Distance- k graphs of random d-regular graphs

Tulio Gaxiola

CIMAT
April 9, 2015

Joint Work with Octavio Arizmendi SIMA 2015

Plan

(1) General Framework

(2) Graph products
(3) Distance-k Graphs
(4) Random d-regular Graphs

(1) General Framework

(2) Graph products

(3) Distance-k Graphs

4) Random d-regular Graphs

General Framework

Graphs

Definition

A graph is a pair $G=(V, E)$, where V is the set of vertices and E the set of edges. We write $x \sim y$ (adjacent) if they are connected by an edge.

Definition

We call a graph undirected if $x \sim y$ implies $y \sim x$. A loop is an edge of the form $x \sim x$, we say a graph is simple if it has not loops.

Examples

General Framework

Graphs and Spectra
$G=(V, E):$ a finite graph, i.e. $|V|<\infty$

Definition

The adjacency matrix of a graph $G=(V, E)$ is defined by

$$
A=\left[A_{x y}\right]_{x, y \in V} \quad A_{x y}= \begin{cases}1, & x \sim y \\ 0, & \text { otherwise }\end{cases}
$$

The spectrum of G is defined by $\operatorname{Spec}(G)=\operatorname{Spec}(A)$.

- $\left(A^{k}\right)_{i j}=\#$ paths of length k from i to j.
- $\left(A^{k} B^{\prime}\right)_{i j}$

General Framework

Formulation of Problem

- Let \mathcal{A} be the $*$-algebra generated by A.
- Let $\varphi(\cdot)$ be a state.
- The adjacency matrix A as a random variable of (\mathcal{A}, φ).

General Framework

Formulation of Problem (Main Problem)

Let $G_{(\nu)}=\left(V_{(\nu)}, E_{(\nu)}\right)$ be a growing graph and let $\varphi_{\nu}(\cdot)$ be a state on $\mathcal{A}\left(G_{(\nu)}\right)$. Find a probability distribution μ on \mathbb{R} satisfying

$$
\varphi_{\nu}\left(\left(\frac{A_{(\nu)}-\varphi\left(A_{(\nu)}\right)_{\nu}}{\left.\left(A_{(\nu)}-\varphi\left(A_{(\nu)}\right)_{\nu}\right)^{2}\right)_{\nu}^{1 / 2}}\right)^{m}\right) \rightarrow \int_{-\infty}^{\infty} x^{m} \mu(d x), \quad m=1,2, \cdots .
$$

The above μ is called the asymptotic spectral distribution of $G_{(\nu)}$ in the states $\varphi(\cdot)_{\nu}$.

General Framework

Two States

(1) $\varphi_{\operatorname{tr}}(A)=\frac{\operatorname{Tr}(A)}{|V|}=\frac{\# \text { closed paths of size } k}{|V|}$.

The spectral distribution μ of A i determined by

$$
\varphi\left(A^{m}\right)_{t r}=\int_{-\infty}^{\infty} x^{m} \mu(d x), \quad m=1,2, \ldots
$$

μ coincides with the eigenvalue distribution of A :

$$
\mu=\frac{1}{|V|} \sum_{i} m_{i} \delta_{\lambda_{i}}
$$

(2) $\varphi_{1}(A)=(A)_{11}=\#$ closed paths from the root of size k.

(1) General Framework

(2) Graph products

3 Distance-k Graphs

4) Random d-regular Graphs

Direct Product

Definition

For $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two finite graphs, the direct product graph of G_{1} with G_{2} is the graph $G_{1} \times G_{2}=\left(V_{1} \times V_{2}, E\right)$ such that for $\left(v_{1}, w_{1}\right),\left(v_{2}, w_{2}\right) \in V_{1} \times V_{2}$ the edge $e=\left(v_{1}, w_{1}\right) \sim\left(v_{2}, w_{2}\right) \in E$ if and only if one of the following holds:

$$
\begin{aligned}
& \text { 1. } v_{1}=v_{2} \text { and } w_{1} \sim w_{2} \\
& \text { 2. } v_{1} \sim v_{2} \text { and } w_{1}=w_{2} .
\end{aligned}
$$

Direct Product

Example

Direct Product

Classical Central Limit Theorem

Teorema

Let $G=(V, E)$ be a finite connected graph. Let G^{N} de N-fold direct power of G, and let $A_{G^{N}}$ be its adjacency matrix. Then we have
$\lim _{N \rightarrow \infty} \varphi_{t r}\left(\left(\frac{A_{G^{N}}}{N^{1 / 2}\left(\frac{|V|}{2|E|}\right)^{1 / 2}}\right)^{m}\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} x^{m} e^{-x^{2} / 2} d x, \quad m=1,2, \ldots$

