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Abstract

Given a tree T , the cohomology ring of its unordered configuration spaceH∗(UDnT )
is an exterior face algebra if T is a binary core tree (if by removing the leaves from
T we obtain a binary tree), or if n = 4. This means that every cup product is deter-
mined by a simplicial complex KnT . In this paper we show how to recover the tree
T from the simplicial complex KnT when n = 4.

1 Introduction

For a finite graph G and a positive integer n, the discretized unlabelled configuration space
on n points of G is defined as

UDnG = {{x1, . . . , xn} : xi ∈ V (G) ∪ E(G), xi ∩ xj = ∅ if i ̸= j}.

Configuration spaces of graphs have been widely studied, in particular, their cohomology
ring is well known when G is a tree. Using discrete Morse theory techniques, D. Farley gave
in [2] an efficient description of the additive structure of the cohomology ring of UDnG
when G is a tree T . Later, and in order to get to the multiplicative structure, the Morse
theoretic methods were replaced in [3] by the use of a Salvetti complex S obtained by
identifying opposite faces of cells in UDnT . Being a union of tori, S has a well understood
cohomology ring.

Given a tree T we can construct another tree F (T ), where the vertex set of F (T ) is
V (F (T )) = {x ∈ V (T ) : d(x) > 2} and two vertices are adjacent in F (T ) if the unique
path joining them in T does not contain any other vertex of F (T ). We say that a tree T
is a binary core tree if F (T ) is a binary tree. In [1], the following theorem was proven:

Theorem 1.1. [1] Given an integer n ≥ 4, the cohomology ring H∗(UDnT ) is an exterior
face ring if either n = 4, or T is a binary core tree.

This means that when T is a binary core tree or n = 4, all products in H∗(UDnT ) are
given by a simplicial complex KnT , where the vertices of KnT are the basis elements of
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dimension 1, and a set of k vertices forms a simplex in KnT if and only if the cup product
of the corresponding k elements is non zero. The simplicial complex KnT is called the
n-interaction complex of T .

The 1-skeleton of the space UDnT , coincides precisely with the token graph Fn(T ) of
T on n tokens. In [4], Fabila-Monroy and Trujillo-Negrete proved that if a graph does
not have induced cycles of length four, or induced diamonds (a graph isomorphic to K4 \
{e} the complete graph on four vertices without an edge), then the graph G is uniquely
reconstructible from Fk(G) and gave an algorithm to do so in polynomial time. One then
might ask if there is a topological version of this, this is, if we can recover the tree T from
a topological property of UDnT . We are going to prove that we can recover the tree T
from the n-interaction complex KnT in the case when n = 4, for any tree T .

We shall assume that the tree T is embedded in the plane and has as root a vertex of
degree one ⋆. The edges inciding in a vertex x are enumerated by this embedding and we
fix the edge that lies on the unique x⋆ path to be the 0th edge. We shall say that a vertex
y lies on x-direction i for 1 ≤ i ≤ d(x) − 1 if x belongs to the unique path joining y and
the root vertex, and if this path contains the ith edge inciding in x. This also implies that
x lies on y-direction 0. If x does not belong to the y⋆ path and y does not belong to the
x⋆ path we shall also say that x lies on y-direction 0 and y lies on x-direction 0, in which
case we say that the vertices x and y are not stacked. Given two vertices of degree at least
three x and y, we shall say that x < y if they are stacked and x lies on y-direction zero,
or if they are not stacked and there exists z such that x lies on z-direction i and y lies on
z-direction j with i < j.

⋆

x

y
z

Figure 1: The tree T containing the vertices x, y and z.

Example 1.2. Consider the tree shown in Figure 1, where the dashed edges represent paths
of any length greater than two. Then the vertices x and y are stacked, the vertices z and x
are also stacked but the vertices y and z are not stacked.

We are going to define the interaction complex KnT only for the case when n = 4, in
which case it is a graph. For the the definition of the interaction complex in the general
case we refer the reader to [1].
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2 The graph K4T

Definition 2.1. The graph K4T is defined as follows:

• The vertices are 4-tuples (k, x, p, q) such that x is a vertex of T with d(x) ≥ 3, k is a
non-negative integer and p and q are integer vectors having non-negative entries such
that p has at least one positive entry, the sum of their lengths l(p) + l(q) is d(x)− 1
and the sum of their entries is 3− k.

