗ ej}i,j∈N is an
orthonormal basis for L2(X) ⊗ L2(X)∗. By an abuse of notation we will denote
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the function (x, y) 7→ ei(x)ej(y) by ei × ej. To show that R has a dense image,
it will be enough to show that {ei ⊗ ej}i,j∈N is a basis for L2(X ⊗X). It is clear
that this set of functions is orthonormal.

Suppose now that f ∈ L2(X × X). For each x, y ∈ X, we use the notation
fy for the fuction given by fy(x) = f(x, y) and fx for that given by fx(y) =
f(x, y). Note that fy, f

x ∈ L2(X) for almost all x, y ∈ X. We will also use the
notation 〈f•, ei〉 ∈ L2(X) for the function y 7→ 〈fy, ei〉. We will use Parseval’s
equality, which says that because {ei}i∈N is a basis for L2(X), one has that
||g||2 =

∑
i=1∞|〈g, ei〉|2 for all g ∈ L2(X). Then:

∞∑
i,j=1

|〈f, ei ⊗ ej〉|2 =
∞∑

i,j=1

∣∣∣∣∫
X×X

f(x, y)ei(x)ej(y)dx dy

∣∣∣∣2
=

∞∑
i,j=1

∣∣∣∣∫
X

〈fy, ei〉ej(y)dy

∣∣∣∣2
=

∞∑
i,j=1

|〈〈f•, ei〉, ej〉|2

=
∞∑
i=1

||〈f•, ei〉||2 (since {ej}j∈N is a basis for L2(X))

=
∞∑
i=1

∫
X

|〈fy, ei〉|2dy

=

∫
X

||fy||2dy (since {ei}i∈N is a basis for L2(X))

=

∫
X

∫
X

|f(x, y)|2dx dy = ||f ||2.

Hence {ei⊗ej}i,j∈N is an orthonormal basis for L2(X×X) by Pareseval’s equality.
We thus have a unitary map R : L2(X)⊗ L2(X)∗ → L2(X ×X). Finally, we

recall from the previous section that there is a unitary map S : L2(X)⊗L2(X)∗ →
BHS(L2(X)). Thus, the map SR−1 : L2(X × X) → BHS(L2(X)) is the unitary
map we want.

On simple tensors, one sees that S(f ⊗ g) = Pf,g is the rank-one operator
given by Pf,g(h) = 〈h, g〉f for all f, g ∈ L2(X). Thus, if we consider the function
f ⊗ g ∈ L2(X ×X) given by (f ⊗ g)(x, y) = f(x)g(y), then we have that:

SR−1(f ⊗ g)h(x) = (Pf,gh)(x)dx

= 〈h, g〉f(x)dx

=

∫
X

h(y)f(x)g(y)dy.

Hence, the simple tensor f ⊗ g ∈ L2(X ×X) corresponds to the integral kernel
operator Tf⊗g with kernel f ⊗ g.
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Since the map K 7→ TK is bilinear on simple tensors and agrees with SR−1

on all simple tensors, it follows that the map K 7→ TK is exactly the same as the
unitary operator SR−1, and we are done.

As an example of how operator kernels behave like matrices, we notice that
if K,R ∈ L2(X × X) are kernels for the Hilbert-Schmidt operators TK and TR,
then TKTR is a Hilbert-Schmidt operator with an integral kernel S ∈ L2(X ×X)
which we now calculate:

(TKTRf)(x) = TK

(∫
X

f(y)R(·, y)dµ(y)

)
(x)

=

∫
X

∫
X

f(y)R(z, y)dµ(y)K(x, z)dµ(z)

=

∫
X

f(y)

∫
X

K(x, z)R(z, y)dµ(z)dµ(y)

=

∫
X

f(y)S(x, y)dµ(y),

where

S(x, y) =

∫
X

K(x, z)R(z, y)dµ(z)

for almost all x, y ∈ X (one must of course carefully justify the use of Fubini’s
Theorem). In other words, integral kernels multiply like matrices.

Next, we see how to compute the adjoint of an operator with an integral kernel.
For each K ∈ L2(X,X), we define K∗ ∈ L2(X,X) by setting K∗(x, y) = K(y, x).
It then turns out that T ∗K = TK∗ . In fact, we have that:

〈TKf, g〉 =

∫
X

∫
X

f(y)K(x, y)dy g(x)dx

=

∫
X

f(y)

∫
X

K(x, y)g(x)dx dy

=

∫
X

f(y)

∫
X

K∗(y, x)g(x)dx dy

= 〈f, TK∗g〉

for all f, g ∈ L2(X). (Of course, one must justify the use of Fubini’s Theorem.)
In the future, we will also need the following theorem, which we will not prove.

Theorem 1.9.2. Suppose that T : L2(X)→ L2(X) is a Hilbert-Schmidt operator
with kernel K ∈ L2(X × X). If the map x 7→ K(x, x) is continuous almost
everywhere and integrable (that is, an element of L1(X)), then T is a trace-clase
operator, and the trace is given by:

TrT =

∫
X

K(x, x)dx.

This result is another example in which an integral kernel acts like a “continuous
matrix.”
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1.10 Construction of New Representations from

Old

In this section we introduce some of the operations which may be performed
on representations to construct new ones. We have already seen two important
examples: the direct sum of representations and its generalization, the direct
integral.

1.10.1 The Contragredient of a Representation

Suppose that (π, V ) is a continuous representation of a topological group G on a
complex, locally convex topological vector space V . Let V ∗ denote the dual space
of continuous linear functionals and give it a topology. If φ ∈ V ∗ and v ∈ V ,
then we will often use the bracket notation:

〈v, φ〉 ≡ φ(v)

for the evaluation of the functional φ. We wish to construct a “dual representa-
tion” to π, which should be a representation of G on V ∗. To begin with, there
is already a well-known process for taking operators in B(V ) and dualizing them
to produce operators from V ∗ to V ∗. In particular, if T : V → V is a bounded
operator, then we construct an operator T ∗ : V ∗ → V ∗ as follows. If φ ∈ V ∗,
then T ∗φ is the functional in V ∗ defined by

〈v, T ∗φ〉 ≡ 〈Tv, φ〉. (1.1)

In fact, one shows that T ∗ : V ∗ → V ∗ is continuous if V ∗ is given the weak-∗
topology (and also if V ∗ is given the norm topology in the case that V is a Banach
space).

