1ra Lista de Ejercicios Álgebra Moderna

1. Demuestre que si $x^2 = e$ para todo elemento x de un grupo G , entonces G es abeliano.
2. Demuestre que si G es un grupo finito de orden par, entonces contiene un elemento de orden 2.
3. Considere el producto de los grupos cíclicos C_2 y C_3 , $C_2 \times C_3$. Demuestre que este producto no es un coproducto de C_2 y C_3 en Grp.
4. Demuestre que $\operatorname{Aut}_{\operatorname{Grp}}(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}) \cong S_3$.
5. Demuestre que $F(\{x,y\})$ es un coproducto ($\mathbb{Z}*\mathbb{Z}$) de \mathbb{Z} consigo mismo en la categoría Grp.