Distance-*k* graphs of random *d*-regular graphs

Tulio Gaxiola

CIMAT

April 9, 2015

Joint Work with Octavio Arizmendi SIMA 2015

Tulio Gaxiola (CIMAT)

Distance-k graphs

April 9, 2015 1 / 37

Tulio Gaxiola (CIMAT)

イロン イロン イヨン イヨン

2) Graph products

3 Distance-k Graphs

Tulio Gaxiola (CIMAT)

イロン イロン イヨン イヨン

Graphs

Definition

A graph is a pair G = (V, E), where V is the set of vertices and E the set of edges. We write $x \sim y$ (adjacent) if they are connected by an edge.

Definition

We call a graph *undirected* if $x \sim y$ implies $y \sim x$. A *loop* is an edge of the form $x \sim x$, we say a graph is *simple* if it has not loops.

Examples

Tulio Gaxiola (CIMAT)

Distance-k graphs

▲ ▲ ■ ▶ ■ ∽ ۹.0 April 9, 2015 5/37

ヘロン 人間 とくほど くほど

Graphs and Spectra

$$G = (V, E)$$
: a finite graph, i.e. $|V| < \infty$

Definition

The *adjacency matrix* of a graph G = (V, E) is defined by

$$A = [A_{xy}]_{x,y \in V} \quad A_{xy} = \begin{cases} 1, & x \sim y \\ 0, & \text{otherwise.} \end{cases}$$

The *spectrum* of *G* is defined by Spec(G) = Spec(A).

(A^k)_{ij} =# paths of length k from i to j.
(A^kB^l)_{ij}

Formulation of Problem

- Let A be the *-algebra generated by A.
- Let $\varphi(\cdot)$ be a state.
- The adjacency matrix A as a random variable of (\mathcal{A}, φ) .

Formulation of Problem (Main Problem)

Let $G_{(\nu)} = (V_{(\nu)}, E_{(\nu)})$ be a growing graph and let $\varphi_{\nu}(\cdot)$ be a state on $\mathcal{A}(G_{(\nu)})$. Find a probability distribution μ on \mathbb{R} satisfying

$$\varphi_{\nu}\left(\left(\frac{A_{(\nu)}-\varphi(A_{(\nu)})_{\nu}}{(A_{(\nu)}-\varphi(A_{(\nu)})_{\nu})^{2})_{\nu}^{1/2}}\right)^{m}\right)\rightarrow\int_{-\infty}^{\infty}x^{m}\mu(dx), \quad m=1,2,\cdots.$$

The above μ is called the *asymptotic spectral distribution* of $G_{(\nu)}$ in the states $\varphi(\cdot)_{\nu}$.

Two States

• $\varphi_{tr}(A) = \frac{Tr(A)}{|V|} = \frac{\# \text{ closed paths of size } k}{|V|}$. The *spectral distribution* μ of A i determined by

$$\varphi(A^m)_{tr} = \int_{-\infty}^{\infty} x^m \mu(dx), \quad m = 1, 2, \dots$$

 μ coincides with the *eigenvalue distribution* of *A*:

$$\mu = \frac{1}{|V|} \sum_{i} m_i \delta_{\lambda_i}.$$

2 $\varphi_1(A) = (A)_{11} = #$ closed paths from the root of size *k*.

Tulio Gaxiola (CIMAT)

April 9, 2015 10 / 37

æ

イロン イロン イヨン イヨン

Direct Product

Definition

For $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two finite graphs, the *direct* product graph of G_1 with G_2 is the graph $G_1 \times G_2 = (V_1 \times V_2, E)$ such that for (v_1, w_1) , $(v_2, w_2) \in V_1 \times V_2$ the edge $e = (v_1, w_1) \sim (v_2, w_2) \in E$ if and only if one of the following holds:

1.
$$v_1 = v_2$$
 and $w_1 \sim w_2$
2. $v_1 \sim v_2$ and $w_1 = w_2$.