• Let v = (k1, x1, p1, q1) and w = (k2, x2, p2, q2) be two vertices, then

1. if the vertices x1 and x2 are not stacked, then (v, w) ∈ E(K4T ) if k1 + k2 ≥ 4

2. if x2 lies on x1-direction i with l(p1) ≥ i, then (v, w) ∈ E(K4T ) if p1,i > 4− k2
or p1,i + k2 = 4 and there exists a j ̸= i such that p1,j ̸= 0

3. if x2 lies on x1-direction i with l(p1) < i, then (v, w) ∈ E(K4T ) if q1,i−l(p1) >
4− k2

In particular, the graph K4T has a lot of isolated vertices, as we can see in the following
lemma.

Lemma 2.2. A vertex v = (k, x, p, q) is an isolated vertex if one of the following conditions
hold:

• k = 1

• the sum of the entries of p is two.

Proof. Assume first that k = 1. Notice that since l ∈ {0, 1, 2}, if a vertex w = (l, y, r, s)
is such that x and y are not stacked, then both k and l must be two for v and w to be
adjacent. If x and y are stacked, every entry of p = (p1, . . . , pl(p)) is at most two, thus
2 ≥ pi and 4− l ≥ 2. Finally notice that every entry of q = (q1, . . . , ql(q)) is at most one so
1 ≥ qi−l(p1) and 4 − k2 ≥ 2. This proves that every vertex with k = 1 is isolated. Assume
now that the sum of the entries of p is two, and consider again w = (l, y, r, s). This means
that k = 0 and q has one unique entry with value one. Then again 2 ≥ pi, 4 − l ≥ 2,
1 ≥ qi−l(p1) and 4− k2 ≥ 2 thus v is an isolated vertex.

For our purposes, the isolated vertices are not relevant, so we shall ignore them.

Proposition 2.3. Given a vertex x of T , fix i ∈ {1, . . . , d(x)− 1} and let

Λi = {(k, x, p, q) ∈ K4T : pi ≥ 2 if i ≤ l(p) or qi−l(p) ≥ 2 if i > l(p)}.

Then the set Λi has cardinality
1
2
(d(x)−1)(d(x)−2), and this is also the amount of vertices

having k = 2.

Proof. Assume first that k = 0. Since the sum of the entries of p = (p1, . . . , pl(p)) and q
must be at most 3− k = 3, and one entry is fixed to be 2, there can only be one additional
non zero entry. Recall also that p must have at least one zero entry, and since we are
considering only vertices in which the sum of the entries of p is not two, p must have an
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additional non zero entry or pi = 3. Then for every possible length of p, we have l(p)
options, one for each additional 1 as an entry. Since l(p) varies between 1 and d(x)− 2 we

have
∑d(x)−2

i=1 i = (d(x) − 1)(d(x) − 2). The same happens if k = 2, since the remaining 1
must be an entry of p.

Figure 2: The graph K4T , the tree T = K1,4 and an example of the graph KP7.

Example 2.4. When T = K1,m, the graph K4T is the graph obtained from the complete
graph Km by adding to each vertex, 1

2
(m− 1)(m− 2) new neighbours as in Figure 2.

The following proposition follows from the definition of K4T .

Proposition 2.5. Let v = (k, x, p, q) be a vertex in K4T . Then the degree of v is the
amount of vertices in F (T ) which lie on direction i, where

• i = 0 if k = 2,

• i is such that the ith entry of p is at least two if i ≤ l(p),

• i is such that the (i+ l(p))th entry of q is two if i > l(p).

Corollary 2.6. Given a binary tree T , the number of leaves in K4T is the number of leaves
in F (T ).

Proof. Let w be a leaf in F (T ) different from the root, and let v be its unique neighbour.
Assume w lies on v-direction i. Then the vertex u is a leaf in K4T and has as unique neigh-

bour the vertex (2, v, 1, 0), where u = (0, w, p, q) is such that u =

{
(0, w, 3, 0) if i = 1
(0, w, 1, 2) if i = 2.

If w is the root vertex with unique neighbour v, then in K4T the vertex (2, v, 1, 0) is a leaf
and its unique neighbour is (0, w, 3, 0).

To simplify notation, we shall often write 0 to denote the vector having every entry
zero. Let L(G) denote the set of leaves of a graph G.