Boolean Product

Definition

For $G_{1}=\left(V_{1}, E_{1}, r_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}, r_{2}\right)$ be two finite rooted graphs, the Boolean product graph of G_{1} with G_{2} is the graph $G_{1} \star G_{2}=\left(V_{1} \times V_{2}, E\right)$ such that for $\left(v_{1}, w_{1}\right),\left(v_{2}, w_{2}\right) \in V_{1} \times V_{2}$ the edge $e=\left(v_{1}, w_{1}\right) \sim\left(v_{2}, w_{2}\right) \in E$ if and only if one of the following holds:

$$
\begin{aligned}
& \text { 1. } v_{1}=v_{2}=r_{1} \text { and } w_{1} \sim w_{2} \\
& \text { 2. } v_{1} \sim v_{2} \text { and } w_{1}=w_{2}=r_{2}
\end{aligned}
$$

Boolean Product

Example

Boolean Product

Boolean Central Limit Theorem

Teorema

Let $G=(V, E, r)$ be a finite connected graph. Let $G^{\star N}$ de N-fold Boolean power of G, and let $A_{G^{*}}$ be its adjacency matrix. Then we have

$$
\lim _{N \rightarrow \infty} \varphi_{1}\left(\left(\frac{A_{G^{*}}}{N^{1 / 2} \operatorname{deg}(r)}\right)^{m}\right)=\frac{1}{2} \int_{-\infty}^{\infty} x^{m}\left(\delta_{-1}+\delta_{1}\right) d x, \quad m=1,2, \ldots .
$$

Monotone Product

Definition

For $G_{1}=\left(V_{1}, E_{1}, r_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}, r_{2}\right)$ be two finite rooted graphs, the monotone (comb) product graph of G_{1} with G_{2} is the graph $G_{1} \triangleright_{r_{2}} G_{2}=\left(V_{1} \times V_{2}, E\right)$ such that for $\left(v_{1}, w_{1}\right),\left(v_{2}, w_{2}\right) \in V_{1} \times V_{2}$ the edge $e=\left(v_{1}, w_{1}\right) \sim\left(v_{2}, w_{2}\right) \in E$ if and only if one of the following holds:

$$
\begin{aligned}
& \text { 1. } v_{1}=v_{2} \text { and } w_{1} \sim w_{2} \\
& \text { 2. } v_{1} \sim v_{2} \text { and } w_{1}=w_{2}=r_{2}
\end{aligned}
$$

Monotone Product

Example

Monotone Product

Monotone Central Limit Theorem

Teorema

Let $G=(V, E, r)$ be a finite connected graph. Let $G^{\wedge N}$ de N-fold monotone power of G, and let $A_{G^{\star N}}$ be its adjacency matrix. Then we have

$$
\lim _{N \rightarrow \infty} \varphi_{1}\left(\left(\frac{A_{G^{\bullet N}}}{N^{1 / 2} \operatorname{deg}(r)}\right)^{m}\right)=\frac{1}{\pi} \int_{-\sqrt{2}}^{\sqrt{2}} \frac{x^{m}}{\sqrt{2-x^{2}}} d x, \quad m=1,2, \ldots
$$

Free Product

$V^{0}=V \backslash\{e\}$. Let $\left(V_{i}, e_{i}\right)$ rooted vertex sets $i \in I$.
$*_{i \in I} V_{i}=\{e\} \cup\left\{v_{1} v_{2} \cdots v_{m}: v_{k} \in V_{i_{k}}^{0}\right.$, and $\left.i_{1} \neq i_{2} \neq \cdots \neq i_{m}, m \in \mathbb{N}\right\}$,
and e is the empty word.

Definition

The free product of rooted graph $\left(G_{i}, e_{i}\right), i \in I$, is define by the rooted graph $\left(*_{i \in I} G_{i}, e\right)$ with vertex set $*_{i \in I} V_{i}$ and the edges set $*_{i \in I} E_{i}$, define by

$$
*_{i \in I} E_{i}:=\left\{\left(v u, v^{\prime} u\right):\left(v, v^{\prime}\right) \in \bigcup_{i \in I} E_{i} \text { and } u, v u, v^{\prime} u \in *_{i \in I} V_{i}\right\}
$$

We denote this product by $*_{i \in I}\left(G_{i}, e_{i}\right)$ or $*_{i \in I} G$ if no confusion arises.

