Magma Tutorial for pairing cryptographers. Part I - Introduction

Luis J Dominguez Perez
Cinvestav, Mexico

September, 2011
http://www.computing.dcu.ie/~Idominguez/module6/pairing-tutorial.pdf

Table of contents

Cinvestav

2/ 30
Luis J
Dominguez
Perez
(1) Introduction

Introduction
Matrices
Functions,
(2) Matrices

Prime numbers
(3) Functions, Procedures, and Package.
4) Prime numbers

Magma

Cinvestav

3/ 30
Luis J
Dominguez
Perez

Introduction
Matrices
Functions,
Procedures,
and Package
Prime
numbers

The Magma shell

- The typical way of running magma is using its interactive shell, which behaves similarly to those of Python, Perl or Sage.
- Magma does not provides a graphical interface, however, it is possible to integrate it into Sage to produce graphics.
- The command shell symbol is $>$, and the command delimiter is ;.
- Since we are using a delimiter, we can have several commands in the same line.

The Magma program

- We can have several Magma copies of the program at the same time.
- Magma uses one and only one core per copy of the program.
- Each copy of Magma runs in a non-intrusive environment. (We can run 3 copies of Magma in a Quad core and still have a responsible system, which is useful for running a test with several set of inputs).

Operators

Arithmetic Operators

- Assignment :=
- $+,-, *, / \hat{,}$, mod, div, cat, etc.
- $+:=,-:=, *:=$

Boolean operators

- eq, ne, not, and, or, in

For the Binary Operations, I convert the number into a string sequence of the bits.

Hands-on

Cinvestav

7/30
Luis J
Dominguez
Perez

Introduction
Matrices
Functions,
Procedures,
and Package
Open magma and do the following exercise:

- $x \leftarrow 2$
- $y \leftarrow x$
- $X \longleftarrow Z$
- $z \leftarrow x^{2}$
- $a \leftarrow 1 / 2$
- $b \leftarrow a^{-1}$

Use "variable"; to display its value.

Display

Matrices

Functions,
Procedures,
and Package
More printing

- printf " $\mathrm{A}=\% \mathrm{o} \backslash \mathrm{n}$ ", x ; //as in $\mathrm{c} / \mathrm{c}++$
- Sprintf(" $A=\% o \backslash n ", x)$;
- PrintFile("MyFile" ,Sprintf(" \%o, \%o\n" ,3,5));

Use "\%h" to display values in hexadecimal.

Loops

For

- for $i:=1$ to 10 do ... end for;
- for i in [1..9] do ... end for;
- for $\mathrm{i}:=10$ to 1 by -1 do ... end for;

While

- while i lt 10 do ... end while;

Repeat until

- repeat ... until i lt 10;

Conditionals

if

- if i eq 10 then ... end if;
- if i eq true then . . . else . . . end if;
- if i eq 1 then ... elif i eq 0 then ... else ... end if;

switch

- case a: when: ... else: ... end case;

File

- L:=Open("NOTICE"," ${ }^{\prime \prime}$);
- while true do
- $\mathrm{s}:=\operatorname{Gets}(\mathrm{L})$;
- if IsEof(s) then break; end if;
- print s;
- end while;
- Flush(L);

Magma will do the cleaning, but it is always better to explicitly close a file (specially when writing in it).

Hands-on

Cinvestav

12/ 30
Luis J
Dominguez
Perez

Introduction
Matrices
Functions,

Exercise:

- Create a file with the multiplication tables.

Sets and Sequences

13/ 30
Luis J
Dominguez
Perez

Introduction
Matrices
Functions,

The difference:
i:=\{IntegerRing() | 1,2,3\}; i; i:=\{IntegerRing() | 1,3,5\}; i;
i:=[IntegerRing() | 1,5,3];
Autofilling it:

$$
\begin{aligned}
\mathrm{T}:= & {\left[\text { Integers() | } \mathrm{x}^{\wedge} 2+\mathrm{x}+1:\right.} \\
& \mathrm{x} \text { in }\{-3 \ldots 2 \text { by } 1\}] ;
\end{aligned}
$$

Accessing elements:

- a[1][2];
- a[1,2];
both are OK

More on sets and sequences

14/30
Luis J
Dominguez
Perez

Introduction
Matrices
Functions,

New operators:

- join
- meet
- cat

Modifying the set

- Append, Insert, Include, Exclude
- Prune, Remove
- Sort, Reverse, Rotate

Getting information

- Maximum, Minimum, \#, Random, Index, Parent, Universe, Category, etc.