We can now the contragredient representation (π∗, V ∗) by setting

π∗(g) = π(g−1)∗ ∈ GL(V ∗),

for each g ∈ G, where π(g−1)∗ denotes the adjoint of π(g−1). Note that it is
necessary to use g−1 in this definition instead of g in order to make π∗ : G →
GL(V ∗) a homomorphism, because both the operator adjoint and group inverses
are anti-automorphism.

One thing that we didn’t clarify above is what topology we wish to put on the
dual space V ∗. There are several choices, and it is natural to ask which topologies
on V ∗ make the contragredient representation π∗ continuous.

Theorem 1.10.1. Suppose that (π, V ) is a continuous representation of a topo-
logical group G on a complex, locally convex topological vector space V . Then the
representation (π∗, V ∗) is continuous if V ∗ is given the weak-∗ topology.
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Proof. We begin by showing that that π∗ is continuous if V ∗ is given the weak-∗
topology. Fix λ ∈ V ∗ and prove the continuity of the map g 7→ π∗(g). Because
we have given V ∗ the weak-∗ topology, it suffices to show that G → V , g 7→
〈v, π∗(g)λ〉 is continuous for all v ∈ V . But 〈v, π∗(g)λ〉 = 〈π(g−1)v, λ〉. The map
g 7→ π(g−1)v is continuous by the strong continuity of π and because g 7→ g−1

is continuous. Finally, λ : V → C is continuous, and so it follows that g 7→
〈π(g−1)v, λ〉 = 〈v, π∗(g)λ〉 is continuous for all choices of v ∈ V and λ ∈ V ∗.
Thus π∗ is a strongly continuous representation of G on V ∗.

Next we move on to the case of Banach spaces. Here, it is often natural to put
a Banach space topology on V ∗ given by the operator norm, instead of the weak-∗
topology. When V ∗ is given the norm topology, is π∗ still a strongly continuous
representation? The answer is, fortunately, yes.

Theorem 1.10.2. Suppose that (π, V ) is a continuous representation of a topo-
logical group G on a Banach space V . Then the representation (π∗, V ∗) is con-
tinuous if V ∗ is given the norm topology.

Proof. Left to the reader as an exercise.

1.10.2 The Contragredient of a Unitary Representation

Finally, we move to the case of Hilbert spaces. Here we must be slightly careful,
because there are two different notions of the adjoint of an operator floating
around. In particular, if H is a complex Hilbert space and T ∈ B(H) is a
bounded operator, then we can consider the operator T ∗ defined by (1.1), which
is a bounded operator on H∗. We can also consider the operator T ∗ : H → H
defined so that for each v ∈ H, T ∗v is the vector in H such that

〈w, T ∗v〉H = 〈Tv, w〉H (1.2)

for all w ∈ H. In this case, however, the bracket is an inner product on H rather
than the pairing between H and H∗, as in (1.1).

If H were a Hilbert space over the field of real numbers, then there would be
a natural linear isomorphism of H and H∗. The problem is that for a complex
Hilbert space, the natural identification of H with H∗ is an antilinear isometry
rather than a linear isometry. Of course, all separable infinite-dimensional Hilbert
spaces are isomorphic, so there are, in fact, unitary isomorphisms between H and
H∗, but there is no canonical choice of such an isomorphism. There must be a
choice of a complex conjugation on H before such an isomorphism is uniquely
determined.

We briefly flesh out the details here. For each v ∈ H, we associate v ∈ H∗ by
setting v(w) = 〈w, v〉H for w ∈ H. This map H → H∗ given by v 7→ v is sadly
antilinear and not linear. In particular, we have that 〈v, w〉H∗ = 〈w, v〉H.

Now suppose that we choose a real Hilbert space K such that H ∼= K ⊕ iK.
There are many such choices and in general there is no canonical choice, although
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we note that if H is a Hilbert space of functions with values in C, then the real
subspace of functions with values in R is a natural choice for K. We say that K is
a real form of H. Under the choice of a real form K, the conjugation map is the
antiunitary operator c : H → H given by c(v + iw) = v − iw if v, w ∈ K. Then
we may construct a unitary linear operator U : H → H∗ by setting v 7→ c(v)
for each v ∈ H (it is linear because it is given by a composition of two antilinear
operators).

Next suppose that T : H → H. To avoid confusion, we donote the adjoint
in the sense of (1.1) by A† : H∗ → H∗ and the adjoint in the sense of (1.2) by
A∗ : H → H. We want to compare the operators A∗ : H → H and U−1A†U :
H → H, where U : H → H∗ is the unitary identification of H with its dual.
Now by definition, if φ ∈ H∗, then A†φ(v) = φ(Av) for all v ∈ H. In particular,
if w ∈ H, then w ∈ H∗ and thus A†w(v) = w(Av) = 〈Av,w〉H = 〈v,A∗w〉. In
particular, we see that A†(w) = A∗(w), where as usual the overline denotes the
antilinear map from H → H∗.

〈U−1A†Uv,w〉H = 〈A†Uv, Uw〉H∗

= 〈A†c(v), c(w)〉H∗

= 〈A∗c(v), c(w)〉H∗

= 〈c(w), A∗c(v)〉H
= 〈A∗c(v), c(w)〉H

In other words, after using our unitary map UH → H∗ to pull back A† : H∗ →
H∗ to a linear operator on H, we see that the resulting operator is not quite the
same as our old friend A∗. We will use the notation U−1A†U ≡ AT for reasons
which will soon become clear. In other words, the above calculations boil down
to:

〈ATv, w〉H = 〈A∗c(v), c(w)〉H.
Now suppose that {ei} is a basis forH which lies entirely insideK. Then c(ei) = ei
for each basis element and thus we see that:

〈AT ei, ej〉H = 〈A∗ei, ej〉H.

In other words, the matrix coefficients for AT are the complex conjugates of the
matrix coefficients for A∗. In fact, the matrix for AT is simply the transpose of
the matrix for A, where as the matrix for A∗ is the conjugate transpose of that
for A.

We are now finally able to discuss the contragredient of a unitary represen-
tation (π,H) of G. Then there is the contragredient representation (π∗,H∗).
We choose a real form K for H and use the unitary map U : H → H∗ to pull
π∗ back to an equivalent representation on H. Furthermore we pick a basis for
{ei} is a basis for H which lies entirely inside K. Recall that π∗ is defined by
π∗(g) = π(g−1)†. Thus, when we pull back to a representation on H (which we
will denote by π), we get that π(g) = π(g−1)T . Thus,

〈π(g)ei, ej〉 = 〈π(g−1)∗ei, ej〉 = 〈π(g)ei, ej〉
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for each i, j and g ∈ G. In other words, π is the representation of G obtained
from π by replacing all matrix coefficients with their conjugates. For this reason,
we often describe (π,H) (and the equivalent representation (π∗,H)) by saying
that it is the representation conjugate to π.