イロト イポト イヨト イヨト 一日

Direct Product Example

Tulio	Gaxiola	(CIMAT)	

イロン イロン イヨン イヨン

Direct Product

Classical Central Limit Theorem

Teorema

Let G = (V, E) be a finite connected graph. Let G^N de N-fold direct power of G, and let A_{G^N} be its adjacency matrix. Then we have

$$\lim_{N\to\infty}\varphi_{tr}\left(\left(\frac{A_{G^N}}{N^{1/2}\left(\frac{|V|}{2|E|}\right)^{1/2}}\right)^m\right)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}x^m e^{-x^2/2}dx, \quad m=1,2,\ldots$$

<ロ> <問> <問> < 同> < 同> < 同> = □

Boolean Product

Definition

For $G_1 = (V_1, E_1, r_1)$ and $G_2 = (V_2, E_2, r_2)$ be two finite rooted graphs, the *Boolean product graph* of G_1 with G_2 is the graph $G_1 \star G_2 = (V_1 \times V_2, E)$ such that for (v_1, w_1) , $(v_2, w_2) \in V_1 \times V_2$ the edge $e = (v_1, w_1) \sim (v_2, w_2) \in E$ if and only if one of the following holds:

1.
$$v_1 = v_2 = r_1$$
 and $w_1 \sim w_2$
2. $v_1 \sim v_2$ and $w_1 = w_2 = r_2$.

Boolean Product

Example

Tulio	Gaxiola	(CIMAT)

▲ ▶ ▲ ■ ▶ ■ 夕々の April 9, 2015 15/37

イロン イロン イヨン イヨン

Boolean Product

Boolean Central Limit Theorem

Teorema

Let G = (V, E, r) be a finite connected graph. Let G^{*N} de N-fold Boolean power of G, and let $A_{G^{*N}}$ be its adjacency matrix. Then we have

$$\lim_{N\to\infty}\varphi_1\left(\left(\frac{A_{G^{\star N}}}{N^{1/2}deg(r)}\right)^m\right)=\frac{1}{2}\int_{-\infty}^{\infty}x^m(\delta_{-1}+\delta_1)dx, \quad m=1,2,\ldots.$$

イロト イポト イヨト イヨト 一日

Monotone Product

Definition

For $G_1 = (V_1, E_1, r_1)$ and $G_2 = (V_2, E_2, r_2)$ be two finite rooted graphs, the *monotone (comb) product graph* of G_1 with G_2 is the graph $G_1 \triangleright_{r_2} G_2 = (V_1 \times V_2, E)$ such that for (v_1, w_1) , $(v_2, w_2) \in V_1 \times V_2$ the edge $e = (v_1, w_1) \sim (v_2, w_2) \in E$ if and only if one of the following holds:

1.
$$v_1 = v_2$$
 and $w_1 \sim w_2$
2. $v_1 \sim v_2$ and $w_1 = w_2 = r_2$.

Monotone Product

Example

Tulio Gaxiola (CIMAT)
-----------------	--------

▲ ▶ ▲ ■ ▶ ■ 夕々の April 9, 2015 18/37

イロン イロン イヨン イヨン

Monotone Product

Monotone Central Limit Theorem

Teorema

Let G = (V, E, r) be a finite connected graph. Let $G^{>N}$ de N-fold monotone power of G, and let $A_{G^{>N}}$ be its adjacency matrix. Then we have

$$\lim_{N\to\infty}\varphi_1\left(\left(\frac{A_{G^{\triangleright N}}}{N^{1/2}deg(r)}\right)^m\right)=\frac{1}{\pi}\int_{-\sqrt{2}}^{\sqrt{2}}\frac{x^m}{\sqrt{2-x^2}}dx, \quad m=1,2,\ldots.$$

Free Product

 $V^0 = V \setminus \{e\}$. Let (V_i, e_i) rooted vertex sets $i \in I$.

 $*_{i\in I}V_i = \{e\} \cup \{v_1v_2\cdots v_m : v_k \in V^0_{i_k}, \text{ and } i_1 \neq i_2 \neq \cdots \neq i_m, m \in \mathbb{N}\},\$

and e is the empty word.

Definition

The *free product of rooted graph* (G_i, e_i) , $i \in I$, is define by the rooted graph $(*_{i \in I}G_i, e)$ with vertex set $*_{i \in I}V_i$ and the edges set $*_{i \in I}E_i$, define by

$$*_{i\in I}E_i := \{(vu, v'u) : (v, v') \in \bigcup_{i\in I}E_i \text{ and } u, vu, v'u \in *_{i\in I}V_i\}.$$

We denote this product by $*_{i \in I}(G_i, e_i)$ or $*_{i \in I}G$ if no confusion arises.