Proposition 2.7. If two vertices u and v in K4T have the same neighbourhood then u =
(k, x, p, q) and v = (l, x, r, s).
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Proof. Assume u = (k, x, p, q) and v = (l, y, r, s) have the same (non empty) neighbourhood
for x ̸= y. Notice first that u and v are not adjacent since K4T has no loops. Notice also
that u and v can not be both leaves, since that would mean that u = (2, x, p, 0) and
v = (2, y, r, 0) thus (u, v) ∈ E(K4T ), a contradiction.

Assume first that x and y are not stacked. This means that either k or l is different
that 2. Assume without loss of generality that k ̸= 2, thus k = 0. Since N(u) ̸= ∅, there
exists w ∈ N(u), w = (2, z, p′, q′) and z lies on x-direction i. This is a contradiction since
w ∈ N(v) and the vertices x and y are not stacked.

Now we may assume that the vertices x and y are stacked, and assume without loss of
generality that y lies on x-direction i. This means that k = 0 and l = 2. If x is not a leaf
in F (T ), the root vertex z of F (T ) is such that (0, z, p′, q′) is adjacent to v for some vectors
p′ and q′. But this means that (0, z, p′, q′) is also adjacent to u = (0, x, p, q) which is a
contradiction. If x is a leaf, since we are assuming that y lies on x-direction i, x must be
the root vertex and u = (0, x, p, 0). Then v = (2, y, r, 0), and w = (2, z, p′, 0) ∈ N(u) with
z the unique neighbour of x. Since z and y are stacked, w /∈ N(v) which is a contradiction.
Hence x = y.

Corollary 2.8. If T is a binary tree, then there are no two vertices having the same non
empty neighbourhood in K4T .

Proof. Assume v and w have the same neighbourhood. By Proposition 2.7, we must have
that v, w ∈ {(0, x, 1, 2), (0, x, 3, 0), (2, x, 1, 0)}. If v = (2, x, 1, 0) and w ̸= v, then for every
vertex y such that y lies on x-direction 0, we have that if x lies on y-direction i, then

u ∈ N(v) where u =


(2, y, 1, 0) if i = 0
(0, y, 3, 0) if i = 1
(0, y, 1, 2) if i = 2.

But, since w ̸= v, we have that u can not be

adjacent to w. This means that there are no vertices lying on x-direction 0, but this implies
that N(v) = ∅. So assume that v = (0, x, 1, 2) and w = (0, x, 3, 0). Then again, if there
exist vertices y, z ∈ T such that y lies on x-direction 1 and z lies on x-direction two, the
vertex (2, y, 1, 0) is adjacent to v but not to w and the vertex (2, z, 1, 0) is adjacent to w but
not to v. This means that x is a leaf in F (T ), but this implies that N(v) = ∅ = N(w).

3 Recovering the tree T

We shall first consider the case when T is a binary tree before considering the general case,
since this case is easier both notation-wise and mathematically.

3.1 Binary trees

Throughout this section we shall assume that T is a binary tree. The main reason for this
is Proposition 2.7. If T is a binary tree, then T is completely determined by F (T ).

Proposition 3.1. Assume T is a binary tree and let Km be a complete subgraph of K4T
for m ≥ 3. Then in F (T ) there exists an independent set I of m vertices.

Proof. Let vi = (ki, xi, pi, qi) for 1 ≤ i ≤ m be the vertices of Km in K4T . Assume that xj

lies on xi-direction t ∈ {1, 2} for some i ̸= j. Then vj = (2, xj, 1, 0) and vi = (0, xi, 3, 0)
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or vi = (0, xi, 1, 2) (if t = 1 or t = 2 respectively). Since vi multiplies every vertex vl,
this means that xl lies on xi-direction t for every l ∈ {1, . . . ,m} \ {i}. Recall that vj, and
hence every vl, must be of the form (2, xl, 1, 0) for l ∈ {1, . . . ,m} \ {i}. This means that
xl lies on xj-direction 0 and vice versa xj lies on xl-direction 0 for j, l ∈ {1, . . . ,m} \ {i}.
This immediately implies that {x1, . . . , xm} \ {xi} is an independent set of m− 1 vertices.
Now assume the edge (xi, xj) exists in F (T ) for some j ∈ {1, . . . ,m} \ {i}. Then xj lies
on xi-direction 0 but this implies that xi also lies on xl-direction for l ∈ {1, . . . ,m} \ {i, j}
which is a contradiction. Hence I = {x1, . . . , xm} is an independent set in F (T ).