Example 1.10.3. Consider the one-dimensional representation χr of R given by
θξ(x)z = e2πiξxz for all z ∈ C, where ξ ∈ R. Then the contragredient representa-
tion is given by taking complex conjugates of the matrix coefficients of θξ. That
is, θξ(x)z = e−2πiξxz for all z ∈ C, so that θξ = θ−ξ. In particular, we see that
θξ is inequivalent to θξ in all cases except for the trivial representation, which
satisfies θ0 ≡ θ0. We say that θ0 is a self-conjugate representation.

Example 1.10.4. Now consider the group SO(n). Since n × n matrices with
real coefficients may be naturally considered to be n× n matrices with complex
coefficients, we see that SO(n) can be considered a subgroup of U(n). We can
thus define a natural representation (π,Cn) of SO(n) by simply considering it as
a subgroup of U(n)—that is, it is a group of linear operators on Cn, so we simply
let those operators “act naturally” on Cn. So π is the inclusion map π : SO(n)→
U(n). However, we the matrix coefficients of any matrix in SO(n) ≤ U(n) are
always real-valued. It follows that π is self-conjugate.

1.10.3 A Little More About Direct Sums

If (π, V ) and (σ,W ) are unitary representations, then we already know how to
construct the direct sum π ⊕ σ. In fact, if {(πn, Vn)}n∈N is a sequence of unitary
representations of G, then the same definition may be modified in the obvious
way to define the infinite direct-sum representation (⊕∞n=1πn,⊕∞n=1Vn). The main
new result we wish to introduce in the section is the following:

Lemma 1.10.5. Suppose that (π, V ), (σ,W ), and (ρ,H) are unitary representa-
tions of a group G. Then there is a natural linear isomorphism:

HomG(H, V ⊕W ) ∼= HomG(H, V )⊕ HomG(H,W ).

In fact, the same equality holds true for infinite direct sums of representations.

Proof. Student exercise.

1.10.4 Tensor Products of Representations: Inner and
Outer

We have already defined the tensor product of two Hilbert spaces, and so we
can now define the tensor product of unitary representations in the same way we
defined the direct sum of unitary representations. Suppose that (π,H) and (σ,K)
are unitary representations of a group G. Then we define a new representation
π ⊗ σ of G on H⊗K by setting:

(π ⊗ σ)(g)(v ⊗ w) = π(g)v ⊗ σ(g)w
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for all v ∈ H and w ∈ K. One must show that this representation is well-defined
and extends by linearity from the simple tensors to all of H ⊗ K (in fact, this
follows from the fact that on simple tensors v ⊗w, the value of π(g)v ⊗ π(g)w is
bilinear in v and w). The fact that π⊗ σ is unitary follows from the fact that on
simple tensors, we have that:

||(π ⊗ σ)(v ⊗ w)||H⊗K = ||π(g)v||H||σ(g)w||K = ||v||H||w||K

for all v ∈ H and w ∈ K. We say that π ⊗ σ is the inner tensor product or
just tensor product of the representations π and σ.

This inner tensor product is a functor which takes two unitary representa-
tions of a group G and produces a new unitary representation of G on the tensor
product of the Hilbert spaces. The outer tensor product, on the other hand, is a
functor which takes a unitary representation of a group G and a unitary repre-
sentation of another group H and then produces a new unitary representation of
G×H on the tensor product of the Hilbert spaces.

In particular, suppose that (π,H) is a unitary representation of G and that
(σ,K) is a unitary representation of H. Then we define a representation π� σ of
the group G×H on the Hilbert space H⊗K by setting:

(π � σ)(g, h)(v ⊗ w) = π(g)v ⊗ σ(h)w

for all (g, h) ∈ G × H, v ∈ H, and w ∈ K. As before, one must show that this
definition is well-defined and extends by linearity to all of H ⊗ K. We say that
π ⊗ σ is the outer tensor product of π and σ.

In general, the inner tensor product of two irreducible representations does
of a group G does not produce an irreducible representation of G. For example,
if we take a group G and a unitary representation (π, V ) where dimV ≥ 2, then
the exterior product V ∧ V of anti symmetric tensors is an invariant subspace of
V ⊗ V . In fact, the orthogonal complement of V ∧ V is the symmetric product
V S V . That is, one may write

V ⊗ V ∼=G (V ∧ V )⊕ (V S V ).

We use the notation (π∧π, V ∧V ) and (π S π, V S V ) to refer to the action of G
on these invariant subspaces of V ⊗V . One may similar define an exterior power

∧kπ,∧kV or symmetric power S
k
π, S

k
V of a unitary representation (π, V ).

However, outer tensor products behave very differently, as shown by the next
theorem:

Theorem 1.10.6. Suppose that (π,H) is an irreducible unitary representation
of a group G and that (σ,K) is an irreducible unitary representation of a group
H. Then π � σ is an irreducible representation of G×H.

Proof. By Schur’s Lemma, it is sufficient to show that

dim HomG×H(π � σ, π � σ) = 1. (1.3)
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In fact, by Schur’s Lemma we already have that dim HomG(π, π) = 1 and that
dim HomH(σ, σ) = 1.

Suppose that T : H⊗K → H⊗K is a bounded intertwining operator for π⊗K.
Fix w ∈ K and consider the subspace H⊗{w} = {v⊗w ∈ H⊗K | v ∈ H}. While
H⊗ {w} is not in general an invariant subspace under the action of G⊗H, it is
invariant under the action of the subgroup G⊗ {e}. Furthermore, the restricted
action of G ⊗ {e} on the subspace H ⊗ {w} is equivalent to the representation
(π,H) and is in particular irreducible.

But T is an intertwining operator for the representation of G ⊗ H, and it
in particular intertwines the action of G ∼= G ⊗ {e} on H ⊗ {w}. Since this
subrepresentation is an irreducible representation of G, we see that there must
be a constant c(w) ∈ C such that T (v ⊗ w) = c(w)v ⊗ w for all v ∈ H.

