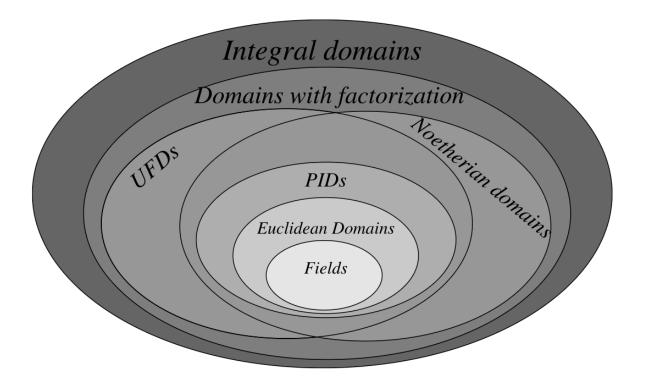
5ta Lista de Ejercicios Álgebra Moderna

Ejercicio 1. El diagrama siguiente muestra algunas clases importantes de dominios conmutativos: dominios enteros, dominios con factorización, dominios únicos de factorización (UFDs), dominios principales (PIDs), dominios euclídeos y campos, junto con la clase de dominios noetherianos.



Para cada inclusión mostrada en el diagrama, exhiba un anillo R que pertenezca a la clase más pequeña pero no a la siguiente, mostrando así que la inclusión es estricta. Justifique por qué R cumple las propiedades que definen la clase menor y por qué no satisface las de la clase mayor, indicando explícitamente las propiedades que distinguen ambas clases y cómo se verifican (o fallan) en el ejemplo elegido.

Ejercicio 2. (Localización de un anillo conmutativo)

Sea R un anillo conmutativo y $S \subset R$ un subconjunto multiplicativo, es decir, $1 \in S$ y $s, t \in S \Rightarrow st \in S$. Considere el conjunto de pares (a, s) con $a \in R$, $s \in S$, y la relación

$$(a,s) \sim (a',s') \iff (\exists t \in S) \ t(s'a-sa') = 0.$$

- (a) Pruebe que ~ es una relación de equivalencia.
- (b) Denote por $\frac{a}{s}$ la clase de (a, s) y defina operaciones

$$\frac{a}{s} + \frac{a'}{s'} = \frac{as' + a's}{ss'}, \qquad \frac{a}{s} \cdot \frac{a'}{s'} = \frac{aa'}{ss'}.$$

Demuestre que dichas operaciones están bien definidas.

- (c) Pruebe que el conjunto $S^{-1}R$ de clases de equivalencia, con las operaciones anteriores, es un anillo conmutativo y que la aplicación $\ell: R \to S^{-1}R$, $\ell(a) = \frac{a}{1}$, es un homomorfismo de anillos.
- (d) Pruebe que todo elemento $\ell(s)$ con $s \in S$ es invertible en $S^{-1}R$.
- (e) Demuestre la *propiedad universal* de la localización: si $f: R \to R'$ es un homomorfismo de anillos tal que f(s) es invertible en R' para todo $s \in S$, existe un único homomorfismo $\overline{f}: S^{-1}R \to R'$ tal que $\overline{f} \circ \ell = f$.
- (f) Si R es un dominio entero y $0 \notin S$, pruebe que $S^{-1}R$ es un dominio entero.