Corollary 3.2. Assume that T is a binary tree, and that F (T ) has m leaves. Then there
exists in K4T a subgraph isomorphic to Km such that each vertex in Km is adjacent to
exactly one leaf.

Let KPm be the subgraph obtained by a attaching a leaf to each vertex of a complete
subgraph Km (see Figure 2 (right)).

Let Kp denote the subgraph of K4T consisting of the complete subgraph mentioned in
Corollary 3.2 together with the adjacent leaves. If we delete from K4T the subgraph Kp,
we obtain the subgraph of K4T consisting only of vertices (k, x, p, q) such that x is not a
leaf of F (T ). Moreover, the amount of leaves in K4T −Kp corresponds to the amount of
leaves in F (T )− L(F (T )) and we can apply Corollary 3.2 again.

This means that if S1 be the subgraph of K4T isomorphic to KPm1 for some m1, then
K4T − S1 contains S2, a subgraph isomorphic to KPm2 . We can continue this way until
K4T − ∪n

i=1Si is isomorphic to either a KP3, a KP2 = P4 or a KP1 = K2 (since T is
binary), and notice that m1 ≥ m2 ≥ · · · ≥ mn.

Definition 3.3. Let V (K4T ) = ∪n
i=1Si such that the induced subgraph generated by Si is

isomorphic to KPmi
as in the previous discussion. We say that a vertex v ∈ V (K4T )

belongs to level i if it is a vertex of Si. Moreover, V (Si) = Li ∪ Ri where Li is the set of
leaves of Si.

We are now ready to recover the tree T from K4T when T is a binary tree. First, notice
that V (K4T ) = ∪n

i=1V (Si) and since each Si has 2mi vertices, we are going to label each
vertex of Li and Ri with the labels {xi

1, . . . , x
i
mi
} and {yi1, . . . , yimi

} respectively, thus in Si,
yij is the only neighbour of xi

j. We are going to construct a tree FT isomorphic to F (T ).

Definition 3.4. The tree FT is defined as follows:

• The vertices of FT are V (FT ) = z0 ∪
(⋃n

i=1

⋃mi

j=1 z
i
j

)
, and

• N(z0) =
⋃mn

j=1 z
n
j

• (zij, z
k
l ) ∈ E(FT ) if k = min{m > i : (xm

l , y
i
j) ∈ E(K4T )}.

We now must prove that this tree is indeed isomorphic to F (T ).

Lemma 3.5. The trees F (T ) and FT are isomorphic.
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Proof. We proceed by induction over n, and assume n = 1. This means that K4T = S1
∼=

KPm1 which means that F (T ) is a star F (T ) ∼= K1,m1 . On the other hand, FT consists
only of the vertices z0 together with ∪m1

i=1z
1
i , but since n = 1 we have that every vertex is

adjacent to z0, thus FT = K1,m1 .
Assume now, that the lemma is valid for values smaller than n. We have thatK4T \S1 =

K4T
′ where T ′ is such that F (T ′) is obtained from F (T ) by removing every leaf. Then

V (K4T
′) = ∪n

i=2Si thus by induction hypothesis, FT ′ = F (T ′) = F (T ) \ L(F (T )). Notice
that the amount of vertices in F (T ) \ F (T ′) is the amount of leaves in F (T ) which is m1,
which is also the amount of vertices in FT \FT ′ . Take a vertex w ∈ F (T ), and let v ∈ F (T )
be a leaf adjacent to w. By Corollary 2.6, one of the following holds:

• the vertex (0, v, 1, 2) is a leaf in K4T and (2, w, 1, 0) is its unique neighbour,

• the vertex (0, v, 3, 0) is a leaf in K4T and (2, w, 1, 0) is its unique neighbour, or

• the vertex w is the root vertex of T , the vertex (2, v, 1, 0) is a leaf in K4T , and its
unique neighbour is (0, w, 3, 0).

Assume the first case holds. Then (0, v, 1, 2) = x1
j and (2, w, 1, 0) = y1i for 1 ≤ i, j ≤ m1.

