On distance-k graphs of star and free products of graphs

Tulio Gaxiola Centro de Investigación en Matemáticas A.C. (CIMAT) Simons Conference on Random Graph Processes

Preliminaries

For a given graph G = (V, E) and a positive integer k the distance-k graph is defined to be a graph $G^{[k]} = (V, E^{[k]})$ with

 $E^{[k]} = \{(x,y) : x, y \in V, \partial_G(x,y) = k\},\$

where $\partial_G(x, y)$ is the graph distance. Figure below shows the distance-2 graph induced by the 3 dimensional cube.

Distance-k graph of d-regular trees

For $d \ge 2$, let $A_d^{(k)}$ be the adjacency matrix of distance-k graph of d-regular tree. We write $A^{(1)} = A$. Then we can express

$$\mathsf{A}^2 = \mathsf{A}_d^{(2)} + \mathsf{d}\mathsf{I}\,,\tag{1}$$

(see Figure 4). Since $A_d^{[2]} = A^2 - dI$ then the distribution is given by the law of $x^2 - d$, where x is a random variable obeying the Kesten-McKay distribution of parameter d.

Figura 3-Cube and its distance-2 graph

For $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graph with distinguished vertices $o_1 \in V_1$ and $o_2 \in V_2$, the star product graph of G_1 with G_2 is the graph $G_1 \star G_2 = (V_1 \times V_2, E)$ such that for (v_1, w_1) , $(v_2, w_2) \in V_1 \times V_2$ the edge $e = (v_1, w_1) \sim (v_2, w_2) \in E$ if and only if one of the following holds:

1. $v_1 = v_2 = o_1$ and $w_1 \sim w_2$ 2. $v_1 \sim v_2$ and $w_1 = w_2 = o_2$.

Let $d \ge 1$ fixed, then it follows, $A^{(1)} = A$, $A^{(2)} = A^2 - dI$, and

 $AA^{(k)} = A^{(k+1)} + (d-1)A^{(k-1)}$ k = 1, 2, ..., d-1.

Since $A_d^{[k]}$ fulfills a recurrence formula, and A is distributed as the Kesten-McKay distribution μ_d , then we arrive to the following theorem.

Theorem

For $d \ge 2$, $k \ge 1$, let $A_d^{[k]}$ be the adjacency matrix of distance-k graph of the d-regular tree. Then the distribution with respect to the vacuum state of $A_d^{[k]}$ is given by the probability distribution of

Figura Star product of two cycles

We define the *free product* of the rooted vertex sets (V_i, e_i) , $i \in I$, where I is a countable set, by the rooted set $(*_{i \in I} V_i, e)$, where

 $*_{i\in I}V_i = \{e\} \cup \{v_1v_2\cdots v_m : v_k \in V_{i_k}^0, \text{ and } i_1 \neq i_2 \neq \cdots \neq i_m, m \in \mathbb{N}\},\$

and *e* is the empty word.

Definition

The free product of rooted graph (\mathscr{G}_i, e_i) , $i \in I$, is defined by the rooted graph $(*_{i \in I} \mathscr{G}_i, e)$ with vertex set $*_{i \in I} V_i$ and edge set $*_{i \in I} E_i$, defined by

 $*_{i\in I}E_i := \{(vu, v'u) : (v, v') \in \bigcup_{i\in I}E_i \text{ and } u, vu, v'u \in *_{i\in I}V_i\}.$

We denote this product by $*_{i \in I}(\mathscr{G}_i, e_i)$ or $*_{i \in I}\mathscr{G}$ if no confusion arises. If I = [n], we denote by $G^{*n} = (*_{i \in I}G, e)$.

where T_k is the orthogonal of order k with respect to μ_d and b is a random variable with Kesten-McKay distribution, μ_d .

d-Regular Random Graphs

Let X be a d-regular graph with vertex set $\{1, 2, ..., n(X)\}$. For each $i \ge 3$ let $c_i(X)$ be the number of cycles of length i. Let $A^{[k]}(X)$ be the adjacency matrix of the distance-k graph of X. The following is an analogous of main theorem in McKay (1981), but in distance-k framework.

Theorem

Let d, k be fixed integers and, for each n, let $F_n(x)$ be the expected eigenvalue distribution of the distance-k graph of a random regular graph with degree d and order 2n. Then, as n tends to infinity, $F_n(x)$ converges to the distribution of $A_d^{[k]}$ with respect to the vacuum state.

Distance-k graph of free products

Theorem (O. Arizmendi & T. Gaxiola (2016))

Let G = (V, E, e) be a finite connected graph and let $k \in \mathbb{N}$. For $N \ge 1$ and $k \ge 1$ let $G^{[*N,k]}$ be the distance-k graph of $G^{*N} = G * \cdots * G$ (N-fold free power) and $A^{[*N,k]}$ its adjacency matrix. Furthermore, let σ be the number of neighbors of e in the graph G. Then the distribution with respect to the vacuum state of $(N\sigma)^{-k/2}A^{[*N,k]}$ converges in moments (and then weakly) as $N \to \infty$ to the probability distribution of

 $P_k(s),$

where P_k is the Chebychev polynomial of order k and s is a random variable obeying the semicircle law.

Figura Free product K₂ with itself

Distance-k graph of star product of graphs

Unlike Cartesian (and also free) product, the asymptotic distribution of distance-k graph of star product does not depend on k, just as stated in the following theorem.

Theorem (O. Arizmendi & T. Gaxiola (2015))

Let G = (V, E, e) be a locally finite connected graph and let $k \in \mathbb{N}$ be such that $G^{[k]}$ is not trivial. For $N \ge 1$ and $k \ge 1$ let $G^{[\star N,k]}$ be the distance k-graph of $G^{\star N} = G \star \cdots \star G$ (N-fold star power) and $A^{[\star N,k]}$ its adjacency matrix. Furthermore, let $\sigma = V_e^{[k]}$ be the number of neighbours of e in the distance k-graph of G, then the distribution with respect to the vacuum state of $(N\sigma)^{-1/2}A^{[\star N,k]}$ converges in distribution as $N \to \infty$ to a centered Bernoulli distribution. That is,

References

- O. Arizmendi, T. Gaxiola, Asymptotic spectral distributions of distance-k graphs of star product graphs. Progress in Probability, XI Syposium of Probability and Stochastic Processes, Springer 69 (2015).
- 2 O. Arizmendi, T. Gaxiola, On the spectral distribution of distance-k graph of free product graphs. *To appear in Infin. Dimen. Anal. Quantum Probab. Relat. Top.* (2016).
 3 Y. Hibino, H. H. Lee, N. Obata, Asymptotic spectral distributions of distance k-graphs of Cartesian product graphs. *Colloq. Math.* 132 (2013) 1 35–51.
- B. McKay, The expected eigenvalue distribution of a large regular graph, *Lin. Alg. Appl.* **40** (1981), 203–216.
- N. C. Wormald, The Asymptotic Distribution of Short Cycles in Random Regular Graphs, J. Combin. Theory Ser. B. 31, (1981) 168-182.

(2)