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Abstract 

We use the Hilbert-Huang Transform (HHT) for the spectral analysis of a North-Sea 

storm that took place in 1997. We look at the contribution of the different Intrinsic 

Mode Functions (IMF) obtained using the Empirical Mode Decomposition algorithm, 

and also compare the Hilbert Marginal Spectra and the classical Fourier Spectra for the 

data set and the corresponding IMFs. We find that the number of IMFs needed to 

decompose the data and the energy associated to them is different from previous studies 

for different sea conditions by other authors. A tentative reason for this may lie in the 

difference in sampling rate used. 
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1. Introduction 

As is well-known, wave characteristics can show rapid changes during a storm and are 

also highly non-linear. Thus, to study storm waves one requires a method that takes into 

account these important characteristics. In 1998 Huang et al. [3] introduced a procedure 

for the spectral analysis of non-stationary non-linear processes which is now called the 

Hilbert-Huang transform (HHT). The Hilbert transform is used to define the 

instantaneous frequency associated to a given signal x(t). If z(t) is the analytic signal 

associated to x(t), and y(t) is the Hilbert transform of x(t), then z(t) = x(t) + i y(t). The 

phase function ))(/)(arctan()( txtyt =θ  can be associated to the original signal and 

hence used to define the instantaneous frequency as its derivative. However, if this 

procedure is applied directly to a wave record, very often negative frequencies appear, 

which are devoid of physical meaning. This is one of the five paradoxes regarding the 

definition of instantaneous frequency discussed by Cohen [1]. 

To avoid this, the HHT algorithm decomposes the signal by a procedure called the 

Empirical Mode Decomposition (EMD), into the so-called Intrinsic Mode Functions 

(IMF). These IMFs have well-defined instantaneous frequencies, and are assumed to 

represent the intrinsic oscillatory modes embedded in the original signal. The Hilbert 

Spectrum is defined as the sum of the Hilbert spectra obtained for the individual IMFs. 

This method, unlike conventional Fourier decomposition, can give a very sharp time 

resolution for the energy-frequency content of the signal. 

HHT has been used by several authors for the analysis of wave records under different 

situations. Veltcheva and Guedes Soares [10] analyze wave data collected at the 

Portuguese coast while Veltcheva [11] considered data coming form the Japanese coast. 

Schlurmann [8, 9] considered waves produced in a laboratory wave flume and sea 

waves also from the Sea of Japan. Dätig and Schlurmann [2] give a detailed analysis of 
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the positive and negative characteristics of HHT and consider both numerically 

simulated nonlinear waves and waves produced in a laboratory wave flume. 

In this work we consider the spectral analysis of a North-Sea storm that lasted over five 

days using the HHT. In the next section we give a brief description of the Hilbert-

Huang Transform. Section 3 gives a description of the data and section 4 describes the 

software and parameter settings used. Section 5 analyses the results of the EMD whilst 

sections 6 and 7 report the results from the spectral analysis and provides comparison 

with the classical Fourier analysis. Finally section 8 gives some conclusion about our 

work. 

2. The Hilbert-Huang Transform 

We give a brief description of this algorithm. A detailed presentation can be found in 

the articles of Huang et al. [3, 4, 5] as well as in Huang [6,7]. The basic idea is to 

decompose the signal using a process known as the Empirical Mode Decomposition 

(EMD), which separates a time series into individual characteristic oscillatory modes 

known as the Intrinsic Mode Functions (IMF). It is assumed that any signal consists of 

different modes of oscillation based on different time scales, and each IMF represents 

one of these embedded oscillatory modes. IMFs must satisfy two conditions: 1) The 

number of local extreme points and of zero-crossings must either be equal or differ at 

most by one, 2) At any instant, the mean of the envelopes defined by the local maxima 

and minima must be zero. These two conditions are required to avoid inconsistencies in 

the definition of the instantaneous frequency for each IMF. 