Performing the same argument for the restricted action of {e} ⊗ H on the
subspace {v} ⊗ K ⊆ H ⊗ K for any fixed v ∈ H, we see that there must be a
constant d(v) ∈ C such that T (v ⊗ w) = d(v)v ⊗ w for all w ∈ K. Since we see
that T (v⊗w) = d(v)v⊗w = c(w)v⊗w for all v ∈ H and w ∈ K, it follows that
we must have that d(v) = c(w) for all v ∈ H, w ∈ K. In particular, there is a
constant c ∈ C such that

T (v ⊗ w) = cv ⊗ w

for all v ∈ H and w ∈ K. Extending by linearity to all of H ⊗ K, we see that
T = c Id. Since T was arbitrary, we have thus shown (1.3).



Chapter 2

The Abstract Plancherel
Formula: A Guiding Light

As we mentioned in the previous section, the foundational problem of harmonic
analysis is to provide, for a particular group G or homogeneous space G/H, a
decomposition of the regular representation into irreducible components. This is
possible for a very broad class of locally-compact groups, called Type I groups.

Definition 2.0.7. A topological group G is said to be of Type I if every pri-
mary representation of G decomposes into a direct sum of copies of the same
irreducible representation. (See Definition 1.3.10 for the definition of primary
representations.)

This class includes all abelian groups, compact groups (see [7, p. 206]) and
semisimple Lie groups (see [12, p. 230]), for example.

The Abstract Plancherel Theorem assures us that a decomposition of the
regular representation is possible for all locally compact, separable Type I groups.
To simplify the formulas, we will assume that G is also unimodular.

As with classical Fourier analysis, the convolution product is one of the most
important tools in harmonic analysis on G. For any functions f, g ∈ Cc(G), we
define

f ∗ g(x) =

∫
G

f(y)g(x−1y) dy

Let Ĝ denote the set of all equivalence classes of unitary representations of
G. Then for each f ∈ L1(G) and each irreducible unitary representation (π,H)
we define the operator-valued Fourier transform

f̂(π) =

∫
G

f(g)π(g−1)dg ∈ B(H).

This operator-valued integral is meant in the weak sense. That is,

〈f̂(π)v, w〉 =

∫
G

f(g)〈π(g−1)v, w〉dg ∈ B(H).
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for all v, w ∈ H.
The operator-valued Fourier transform f̂(π) is very closely related to the

integrated representation of π, which is given by

π(f) =

∫
G

f(g)π(g)dg ∈ B(H).

In fact, it follows that f̂(π) = π(f∨), where f∨(g) = f(g−1) (here it is necessary to

use that G is unimodular). Another quick computation shows that f̂(π)∗ = π(f).
The Fourier transform and the integrated representations will both be useful in
different contexts.

The operator-valued Fourier transform has all the expected properties of a
Fourier transform:

1. f̂ ∗ g(π) = f̂(π)ĝ(π) and π(f ∗ g) = π(f)π(g) for f, g ∈ L1(G)

2. f̂ ∗ = f̂(π)∗ and π(f ∗) = π(f)∗ for all f ∈ L1(G)

3. ||f̂(π)||op ≤ ||f ||1 and ||π(f)||op ≤ ||f ||1, where || · ||op denotes the operator
norm on B(H).

for f, g ∈ L1(G) and π ∈ Ĝ. Furthermore, if g ∈ G and f ∈ L1(G), then

L̂gf(π) =

∫
G

f(g−1x)π(x−1)dx

=

∫
G

f(x)π((gx)−1)dx = f̂(π)π(g−1).

Similarly, on the level of integrated representations, we have that

π(Lgf) =

∫
G

f(g−1x)π(x)dx

=

∫
G

f(x)π(gx)dx = π(g)π(f).

We are now finally able to state the Abstract Plancherel Theorem. Its mean-
ing will likely become clearer when we review the Peter-Weyl theory in the next
section. It is most naturally stated as a decomposition of the biregular represen-
tation of G×G on L2(G) given by:

L(g1, g2)f(x) = f(g−1
1 xg2)

for all f ∈ L2(G) and x, g1, g2 ∈ G.

Theorem 2.0.8. (The Abstract Plancherel Theorem; see [4, p. 368]). Let G be a

Type I separable, locally-compact unimodular topological group. For each π ∈ Ĝ,
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choose a representative irreducible representation (π,Hπ) of G. Then there is a

unique measure µ on Ĝ such that

L2(G) ∼=G×G

∫ ⊕
Ĝ

Hπ ⊗Hπ dµ(π)

and so that for all f ∈ L1(G) ∩ L2(G), one has

||f ||2 =

∫
Ĝ

∣∣∣∣∣∣f̂(π)
∣∣∣∣∣∣2
HS

dµ(π),

where || · ||HS denotes the Hilbert-Schmidt operator norm.
Finally, it is possible to show that

f(g) =

∫
Ĝ

Tr
(
f̂(π)π(g)

)
dµ(π)

for all g ∈ G and all f may be written as a finite linear combination of convolu-
tions of functions in L1(G) ∩ L2(G).

Implicit in these statements, of course, is the claim that f̂(π) ∈ B(H) is a

Hilbert-Schmidt operator for µ-almost all π ∈ Ĝ if f ∈ L1(G) ∩ L2(G) and that

f̂(π) is of trace class for µ-almost all π ∈ Ĝ if f is a finite linear combination of
convolutions of functions in L1(G) ∩ L2(G).

To see the Plancherel Formula from a distributional point of view, now sup-
pose that G is also a Lie group. Then we may consider the space D(G) ≡ C∞c (G)
of smooth, compactly supported functions on G and its dual space D′(G) of dis-
tributions on G. Then the delta distribution δ ∈ D′(G) is defined, as usual,
by

〈ϕ, δ〉 = ϕ(e)

for all ϕ ∈ D(G). Next, hope to define a distribution θπ ∈ D′(G) for most

representations π ∈ Ĝ by setting

〈ϕ, θπ〉 = Tr (ϕ̂(π)) .

If, indeed, the operator ϕ̂ ∈ B(H) is a trace-class operator for all ϕ ∈ D(G),
then we say that π is a representation with character and say that θπ is the
distributional character of π.

Finally, the fact that f(e) =
∫
Ĝ

Tr
(
f̂(π)

)
dµ(π) for f in a dense subspace of

L2(G) leads us to expect that we might be able to decompose the delta distribu-
tion as

δ =

∫
Ĝ

θπ dµ(π).