Since v is not a leaf in F (T ), there exists u ∈ V (F (T )) such that (v, u) ∈ E(F (T )) and u
lies on v-direction 0. This means that (2, v, 1, 0) is adjacent to (0, u, 3, 0) or (0, u, 1, 2). We
can assume without loss of generality that (0, u, 3, 0) is adjacent to (2, v, 1, 0), and thus it
must also be adjacent to (2, w, 1, 0) = y1i . Since u is a neighbour of v, (0, u, 3, 0) is a leaf
in K4T and hence is a leaf in S2, thus (0, u, 3, 0) = x2

l . Then (x2
l , y

1
i ) ∈ E(K4T ) and thus

(z1i , z
2
l ) ∈ E(FT ). This means that given an edge (w, v) ∈ E(F (T )) outside of F (T ′), there

exists an edge (z1i , z
2
l ) ∈ E(FT ). The other two cases are analogous.

Now consider an edge (z1i , z
2
j ) ∈ FT outside of FT ′ . This means that (x2

j , y
1
i ) ∈ E(K4T )

with x2
j ∈ L2 and y1i ∈ R1. Since y1i ∈ R1, again by Corollary 2.6 we have that y1i =

(2, w, 1, 0) or y1i = (2, w, 1, 0) if w is the root vertex of F (T ). Assume that y1i = (2, w, 1, 0),
then x1

i = (0, v, 3, 0) or (0, v, 1, 2) and v is the unique neighbour of the leaf w, thus (v, w) ∈
F (T ). If y1i = (2, w, 1, 0) with w the root of F (T ), we have that x1

i = (0, v, 3, 0) where v is
the unique neighbour of w. Hence for every edge in FT outside of FT ′ there exists an edge
in F (T ) outside of F (T ′). Thus F (T ) = FT .

3.2 The general case

Let RK4T be the graph obtained fromK4T as follows. For every set of vertices {v1, . . . , vm}
such that N(vi) = N(vj) for i ̸= j, we remove from K4T the vertices {v2, . . . , vm}. Thus in
RK4T there are no two vertices having the same neighbourhood. Notice that the vertices
of the graph RK4T can also be separated into mk sets S1, . . . , Sk such that each Si

∼= KPmi

for some mi. Assume again that {xi
1 . . . , x

i
mi
} and {yi1 . . . , yimi

} denote the set of leaves and
non-leaf vertices of Si for 1 ≤ i ≤ k respectively. We then have the following definition.

Definition 3.6. Assume V (RK4T ) = ∪k
i=1V (Si) with |V (Si)| = mi. The tree RFT is

defined as follows.

• The vertices of RFT are V (FT ) = z0 ∪
(
∪n

i=1 ∪
mi
j=1 z

i
j

)
, and
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• N(z0) = ∪mn
j=1z

n
j ,

• (zij, z
k
l ) ∈ E(RFT ) if k = min{m > i : (xm

l , y
i
j) ∈ E(RK4T )}.

The proof of the following Corollary is analogous to the proof of Lemma 3.5.

Corollary 3.7. The trees RFT and F (T ) are isomorphic.

Since T is not binary it is not fully determined by F (T ). Consider the set of vertices
LR = {x1, . . . , xm1} of K4T , which have degree one in RK4T . Assume that xi has degree
di in K4T for 1 ≤ i ≤ m1. Then di =

1
2
(ki − 1)(ki − 2) for some integer ki.

Proposition 3.8. If a leaf x ∈ RK4T has degree d = 1
2
(k − 1)(k − 2) in K4T for some k.

Then the corresponding leaf z ∈ F (T ) has degree k in T .

Proof. Let z be a leaf in F (T ), and let w be its unique neighbour in F (T ). Assume also
that z lies on w direction i. If z ̸= ⋆, then i ̸= 0 and consider a vertex v = (0, w, p, q) ∈ K4T
having 2 or 3 as the ith entry of p or as the i− l(p)th entry of q. They all have the same
neighbourhood consisting of vertices of the form (2, z, p, 0), and by Proposition 2.3, there
are d = 1

2
(k − 1)(k − 2) such vertices, where d(z) = k. Thus all the vertices of the form

of v correspond to a leaf x ∈ RK4T which has degree d = 1
2
(k − 1)(k − 2). If z = ⋆, we

consider vertices of the form v = (0, z, p, q) having 2 or 3 as the ith entry of p or as the
i − l(p)th entry of q, and they all have the same neighbourhood consisting of vertices of
the form (2, w, p, 0). Thus these last vertices correspond to a leaf x ∈ RK4T which has the
desired degree in K4T.

This means that we have fully recovered T from the graph K4T .
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