The EMD can be implemented as follows: The extreme points of the signal are 

identified and all maxima are joined by a cubic spline to obtain the upper envelope. In a 

similar way the lower envelope is obtained using the minima and all the data should fall 

within both envelopes. The mean m1 is obtained as the average of both envelopes and is 

subtracted from the original signal to obtain a function h1=X(t) – m1(t). If h1 satisfies the 
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criteria for an IMF, the process stops, otherwise it is repeated until one obtains a 

function that satisfies the criteria. This process is known as sifting and frequently has to 

be repeated a number of times until the first IMF is obtained. The stopping criterion for 

the sifting process requires that an IMF be obtained in succession a given number of 

times. The IMF is then subtracted from the signal and if the resulting function r1 is not 

constant or a monotonic function or a function with only one extreme point, the 

procedure is repeated for r1 to obtain the second IMF. This process continues until all 

IMFs have been extracted. 

Having decomposed the signal using the EMD, the Hilbert Transform is applied to each 

IMF. Given a function x(t) its Hilbert transform y(t) is defined as  

∫
∞

∞− −
= ds

st
sxty )(1)(

π
 (1) 

where the integral is taken as the Cauchy principal value. If z(t) is the analytic signal 

associated to x(t), we have for all t, )}(exp{)()()()( titAtiytxtz θ=+=  where 

is the amplitude function and 2/122 ))()(()( tytxtA += ))(/ tx)(arctan()( tyt =θ  is the 

phase function associated to the signal. The instantaneous frequency is now defined as 

the derivative of the phase function 
dt
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After decomposition into IMFs, the signal can be represented as  
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which can be seen as a generalized form of the Fourier decomposition for the function 

x(t) where both amplitude and frequency are functions of time. 

The time-frequency distribution of the amplitude or the amplitude squared is defined as 

the Hilbert amplitude spectrum or the Hilbert energy spectrum, respectively. For these 

spectra the time resolution can be as precise as the sampling rate of the data. The lowest 
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frequency that can be obtained is 1/T, where T is the duration of the record, and the 

highest is , where 5 is the minimal number of data points needed to obtain the 

frequency accurately and is the sampling rate. The corresponding marginal Hilbert 

spectrum is defined as  

)5/(1 tΔ

tΔ

) =ω .),((
0
∫
T

dttHh ω

3. Data 

Data was recorded from the North Alwyn platform situated in the northern North Sea, 

about 100 miles east of the Shetland Islands (60º48.5' North and 1º44.17' East) in a 

water depth of approximately 130 metres. The data are recorded continuously, using a 

Thorn EMI infra-red wave height meter at 5Hz and then divided into 20 minute records 

for which the summary statistics of Hs, Tp and the spectral moments are calculated. For 

data with Hs > 3m all the surface elevation records are kept. Further details are available 

in Wolfram et al [12]. The data set examined consists of a series of 410 records of 20 

minutes, starting on November 16th, 1997. There is a 16 minutes gap of missing data  
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Figure 1. Significant wave height calculated every 20 minutes. 
The line is a 7 point moving average. 

after 32 hours and 20 minutes so we have two long records, one of 97, 20-minutes 

intervals (32h. 20m.) and the other of 313 intervals of 20 minutes (104 h. 20m.). 

 5



For the analysis, the data set was divided into 10 intervals of 12 hours, plus two 

remainders of 8h. 20 min, denoted by P and R in figure 1. This shows the significant 

wave height (Hs) for the data, calculated for each 20 min. interval, and the divisions of 

the data into intervals. Also shown is a 7 point moving average of the significant wave 

height. We concentrate on the ten 12-hour intervals. Table 1 gives a list of calculated 

values for the following parameters : Significant wave height Hs, mean wave period 

Tm01, spectral peak period Tp, spectral bandwidth parameter ν and number of IMFs that 

resulted after the application of the EMD. 