This, in fact, will be the form in which we prove the Plancherel formula for
semisimple groups.



CHAPTER 2. THE ABSTRACT PLANCHEREL FORMULA: A GUIDING LIGHT48

2.1 The Plancherel Formula for Compact Groups:

The Peter-Weyl Theory

In this section we discuss the Peter-Weyl theory of harmonic analysis on com-
pact groups. The books [6, 7] are good sources for the material in this section.
The theory is simpler for compact groups, because every Hilbert representation
is unitarizable by Theorem 1.6.1 and furthermore, every unitary representation
may be decomposed into a direct sum of finite-dimensional, irreducible subrep-
resentations:

Theorem 2.1.1. Suppose that (π,H) is a unitary representation of a compact
group G. Then H contains a finite-dimensional invariant subrepresentation.

Proof. Here we follow the proof in [7] For each v ∈ H, we define an operator
Kv : H → H by

Kvw =

∫
G

〈w, π(g)v〉π(g)vdg.

Furthermore, one quickly checks that K is self-adjoint. The key to the proof is
the fact that K is a compact operator on H; we sketch the argument here. For
each u ∈ H, and g ∈ G there is a self-adjoint, rank-one (and hence compact)
operator Pu defined by Puw = 〈w, u〉u. One then checks that

Kv =

∫
G

Pπ(g)vdg

in the week sense. Because it is an integral of compact self-adjoint operators over
a compact set, it follows that Kv is a compact, self-adjoint operator. Furthermore,
one shows that Kv ∈ B(H) is an intertwining operator.

The spectral theorem for compact self-adjoint operators says that H decom-
poses into a discrete direct sum of eigenspaces of Kv, all of which are finite
dimensional except possibly the 0 eigenspace. Each of these eigenspaces are in-
variant subspaces of H because Kv is an intertwining operator. If v 6= 0, then
Kv 6= 0 and hence H possesses a finite-dimensional invariant subspace.

Corollary 2.1.2. Every irreducible representation of a compact group is finite-
dimensional.

We therefore restrict ourselves to finite-dimensional representations. Suppose
that (π, V ) is a finite-dimensional unitary representation of a compact group G.
While it is no longer true that we can necessarily describe irreducible represen-
tations of G in terms of one-dimensional representations, there is still a useful
notion of character. We define the character of π to be the function θπ : G→ C
given by π(g) = Tr(π(g)). Characters have the following properties, which may
be verified without much difficulty. Suppose that (π, V ) and (σ,W ) are finite-
dimensional representations of G. Then

1. θπ(e) = dπ ≡ dimV
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2. θπ⊕σ = θπ + θσ

3. θπ = θσ if and only if π ∼= σ.

Similar in importance to characters are the matrix coefficients for a repre-
sentation (π, V ) of G. We set

πv,w(g) = 〈v, π(g)w〉

for each v, w ∈ V . Note that if {e1, . . . edπ} is a basis for V , then

θπ(g) = Tr(π(g)) =
dπ∑
i=1

πei,ei(g).

Next, one proves the Schur orthogonality relations:

1. 〈πv1,w1 , πv2,w2〉 = 1
dπ
〈v1, v2〉〈w1, w2〉 for all v1, v2, w1, w2 ∈ V

2. 〈πv1,w1 , σv2,w2〉 = 0 for all v1, w1 ∈ V and v2, w2 ∈ W , if π � σ

where (π, V ) and (σ,W ) are irreducible representations of G.
Suppose that (π, Vπ) is an irreducible representation of G. Then the Schur

orthogonality relations imply that v 7→ πv,w is an injective intertwining operator
from V to L2(G) for each fixed w ∈ H. In fact, the space

H̃π = span{πv,w|v, w ∈ V } ⊆ L2(G)

may be naturally identified with the tensor product Hilbert space Vπ⊗Vπ, which
of course may be naturally identified with the space B2(Vπ) of linear operators
on Vπ under the Hilbert-Schmidt inner product. The Peter-Weyl Theorem ties
everything together:

Theorem 2.1.3. (Peter-Weyl Theorem). Let G be a compact group, and let Ĝ
denote the set of all equivalence classes of irreducible unitary representations. For
each π ∈ Ĝ, choose a representative irreducible representation (π, Vπ) of G. Then

L2(G) ∼=G⊗G
⊕
π∈Ĝ

Vπ ⊗ Vπ

and so that for all f ∈ L2(G), one has

||f ||2 =
∑
π∈Ĝ

dπ

∣∣∣∣∣∣f̂(π)
∣∣∣∣∣∣2
HS
,

where || · ||HS denotes the Hilbert-Schmidt operator norm.
Finally, it is possible to show that

f(g) =
∑
π∈Ĝ

dπTr
(
f̂(π)π(g)

)
for all f ∈ L2(G), where the sum is taken in the L2-norm.
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The upshot of this theorem is that the Plancherel measure on Ĝ is the discrete
measure with weight dπ at each π ∈ Ĝ.

While the Plancherel measure for the groups we study will not be discrete,
much of this theory does carry over to the so-called discrete series representations,
as we will later see.



Chapter 3

Induction of Representations

Suppose that G and H are locally-compact topological groups and that H is
a closed subgroup of G. We have already seen how to construct a “quasiregu-
lar” representation of G on L2(G/H), even in the case that G/H does not have
invariant measures. In this section, we will see an important generalization of
this representation, which will allow us to use a representation of H to induce a
representation of G.

Before we present the definition, however, we remind the reader that there is a
very simple way to take a representation of G and produce a representation of H.
Suppose that (π,H) is a unitary representation of G on a Hilbert space H. Then
we can construct a representation (ResGH π,H) of H by setting ResGH π(h) = π(h)
for each h ∈ H. That is, ResGH π = π|H is simply the restriction of the homo-
morphism π : G → U(H) to H. It is also not difficult to show that ResGH is a
functor from the category of representations of G to the category of representa-
tions of H. (In particular, each intertwining operator T : V → W , where (π, V )
and (σ,W ) are representations of G, is mapped to itself by the functor ResGH π.
This is because each such intertwining operator is automatically an intertwining
operator between π|H and σ|H .)

In this section, then, we will consider the dual concept: we will construct a
functor from the category of representations of H to the category of represen-
tations of G. In fact, if H and G are compact groups, then we will see that
this new functor is an adjoint of the restriction functor. This is the famous and
ever-useful Frobenius Reciprocity Theorem. While this theorem is not true in the
context of noncompact groups, there is a weaker replacement for it: the famous
Imprimitivity Theorem of George Mackey, which forms the basis of the “little
group method” or “Mackey machine.”