Free Product

Example

Free Product

Free Central Limit Theorem

Teorema

Let A be the adjacency matrix of (G, e) and let $A^{* N}$ denote the adjacency matrix of $(G, e)^{* N}$. Then

$$
\lim _{N \rightarrow \infty} \varphi_{1}\left(\left(\frac{A^{* N}}{\sqrt{N d e g(e)}}\right)^{2 m}\right)=c_{m}
$$

where c_{m} is the m-th Catalan number for $m \in \mathbb{N}, c_{0}=1$. The odd moments vanish.

(1) General Framework

(2) Graph products
(3) Distance- k Graphs
4) Random d-regular Graphs

Distance-k Graphs

Definition

For a given graph $G=(V, E)$ and a positive integer k the distance k-graph is defined to be a graph $G^{[k]}=\left(V, E^{[k]}\right)$ with

$$
E^{[k]}=\left\{(x, y): x, y \in V, \partial_{G}(x, y)=k\right\}
$$

where $\partial_{G}(x, y)$ is the graph distance.

Figure: 3-Cube and its distance 2-graph

Distance-k Graphs

Direct Product

Teorema (Hibino, Lee and Obata (2012))

Let $G=(V, E)$ be a finite connected graph with $|V| \geq 2$. For $N \geq 1$ and $k \geq 1$ let $G^{[N, k]}$ be the distance k-graph of $G^{N}=G \times \cdots \times G$ (N-fold Cartesian power) and $A^{[N, k]}$ its adjacency matrix. Then, for a fixed $k \geq 1$, the eigenvalue distribution of $N^{-k / 2} A^{[N, k]}$ converges in moments as $N \rightarrow \infty$ to the probability distribution of

$$
\begin{equation*}
\left(\frac{2|E|}{|V|}\right)^{k / 2} \frac{1}{k!} \tilde{H}_{k}(g) \tag{1}
\end{equation*}
$$

where \tilde{H}_{k} is the monic Hermite polynomial of degree k and g is a random variable obeying the standard normal distribution $N(0,1)$.

Distance-k Graphs

Boolean Product

Teorema (Arizmendi, G. (2014))

Let $G=(V, E, e)$ be a locally finite connected graph and let $k \in \mathbb{N}$ be such that $G^{[k]}$ is not trivial. For $N \geq 1$ and $k \geq 1$ let $G^{[\star N, k]}$ be the distance k-graph of $G^{\star N}=G \star \cdots \star G$ (N-fold star power) and $A^{[\star N, k]}$ its adjacency matrix. Furthermore, let $\sigma=V_{e}^{[k]}$ be the number of neighbours of e in the distance k-graph of G, then the distribution with respect to the vacuum state of $(N \sigma)^{-1 / 2} A^{[\star N, k]}$ converges in distribution as $N \rightarrow \infty$ to a centered Bernoulli distribution. That is,

$$
\frac{A^{[\star N, k]}}{\sqrt{N \sigma}} \longrightarrow \frac{1}{2} \delta_{-1}+\frac{1}{2} \delta_{1}
$$

weakly.

Distance- k Graphs

Boolean Product

Proof.- Fourth Boolean Moment Lemma.

Lemma (Fourth Boolean Moment)

Let $\left\{X_{n}\right\}_{n \geq 1} \subset(\mathcal{A}, \varphi)$, be a sequence of self-adjoint random variables in some non-commutative probability space, such that $\varphi\left(X_{n}\right)=0$ and $\varphi\left(X_{n}^{2}\right)=1$. If $\varphi\left(X_{n}^{4}\right) \rightarrow 1$, as $n \rightarrow \infty$, then $\mu_{X_{n}}$ converges in distribution to a symmetric Bernoulli random variable b.

Distance- k Graphs

d-regular Trees

Let A be the adjacency matrix of the d-regular tree.

Lemma

Let $d \geq 1$ fixed, then it follows, $A^{(1)}=A, A^{(2)}=A^{2}-d I$, and

$$
A A^{(k)}=A^{(k+1)}+(d-1) A^{(k-1)} \quad k=1,2, \ldots, d-1
$$

Distance-k Graphs

d-regular Trees

PROOF

Figure: Graph of A^{2} split in two parts $A^{2}=A_{d}^{(2)}+d l$

If $k \geq 3$.
Case 1

$$
\delta(i, j)=k+1 \Rightarrow\left(A^{(k)} A\right)_{i j}=1
$$

Case 2

$$
\delta(i, j)=k-1 \Rightarrow\left(A^{(k)} A\right)_{i j}=d-1 .
$$

Case 3

$$
|\delta(i, j)-k| \neq 1 \Rightarrow\left(A^{(k)} A\right)_{i} j=0
$$

Distance- k Graphs

d-regular Trees

Proposition

For $d \geq 2$, let $A_{d}^{(k)}$ be the adjacency matrix of distance- k graph of the d-regular tree. Then the distribution with respect to the vacuum state of $A_{d}^{(k)}$ is given by the probability distribution of