Free Product

Example

Tulio Gaxiola (CIMAT)

April 9, 2015 21 / 37

Free Product

Free Central Limit Theorem

Teorema

Let A be the adjacency matrix of (G, e) and let A^{*N} denote the adjacency matrix of $(G, e)^{*N}$. Then

$$\lim_{N\to\infty}\varphi_1\left(\left(\frac{A^{*N}}{\sqrt{Ndeg(e)}}\right)^{2m}\right)=c_m$$

where c_m is the m-th Catalan number for $m \in \mathbb{N}$, $c_0 = 1$. The odd moments vanish.

2) Graph products

Tulio Gaxiola (CIMAT)

▲ ▶ ▲ ■ ▶ ■ ∽ ۹.0 April 9, 2015 23 / 37

・ロト ・ 四ト ・ ヨト ・ ヨト

Definition

For a given graph G = (V, E) and a positive integer k the *distance* k-graph is defined to be a graph $G^{[k]} = (V, E^{[k]})$ with

$$E^{[k]} = \{(x, y) : x, y \in V, \partial_G(x, y) = k\},\$$

where $\partial_G(x, y)$ is the graph distance.

Figure: 3-Cube and its distance 2-graph

Table	Caviala	(CINAAT)
TUIIO	Gaxiola	(CIMAI)

Direct Product

Teorema (Hibino, Lee and Obata (2012))

Let G = (V, E) be a finite connected graph with $|V| \ge 2$. For $N \ge 1$ and $k \ge 1$ let $G^{[N,k]}$ be the distance k-graph of $G^N = G \times \cdots \times G$ (N-fold Cartesian power) and $A^{[N,k]}$ its adjacency matrix. Then, for a fixed $k \ge 1$, the eigenvalue distribution of $N^{-k/2}A^{[N,k]}$ converges in moments as $N \to \infty$ to the probability distribution of

$$\left(\frac{2|E|}{|V|}\right)^{k/2}\frac{1}{k!}\tilde{H}_k(g),\tag{1}$$

where \tilde{H}_k is the monic Hermite polynomial of degree k and g is a random variable obeying the standard normal distribution N(0,1).

イロン 不良 とくほう イロン 一日

Boolean Product

Teorema (Arizmendi, G. (2014))

Let G = (V, E, e) be a locally finite connected graph and let $k \in \mathbb{N}$ be such that $G^{[k]}$ is not trivial. For $N \ge 1$ and $k \ge 1$ let $G^{[\star N,k]}$ be the distance k-graph of $G^{\star N} = G \star \cdots \star G$ (N-fold star power) and $A^{[\star N,k]}$ its adjacency matrix. Furthermore, let $\sigma = V_e^{[k]}$ be the number of neighbours of e in the distance k-graph of G, then the distribution with respect to the vacuum state of $(N\sigma)^{-1/2}A^{[\star N,k]}$ converges in distribution as $N \to \infty$ to a centered Bernoulli distribution. That is,

$$\frac{A^{[\star N,k]}}{\sqrt{N\sigma}} \longrightarrow \frac{1}{2}\delta_{-1} + \frac{1}{2}\delta_{1},$$

weakly.

<ロ> <四> <四> <三> <三> <三> <三> <三

Boolean Product

Proof.- Fourth Boolean Moment Lemma.

Lemma (Fourth Boolean Moment)

Let $\{X_n\}_{n\geq 1} \subset (\mathcal{A}, \varphi)$, be a sequence of self-adjoint random variables in some non-commutative probability space, such that $\varphi(X_n) = 0$ and $\varphi(X_n^2) = 1$. If $\varphi(X_n^4) \to 1$, as $n \to \infty$, then μ_{X_n} converges in distribution to a symmetric Bernoulli random variable **b**.

d-regular Trees

Let A be the adjacency matrix of the d-regular tree.

Lemma

Let $d \ge 1$ fixed, then it follows, $A^{(1)} = A$, $A^{(2)} = A^2 - dI$, and

$$AA^{(k)} = A^{(k+1)} + (d-1)A^{(k-1)}$$
 $k = 1, 2, ..., d-1.$

d-regular Trees

PROOF

Figure: Graph of A^2 split in two parts $A^2 = A_d^{(2)} + dI$

Tulio Gaxiola (CIMAT)

Distance-k graphs

April 9, 2015 29 / 37

If $k \ge 3$. Case 1

$$\delta(i,j)=k+1 \Rightarrow (\mathbf{A}^{(k)}\mathbf{A})_{ij}=1.$$

Case 2

$$\delta(i,j) = k-1 \Rightarrow (A^{(k)}A)_{ij} = d-1.$$

Case 3

$$|\delta(i,j)-k| \neq 1 \Rightarrow (A^{(k)}A)_i j = 0.$$

Tulio Gaxiola (CIMAT)