We are now, finally, ready for the definition. We fix a unitary representation
(σ, V ) of H. Suppose that µ is a G-quasi-invariant measure on G/H. We will
define a new representation IndGH σ on a Hilbert space IV which is defined as:

IV =

{
f : G→ V

∣∣∣∣ f(gh) = σ(h)−1f(g) for all g ∈ G, h ∈ H∫
G/H
||f(g)||2V dµ(gH) <∞

}
,
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in which the norm is given by

||f ||2 =

∫
G/H

||f(g)||2V dµ(gH). (3.1)

In other words, IV is a space of functions on G with values in the Hilbert Space
V . We remark to the reader that ||f(gh)||V = ||σ(h)−1f(g)||V = ||f(g)||V for all
g ∈ G and h ∈ H because σ is a unitary representation on V . In other words,
g 7→ ||f(g)||V factors through to a map from G/H to R+. Thus the integral over
G/H in (3.1) is well-defined.

To simplify the notation, for now we will set π ≡ IndHG σ. Since induction is
intended to be a generalization of quasi-regular representations, it is perhaps not
surprising that we set the action to be:

(π(g)f)(x) = ρ(g−1, xH)1/2f(g−1 · x) ∈ V

for all g ∈ G and f ∈ IV (recall that ρ is a function on G × G/H and that the
norm of f(x) depends only on the value of xH ∈ G/H).

To show that π is a representation, we should first check that π(g)f is again
an element of IV for each f ∈ IV . Suppose that h ∈ H, g, x ∈ G, and f ∈ IV .
Then

(π(g)f)(xh) = ρ(g−1, xhH)1/2f(g−1xh)

= ρ(g−1, xH)1/2σ(h)−1f(g−1h)

= σ(h)−1(π(g)f)(x),

by the equivariance property of f ∈ IV , where we remind the reader that
ρ(g−1, xH) ∈ R+ and f(g−1xh) ∈ V .

The fact that π gives a representation (i.e., that π(g1g2) = π(g1)π(g2) for
all g1, g2 ∈ G follows from essentially the same calculation as in (1.5). The only
difference is that we are dealing with V -valued functions on G instead of C-valued
functions on G/H. In fact, for each g1, g2, x ∈ G and f ∈ IV , we have:

π(g1g2)f(x) = ρ(g−1
2 g−1

1 , xH)1/2f(g−1
2 g−1

1 x)

= ρ(g−1
1 , xH)1/2ρ(g−1

2 , g−1
1 xH)1/2f(g−1

2 g−1
1 x) dµ(x)

= π(g1)
(
ρ(g−1

2 , ◦H)1/2f(g−1
2 · ◦)

)
(x)

= π(g1)π(g2)f(x).

That π is unitary follows from basically the same calculation in (1.4), except
that we must use the fact that for each f ∈ IV , the map g 7→ ||f(g)||V factors
through a function from G/H to R+. In fact, for each g ∈ G and f ∈ IV , we
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have

||π(g)f ||2 =

∫
G/H

||ρ(g−1, x)1/2f(g−1 · x)||2V mu(x)

=

∫
G/H

||ρ(g−1, x)|f(g−1 · x)|||2V dµ(x)

=

∫
G/H

||f(x)||2V dµ(x) = ||f ||2.

We have now demonstrated that π ≡ IndGH σ is a unitary representation of G.
In other words, we have a procedure for taking a representation of the smaller

group H and constructing a representation of the bigger group, G. In fact,
this procedure is a functor from the category of representations of G to the
category of representations of H. There is some work to do, however, to prove
this claim. First of all, a functor should not only take objects in one category
to objects in the other, but also morphisms from the one category to morphisms
for the other category. In other words, for each pair (σ, V ) and (π,W ) of unitary
representations of H and each intertwining operator T : V → W , we must
produce in a natural way an intertwining operator IndGH T : IV → IW . In fact,
this is not so difficult. Supposing that T ∈ HomH(V,W ) and f ∈ IV , then
(IndGH T )f should be in IW (in particular, it should be a W -valued function on
G). We define (IndGH T )f by setting

(IndGH T )f(x) ≡ T (f(x)) ∈ W.

for each x ∈ G.
To check that IndGH is a functor, we need to show that it sends identity mor-

phisms to identity morphisms and compositions of morphisms to compositions of
morphisms. First of all, if (σ, V ) is a unitary representation of H and 1V : V → V
is the identity map, then IndGH 1V : IV → IV is given by

(IndGH 1V )f(x) = 1V (f(x)) = f(x)

for each f ∈ IV and x ∈ G. Thus, we see that (IndGH 1V ) = 1IV .
Next, suppose that (σ1, V1), (σ2,W ), and (σ3, V3) are unitary representations

of H and that T : V2 → V3 and S : V1 → V2 are H-intertwining operators. We
must show that IndGH(T ◦ S) = (IndGH T ) ◦ (IndGH S). To do that, we fix f ∈ IV1
and x ∈ G. Then

(IndGH TS)f(x) ≡ T (S(f(x))) = IndGH T (IndGH S(f))(x),

and we are done. Thus IndGH is a functor, which means that our method of
producing representations of G from representations of H is a good one, from the
perspective of category theory.

Our next steps will be to examine the simpler case in which both G and H
are compact groups. In that case, we will be able to show that ResGH and IndGH
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are adjoint functors. This is, of course, the famous Frobenious Reciprocity. Next
we will show that the induction functor commutes with direct sums and that
so-called induction in stages works. We will then show two other routes to the
construction of induced representations. We will end with some notes about the
construction of intertwining operators between induced representations for finite
groups, which is the inspiration for the theory of intertwining operators between
generalized principal series representations.

3.1 Frobenius Reciprocity

In this section, we suppose that G and H are compact groups. Then G/H has
an invariant-measure and, in fact, the definition of induction simplifies in the
following way: If (σ, V ) is an irreducible unitary representation of H, then the
induced representation (IndGH σ, I

V ) is given by:

IV =

{
f : G→ V

∣∣∣∣ f(gh) = σ(h)−1f(g) for all g ∈ G, h ∈ H∫
G
||f(g)||2V dg <∞

}
,

(IndGH σ)(g)f(x) = f(g−1x) ∈ V for f ∈ IV and g, x ∈ G.

