## On distance-k graphs of star and free products of graphs

Tulio Gaxiola<br>Centro de Investigación en Matemáticas A.C. (CIMAT)<br>Simons Conference on Random Graph Processes

## Preliminaries

For a given graph $G=(V, E)$ and a positive integer $k$ the distance- $k$ graph is defined to be a graph $G^{[k]}=\left(V, E^{[k]}\right)$ with

$$
E^{[k]}=\left\{(x, y): x, y \in V, \partial_{G}(x, y)=k\right\},
$$

where $\partial_{G}(x, y)$ is the graph distance. Figure below shows the distance- 2 graph induced by the 3 dimentional cube.


Figura
3 -Cube and its distance-2 graph
For $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graph with distinguished vertices $o_{1} \in V_{1}$ and $o_{2} \in V_{2}$, the star product graph of $G_{1}$ with $G_{2}$ is the graph $G_{1} \star G_{2}=\left(V_{1} \times V_{2}, E\right)$ such that for $\left(v_{1}, w_{1}\right),\left(v_{2}, w_{2}\right) \in V_{1} \times V_{2}$ the edge $e=\left(v_{1}, w_{1}\right) \sim\left(v_{2}, w_{2}\right) \in E$ if and only if one of the following holds:

1. $v_{1}=v_{2}=o_{1}$ and $w_{1} \sim w_{2}$
2. $v_{1} \sim v_{2}$ and $w_{1}=w_{2}=o_{2}$.


Figura
poduct of two cycles
We define the free product of the rooted vertex sets $\left(V_{i}, e_{i}\right), i \in I$, where $I$ is a countable set, by the rooted set $\left(*_{i \in I} V_{i}, e\right)$, where

$$
*_{i \in I} V_{i}=\{e\} \cup\left\{v_{1} v_{2} \cdots v_{m}: v_{k} \in V_{i_{k}}^{0}, \text { and } i_{1} \neq i_{2} \neq \cdots \neq i_{m}, m \in \mathbb{N}\right\}
$$

and $e$ is the empty word.

## Definition

The free product of rooted graph $\left(\mathscr{S}_{i}, e_{i}\right), i \in I$, is defined by the rooted graph ( $\left.*_{i \in} \mid \mathscr{G}_{i}, e\right)$ with vertex set $*_{i \in 1} V_{i}$ and edge set $*_{i \in I} E_{i}$, defined by

$$
*_{i \in 1} E_{i}:=\left\{\left(v u, v^{\prime} u\right):\left(v, v^{\prime}\right) \in \bigcup_{i \in I} E_{i} \text { and } u, v u, v^{\prime} u \in *_{i \in 1} V_{i}\right\} .
$$

We denote this product by $*_{i \in 1}\left(\mathscr{G}_{i}, e_{i}\right)$ or $*_{i \in 1} \mathscr{G}$ if no confusion arises. If $I=[n]$, we denote by $G^{* n}=\left(*_{i \in I} G, e\right)$.

## Distance- $k$ graph of star product of graphs

Unlike Cartesian (and also free) product, the asymptotic distribution of distance- $k$ graph of star product does not depend on $k$, just as stated in the following theorem.

## Theorem (O. Arizmendi \& T. Gaxiola (2015))

Let $G=(V, E, e)$ be a locally finite connected graph and let $k \in \mathbb{N}$ be such that $G^{[k]}$ is not trivial. For $N \geq 1$ and $k \geq 1$ let $G^{[ \pm N, k]}$ be the distance $k$-graph of $G^{\star N}=G \star \cdots \star G$ ( $N$-fold star power) and $A^{[\star N, k]}$ its adjacency matrix. Furthermore, let $\sigma=V_{e}^{[k]}$ be the number of neighbours of $e$ in the distance $k$-graph of $G$, then the distribution with respect to the vacuum state of $(N \sigma)^{-1 / 2} A^{[* N, k]}$ converges in distribution as $N \rightarrow \infty$ to a centered Bernoulli distribution. That is,

$$
\frac{A^{[\nmid N, k]}}{\sqrt{N \sigma}} \longrightarrow \frac{1}{2} \delta_{-1}+\frac{1}{2} \delta_{1},
$$