April 9, 2015 30 / 37

◆□> ◆圖> ◆理> ◆理> 「理

d-regular Trees

Proposition

For $d \ge 2$, let $A_d^{(k)}$ be the adjacency matrix of distance-k graph of the *d*-regular tree. Then the distribution with respect to the vacuum state of $A_d^{(k)}$ is given by the probability distribution of

$$T_k\left(\frac{b}{2\sqrt{d-1}}\right),$$
 (2)

with

$$T_k(x) = \begin{cases} 1 & \text{if } k = 0, \\ \sqrt{\frac{d-1}{d}} P_k(x) - \frac{1}{\sqrt{d(d-1)}} P_{k-2}(x) & \text{if } k = 1, 2, \dots, \end{cases}$$

where P_k is the Chebychev polynomial of degree k and b is a random variable with distribution μ_d .

Tulio Gaxiola (CIMAT)

$$d\mu_d = rac{d}{2\pi} rac{\sqrt{4(d-1)-x^2}}{d^2-x^2} dx$$

) Gax		

April 9, 2015 32 / 37

・ロン ・四シ ・ヨン ・ヨン 三日

d-regular Trees

Teorema (Arizmendi, G. In progress)

For $d \geq 2$, let $A_d^{(k)}$ be the adjacency matrix of distance-k graph of the d-regular tree. Then the distribution with respect to the vacuum state of $d^{k/2}A_d^{(k)}$ converges in moments as $d \to \infty$ to the probability distribution of

$$P_k(s),$$

(3)

where $P_k(s)$ is the Chebychev polynomial of degree k and s is a random variable obeying the semicircle law.

$$\frac{A_d}{d^{1/2}} \frac{A_d^{(k)}}{d^{k/2}} = \frac{A_d^{(k+1)}}{d^{(k+1)/2}} + \frac{A_d^{(k-1)}}{d^{(k-1)/2}} - \frac{1}{d} \frac{A_d^{(k-1)}}{d^{(k-1)/2}}$$

f $d \to \infty$ and $X = \frac{A_d}{d^{1/2}}$ then
$$P^{(1)}(X) = X, \quad P^{(2)}(X) = X^2 - I,$$
$$XP^{(k)}(X) = P^{(k+1)}(X) + P^{(k-1)}(X) - \frac{1}{d}P^{(k-1)}(X).$$

Tulio Gaxiola (CIMAT)

Distance-k graphs

April 9, 2015 34 / 37

<ロシ <個シ <注シ <注シ 三注

2 Graph products

3 Distance-k Graphs

Tulio Gaxiola (CIMAT)

Distance-k graphs

April 9, 2015 35 / 37

æ

ヘロン 人間 とくほとく ほう

Random *d*-regular Graphs

 X_1, X_2, \ldots : sequence of *d*-regular graphs. n(X): number of vertices of the graph *X*. $c_j(X)$: number of cycles of length *j* of *X*. $A^{(k)}(X)$: the adjacency matrix of the distance-*k* graph of *X*.

Proposition

If $c_i(X_i)/n(X_i) \to 0$ as $i \to \infty$, then

$$A^{(k)}(X_i) \stackrel{m}{\longrightarrow} A^{(k)}_d.$$

Tulio Gaxiola (CIMAT)
-----------------	--------

イロト イポト イヨト イヨト 一日

PROOF

- n_r(X_i): # vertices of X_i s.t. the subgraph induced by the vertices at most r = mk from each ones has no cycles.
- By hypothesis $n_r(X_i)/n(X_i) \to 1$ as $i \to \infty$.
- $\theta_m(X_i)$: # closed walks of length *m* for the remaining vertices. Then $0 \le \theta_m(X_i) \le d^r$.
- Hence

$$\varphi_{tr}\left(\mathsf{A}^{(k)}(X_i)\right) = \frac{\varphi_1(\mathsf{A}^{(k)}_d)n_r(X_i)}{n(X_i)} + \frac{(n(X_i) - n_r(X_i))\theta_m(X_i)}{n(X_i)}$$
$$\longrightarrow \varphi_1(\mathsf{A}^{(k)}_d) \quad \text{as } i \to \infty.$$

THANK YOU!

Tulio Gaxiola (CIMAT)

April 9, 2015 37 / 37

★ロ> ★檀> ★理> ★理> 三連