Now because G is compact, it follows that every continuous function from G to
V is square-integrable, and in particular IV admits the dense invariant subspace:

IVc =

{
f : G→ V

∣∣∣∣ f(gh) = σ(h)−1f(g) for all g ∈ G, h ∈ H
f continuous

}
.

The advantage of this dense subspace is that, unlike square-integrable functions
(which are actually equivalence classes of functions) it is actually possible to
evaluate a continuous function at a point. With this dense subspace it is possible
to prove the Frobenius Reciprocity theorem:

Theorem 3.1.1. Let G be a compact group with a closed subgroup H, and suppose
that and (σ, V ) and (π,W ) are finite-dimensional unitary representations of H
and G, respectively. Then there is an isomorphism of vector spaces

HomH(ResGH π, σ) ∼= HomG(π, IndGH σ).

In other words, IndGH and ResGH are adjoint functors. One can, of course, write
the same statement in terms of vector spaces:

HomH(W,V ) ∼= HomG(W, IV ).

Proof. We begin by defining a linear map

R : HomH(W,V )→ HomG(W, IV )

T 7→ RT .
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The proof of this theorem is a game of playing with the various equivariance
properties of intertwining operators and functions in induced representations.

Fix T ∈ HomH(W,V ). In particular, for each w, we set RTw to be the
function from G to V :

(RTw)(g) = T (π(g−1)w) ∈ V.

It is clear that this function is continuous (i.e., RTw ∈ IVc ) by the strong con-
tinuity of π. It follows that RTw ∈ L2(G). Note that we are here using the
compactness of G and H. That it satisfies the equivariance property for mem-
bership in IV follows from:

(RTw)(gh) = T (π(h−1g−1)w) = σ(h−1)T (π(g−1)w) = σ(h−1)RTw(g),

where g ∈ G and h ∈ H, since T intertwines π and σ as representations of H.
In other words, RTw ∈ IV for all w ∈ W . It remains to be shown that RT

intertwines π and IndGH σ. In fact,

RT (π(g)w)(x) = T (π(x−1)π(g)w)) = T (π(g−1x)−1w)

= (RTw)(g−1x)

= [(IndGH)σ(g)(RTw)](x)

for all w ∈ W and g, x ∈ G. Thus RT is an intertwining operator.
Finally, we show that RT is a bounded operator. Suppose that w ∈ W . Then

||RTw(g)||V = ||T (π(g)w)||V ≤ ||T ||||π(g)w||V = ||T ||||w||V for all g ∈ G and
w ∈ W . It follows that

||RTw||2 =

∫
G

||T (π(g−1)w)||2V dg ≤
∫
G

||T ||2||w||2V dg = ||T ||2||w||2V

for each w ∈ W , so that ||RT || ≤ ||T ||. Here we have once again used that G is
compact. Thus RT is a bounded operator and, in particular, RT ∈ HomG(W, IV ).

It is clear that the map R : T 7→ RT is linear. It remains only to construct a
linear inverse to R:

S : HomG(W, IV )→ HomH(W,V )

T 7→ ST .

Suppose that T ∈ HomG(W, IV ). We would like to define ST by setting STw =
(T (w))(e) for each w ∈ W . However, the problem is that T (W ) ∈ IV is a square-
integrable function from G to V , so it is not clear that it is meaningful to evaluate
it at the identity in G. We thus need to take a digression to discuss continuity.

Suppose that T ∈ HomG(W, IV ). We now use the assumption that W is a
finite-dimensional representation: since W is finite-dimensional, we see that the
image T (W ) is a finite-dimensional subspace of IV . Furthermore, T (W ) is an
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invariant subspace of IV because T is an intertwining operator. Furthermore, IV

is a closed invariant subspace of the Hilbert space

L2(G, V ) =

{
f : G→ V

∣∣∣∣||f ||2 =

∫
G

||f(g)||2V <∞
}
.

with the usual action
L(g)f(x) = f(g−1x) ∈ V

for f ∈ L2(G, V ) and x, g ∈ G.
We then use the fact, which we prove in a lemma following this theorem, that

finite-dimensional invariant subspaces of L2(G, V ) consist of continuous functions
from G to V . In particular, we see that T (W ) is a finite-dimensional subspace of
IVc (that is, it consists of continuous functions). For each w ∈ W , we may thus
set

STw = T (w)(e) ∈ V.

It is clear that ST : W → V is linear. Because both V and W are finite-
dimensional, continuity is immediate. Next we show that ST is an H-intertwining
operator:

ST (π(h)w) = T (π(h)w)(e)

= [IndGH(h)(Tw)](e) (T intertwines π and IndGH)

= (Tw)(h−1)

= σ(h)(Tw)(e) (equivariance property of IV )

= σ(h)(STw).

for all w ∈ W and h ∈ H.
Finally, we must show that SR = Id and RS = Id. We demonstrate that

SR = Id and leave the other direction to the reader. If T ∈ HomH(V,W ), then
we recall that (RTw)(g) = T (π(g−1w) ∈ V for all w ∈ W and g ∈ G. Thus,
SRTw = (RTw)(e) = Tw and we are done.

Remark 3.1.2. We now consider another way of looking at the Frobenius Reci-
procity theorem. Suppose that (ρ,H) is a unitary representation (not necessarily
irreducible) of G. Then one may decompose (ρ,H) into a direct sum of irreducible
representations:

H ∼=
⊕
π∈Ĝ

m(π, ρ)Vπ,

where each (π, Vπ) is an irreducible representation of G, m(π, ρ) is a nonnegative
integer, and m(π, ρ)Vπ denotes a direct sum of m(π, ρ) of Vπ. We say that m(π, ρ)
is the index of π in ρ, and it measures the number of times that π appears as
a subrepresentation of ρ.

We can use Schur’s Lemma to provide a nice way to calculate this number.
Suppose that (σ, Vσ) is an irreducible representation of G. Then we see that the
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dimension space of intertwining operators from Vσ to H is given by:

dim HomG(Vσ,H) =
∑
π∈Ĝ

m(π, ρ) dim HomG(Vσ, Vπ)

= m(σ, ρ),

where we used Schur’s lemma to see that dim HomG(Vσ, Vπ) = 1 if σ = π and
dim HomG(Vσ, Vπ) = o if π � σ. We thus immediately arrive at the following
corollary of Frobenius Reciprocity:

Corollary 3.1.3. Let G be a compact group with a closed subgroup H, and sup-
pose that (σ, V ) and (π,W ) are finite-dimensional unitary representations of H
and G, respectively. Then

m(σ,ResGH π) = m(π, IndGH σ).