Matrices

Cinvestav

15/30
Luis J
Dominguez
Perez

Introduction
Matrices
Functions,

Generating a matrix:
Matrix(IntegerRing(), 2, 2, [0,0,0,0]);
Matrix(RationalField(), 5, 10, [<1,2,23>, <3,7,11>, <5,10,-1>]);

Matrix(IntegerRing(), 10, 10, [<2*i-1, $2 * j-1, i * j\rangle:$
i, j in [1..5]]);

Matrices II

Generation shorcuts:

- ZeroMatrix(Ring,m,n)
- DiagonalMatrix(Ring,n,Sequence)
- ScalarMatrix(n,value)
- SymmetricMatrix(Sequence)

Operators:

- NumberOfRows
- NumberOfColumns

Hands-on

Cinvestav
17/ 30
Luis J
Dominguez
Perez

Introduction
Matrices
Functions,
Procedures,
and Package

Exercise:

- Create a file with the multiplication tables. (using matrices)

Functions

Two ways to declare a function:

- f := function
- function f

Both end with end function;

There's a difference though, one may need to use $\$ \$$ to write a recursive function.

Actually, there's a third one:

- f := func< $x \mid x$ x $2>$

Procedure

The same principle applies for the procedure, exempt that:

- It does not return statements
- It supports parameters as reference (\sim a)

Optionally, we can forward a definition of a procedure with forward f;

Hands-on

Cinvestav
20/30
Luis J
Dominguez
Perez

Introduction
Matrices
Functions, Procedures, and Package.

Exercise:

- Create a function and a procedure to get the multiplication tables.

Package I

A package, is a function or procedure which will be compiled by Magma at loading time.

A package is much more faster than a regular function or procedure, since it requires the user to specify the data-types of the arguments.

We "Attach" or "Detach" at runtime the file containing our package.

Package II

For example:
intrinsic myGCD(x::RngIntElt, y::RngIntElt)
-> RngIntElt
\{ Return the GCD of x and y \} return ...;
end intrinsic;
Please note that the documentation is mandatory

Associative Array

Cinvestav

Introduction

Matrices

Functions, Procedures, and Package.

An associative array is a type of array with a named index. Useful for look up tables.

- AssociativeArray
- Remove
- Keys
- IsDefined

Hands-on

Cinvestav
24/30
Luis J
Dominguez
Perez

Introduction
Matrices
Functions, Procedures, and Package.

Exercise:

- Create a package with the multiplication tables as a lookup

Prime numbers

Generating a prime number

- NextPrime
- PreviousPrime
- NthPrime
- RandomPrime

Primality test:

- IsPrime
- IsProbablePrime
- IsPrimePower
- Factorisation

Hands-on

Cinvestav

Exercises:
(write down a function to)

- Determine if a number is almost prime
- Compute the MCM of two numbers
- Compute the mcm of two numbers
- Compute the Euler totient function

More hands-on

Cinvestav
27/30
Luis J
Dominguez
Perez

Exercises:

- Toy-example of RSA

Verify:
$\left(a^{e}\right)^{d} \equiv a \bmod n,\left(a^{d}\right)^{e} \equiv a \bmod n$, and $a^{e d} \equiv a \bmod n$.
for any random a.

Solution

- RandomPrime(100)
- Setup e
- $d 1 \leftarrow$ InverseMod(e,p-1)
- $d 2 \leftarrow$ InverseMod(e,q-1)
- GCD (p-1,q-1)
- TrialDivision(p-1) for common factors
- d1 mod common factor
- $\mathrm{d}:=\operatorname{CRT}([\mathrm{d} 1, \mathrm{~d} 2],[\mathrm{p}-1,(\mathrm{q}-1)$ div common factor] $]$ or
- $\mathrm{d}:=$ InverseMod(e,LCM(p-1,q-1));

Error Support

When magma encounters a runtime error, it stops the execution of the program; if the program was running for a long period of time, then this is catastrophic.

```
procedure always_fails(x)
    error Error(x);
end procedure;
try
    always_fails(1);
catch e
    error "Error",e‘Object;
end try;
```

After catching a runtime error, Magma continues the execution of the program.

End

Cinvestav
30/30
Luis J
Dominguez
Perez

Introduction
Matrices
Functions,
Procedures,
and Package
Prime
numbers

End of Part I

There's part II