$$
\begin{equation*}
T_{k}\left(\frac{b}{2 \sqrt{d-1}}\right) \tag{2}
\end{equation*}
$$

with

$$
T_{k}(x)=\left\{\begin{array}{cl}
1 & \text { if } k=0 \\
\sqrt{\frac{d-1}{d}} P_{k}(x)-\frac{1}{\sqrt{d(d-1)}} P_{k-2}(x) & \text { if } k=1,2, \ldots
\end{array}\right.
$$

where P_{k} is the Chebychev polynomial of degree k and b is a random variable with distribution μ_{d}.

$$
d \mu_{d}=\frac{d}{2 \pi} \frac{\sqrt{4(d-1)-x^{2}}}{d^{2}-x^{2}} d x
$$

Distance- k Graphs

d-regular Trees

Teorema (Arizmendi, G. In progress)

For $d \geq 2$, let $A_{d}^{(k)}$ be the adjacency matrix of distance- k graph of the d-regular tree. Then the distribution with respect to the vacuum state of $d^{k / 2} A_{d}^{(k)}$ converges in moments as $d \rightarrow \infty$ to the probability distribution of

$$
\begin{equation*}
P_{k}(s), \tag{3}
\end{equation*}
$$

where $P_{k}(s)$ is the Chebychev polynomial of degree k and s is a random variable obeying the semicircle law.

$$
\frac{A_{d}}{d^{1 / 2}} \frac{A_{d}^{(k)}}{d^{k / 2}}=\frac{A_{d}^{(k+1)}}{d^{(k+1) / 2}}+\frac{A_{d}^{(k-1)}}{d^{(k-1) / 2}}-\frac{1}{d} \frac{A_{d}^{(k-1)}}{d^{(k-1) / 2}}
$$

If $d \rightarrow \infty$ and $X=\frac{A_{d}}{d^{1 / 2}}$ then

$$
\begin{gathered}
P^{(1)}(X)=X, \quad P^{(2)}(X)=X^{2}-I, \\
X P^{(k)}(X)=P^{(k+1)}(X)+P^{(k-1)}(X)-\frac{1}{d} P^{(k-1)}(X)
\end{gathered}
$$

(1) General Framework

(2) Graph products

(3) Distance- k Graphs

(4) Random d-regular Graphs

Random d-regular Graphs

X_{1}, X_{2}, \ldots : sequence of d-regular graphs.
$n(X)$: number of vertices of the graph X.
$c_{j}(X)$: number of cycles of length j of X.
$A^{(k)}(X)$: the adjacency matrix of the distance- k graph of X.

Proposition

If $c_{j}\left(X_{i}\right) / n\left(X_{i}\right) \rightarrow 0$ as $i \rightarrow \infty$, then

$$
A^{(k)}\left(X_{i}\right) \xrightarrow{m} A_{d}^{(k)}
$$

PROOF

- $n_{r}\left(X_{i}\right)$: \# vertices of X_{i} s.t. the subgraph induced by the vertices at most $r=m k$ from each ones has no cycles.
- By hypothesis $n_{r}\left(X_{i}\right) / n\left(X_{i}\right) \rightarrow 1$ as $i \rightarrow \infty$.
- $\theta_{m}\left(X_{i}\right)$: \# closed walks of length m for the remaining vertices. Then $0 \leq \theta_{m}\left(X_{i}\right) \leq d^{r}$.
- Hence

$$
\begin{aligned}
\varphi_{t r}\left(A^{(k)}\left(X_{i}\right)\right) & =\frac{\varphi_{1}\left(A_{d}^{(k)}\right) n_{r}\left(X_{i}\right)}{n\left(X_{i}\right)}+\frac{\left(n\left(X_{i}\right)-n_{r}\left(X_{i}\right)\right) \theta_{m}\left(X_{i}\right)}{n\left(X_{i}\right)} \\
& \longrightarrow \varphi_{1}\left(A_{d}^{(k)}\right) \quad \text { as } i \rightarrow \infty
\end{aligned}
$$

THANK YOU!