That is, the irreducible representation σ of H appears in ResGH π the number of
times that the irreducible representation π of G appears in IndGH σ.

Example 3.1.4. As an example of the power of Frobenius Reciprocity, we show
how one may use it to provide an alternate proof of the Peter-Weyl theorem on
the decomposition of L2(G) for a compact group G.

We saw earlier that the regular representation (L,L2(G)) is equivalent to the
representation IndG{e} 1{e} induced from the trivial representation of the trivial
subgroup. Now we consider an irreducible representation (π, V ) of G. Notice that
ResG{e} π is the trivial action on V , so that every subspace is {e}-invariant. That is,
(π, V ) decomposes into a direct sum of dimV copies of the trivial representation
of the trivial subgroup {e}. Thus, by Frobenius Reciprocity, we have dimV =
m(1{e},ResG{e} π) = m(π, IndG{e} 1{e}). That is, exactly dimV copies of (π, V ) of
G appear in the decomposition of L2(G):

L2(G) ∼=G

⊕
π∈Ĝ

(dimVπ) · Vπ

The exact statement of Peter-Weyl may be furthermore recovered by similar
arguments.

Example 3.1.5. As a slightly more interesting example, we recall that if H
is a closed subgroup of a compact group, then the quasi-regular representation
(LG/H , L

2(G/H)) is the same as the induced representation IndGH 1H , where 1H
denotes the trivial representation of H. Thus we have by Frobenius Reciprocity
that if (π, V ) is an irreducible representation of G, then m(π, LG/H) = m(1H , π).
Now a subspace W of V corresponds to the trivial representation of H if it is
one-dimensional and the action of H on W does nothing. In other words, we see
that that m(1H , π) = dimV H , where

V H = {v ∈ V |π(h)v = v for all h ∈ H}
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is the space of H-fixed vectors in V . Hence we have the decomposition

L2(G) ∼=G

⊕
π∈Ĝ

(dim(Vπ)H) · Vπ.

This reduces the analytic problem of understanding L2-functions on G/H into
the algebraic problem of finding H-invariant vectors in the (finite-dimensional)
irreducible representations of G.

We end the section by sketching the proof of the lemma that we used in the
proof of Frobenius Reciprocity.

Lemma 3.1.6. If G is a compact group and V is a finite-dimensional complex
vector space, then all finite-dimensional invariant subspaces of the regular repre-
sentation (L,L2(G, V )) is contained in the space of continuous functions from G
to V .

Proof sketch. It is enough to prove that finite-dimensional invariant subspaces
of L2(G) consist of continuous functions: in fact, V is finite-dimensional and
L2(G, V ) decomposes into a direct sum of dimV copies of the regular represen-
tation L2(G).

Suppose now that W is a finite-dimensional invariant subspace of L2(G).
Because G is compact, we see that C(G) ⊂ L2(G) (where C(G) consists of the
continuous functions). For any f ∈ W and every continuous function g ∈ C(G),
we may thus consider the convolution f ∗g. One shows using Lebesgue dominated
convergence that f ∗ g ∈ C(G) ⊂ L2(G).

Furthermore, we see that

g ∗ f(x) =

∫
G

g(y)f(y−1x)dy =

∫
G

g(y)(L(y)f)(x)dy.

But we know that g(y)L(y)f ∈ W for all y ∈ G since W is an invariant subspace.
One then shows by a limiting argument that g ∗ f =

∫
G
g(y)(L(y)f)dy ∈ W for

all g ∈ C(G) and f ∈ W .
Now if we could find a continuous function h ∈ C(G) such that h ∗ f = f for

each f ∈ W , then we would automatically have that W ⊆ C(G). Unfortunately,
it is widely known that the convolution product does not have an identity if G
is not a discrete group. However, there do exist approximate identities. That is,
it is possible to find a sequence {gn}n∈N of continuous functions on G such that
gn ∗ f → f as n→∞ for all f ∈ L1(G).

In particular, if f ∈ W , then gn ∗ f is in both W and C(G) for all n ∈ N and
yet gn ∗ f → f in L1(G). Because W is a finite-dimensional space, there is only
one Hausdorff topology, and thus in particular we see that C(G) ∩W is a dense
subspace of W and must therefore be equal to W .

Remark 3.1.7. The precise construction of this approximate identity is not dif-
ficult but beyond the scope of these notes (see [6] for more on this topic). Essen-
tially one chooses a sequence of continuous functions gn which satisfy

∫
G
gn(x)dx =

1 and become closer and closer to the “delta function”: that is, they converge
pointwise to zero everywhere except at the identity, where they approach ∞.
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Remark 3.1.8. if G is a Lie group, then one may also construct approximate
identities of smooth functions, so that in fact every finite-dimensional subspace
of L2(G) consists of smooth functions.

3.2 Direct Sums and Induction in Stages

For compact groups, most of the important properties of induced representations
follow quickly from Frobenius Reciprocity. However, that theorem is blatantly
false for noncompact groups: take, for instance, the regular representation of R on
L2(R). If Frobenius Reciprocity held for R, then the regular representation would
be equal to a direct sum of all the irreducible representations of R. However, as
we have already seen, R does not have any irreducible subrepresentations!

It is thus necessary to prove the most important properties of induced rep-
resentations one by one. In this section we include two of the most important
properties of induction: induction in stages and commutativity with direct sums.

Theorem 3.2.1. If H is a closed subgroup of a locally compact group G and
(π, V ) and (σ,W ) are unitary representations of H, then

IndGH(π ⊕ σ) ∼= IndGH π ⊕ IndGH σ.

In fact, one can prove a stronger result: if we have a measure space (µ,X) and
a unitary representation (πx,Hx) for each x ∈ X, then one can show that:

IndGH

(∫ ⊕
X

πxdµ(x)

)
∼=
∫ ⊕
X

(
IndGH πx

)
dµ(x).

Proof.

Theorem 3.2.2 (Induction in Stages). Suppose that K,H,G are locally compact
groups with K ≤ H ≤ G, where each group is a closed subgroup of the next. If
(σ, V ) is a unitary representation of G, then IndGH(IndHK σ) ∼= IndGK σ.

Proof.

3.3 Three Roads to Induction

3.4 Intertwining Operators Between Induced Rep-

resentations

3.5 Imprimitivity
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