Period Duration Hs (m.) Tm01 (s.) Tp (s.) ν # IMFs 

P1 12 h. 5.81 8.73 10.42 0.357 23 

P2 12 h. 7.27 9.67 11.70 0.370 24 

R1 8 h. 20 m. 6.70 9.52 12.05 0.336 18 

P3 12 h. 7.33 9.61 11.91 0.288 23 

P4 12 h. 8.58 10.42 12.57 0.343 27 

P5 12 h. 9.42 10.88 13.17 0.327 25 

P6 12 h. 8.86 10.57 13.02 0.244 23 

P7 12 h. 8.01 10.07 12.41 0.206 22 

P8 12 h. 7.00 9.7 12.10 0.2118 21 

P9 12 h. 5.54 8.90 11.31 0.226 20 

P10 12 h. 5.87 9.03 11.40 0.213 20 

R2 8 h. 20 m. 4.46 8.02 10.50 0.247 18 

Table 1. Some Characteristics for the Different Periods 

4. Software and Settings 

For the HHT analysis of the 12 intervals we used the Hilbert-Huang Transform Data 

Processing System (HHT-DPS), a software developed by NASA which has several 

options for the stopping criteria and the endpoint behaviour of the splines. To establish 

the most effective settings for our analysis we considered the 3 Endpoint Prediction 

choices: Pattern Prediction (PP), Copy Endpoints (CE) and Mean Prediction (MP). For 

each choice we used HHT-DPS on a 20-minute interval at the centre of the storm 

running the sifting criteria from 3 to 25. Following Veltcheva and Guedes-Soares [7], 

the marginal Hilbert spectra were calculated in all cases. The average of the 23 marginal 
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spectra was obtained and the distance, defined as the absolute value of the difference 

between each marginal spectrum and the mean spectra integrated over all frequencies, 

was calculated for each choice of endpoint prediction setting. The best method was 

chosen such that this distance was minimized. 

The results for the CE and MP choices were close, and are shown in figure 2, while 

those for PP were very irregular, showing large oscillations of the calculated distance. 

As can be seen, the distances for CE were almost always smaller than those of MP, 

showing a more consistent result. The smallest distance is obtained for the CE choice 

with 7 siftings, and was adopted as the standard setting for our analysis.  
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Figure 2. Distance from the mean spectrum for different siftings. 
 

5. Analysis of the EMD. 

The wave-elevation records for the 12-hour periods were decomposed into IMFs using 

HHT-DPS with the settings described above. As can be seen from Table 1, the number 

of IMFs needed varies from 20 to 27, depending on the specific characteristics of the 

interval. As an example, in Figure 3 we give the original data and the 23 IMFs obtained 

for a 10-minutes interval at the beginning of the 6th hour of period 6 (P6).  

As can be seen, and as is usual in this sort of analysis, the frequency and energy content 

varies with each IMF. Figure 4 left shows a boxplot of the frequency content for each 
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Figure 3. Original data and decomposition into IMFs for a 10-minutes interval. 
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IMFs for periods P3, P6 and P9. These were chosen to represent periods when the wave 

height was increasing (P3), when the wave height was decreasing (P6) and finally when 

it decreased and then increased (P9). Higher frequencies are associated to the first IMF 

and decrease thereafter, although higher IMFs can still show the presence of very high 

frequencies. Results for the other periods were similar. 

The contribution of each IMF to the total energy was determined by comparison of the 

variance of each IMF with the variance calculated for the original data (or equivalently, 

by the spectral moment of order zero m0) - Table 2.  

  
Figure 4. Boxplots for the frequency and amplitude content of each IMF, periods P3, P6 and P9. 

 

Also, if the IMFs were orthogonal, then the sum of the variances for the IMFs would be 

equal to the variance of the original record, so the difference can be taken as a measure 

of orthogonality. Table 2 also shows the sum of the variances for each period and the 

difference between the two as a percentage of the true variance. The difference for all 

periods was always below 5% and in two cases it was below 1%. 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 
Data variance (m2) 2.11 3.34 3.36 4.61 5.55 4.91 4.02 3.05 1.92 2.15 

Sum of Variances (m2) 2.06 3.35 3.44 4.80 5.54 4.70 3.90 2.93 1.86 2.12 
Error (%) 2.36 0.28 2.35 4.32 0.12 4.26 2.85 4.16 3.27 1.47 

  
Table 2. Variance of the original data compared to the sum of variances of the IMFs 
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The contribution of each IMF to the total variance also changes from period to period. 

The highest variance IMF goes from IMF6 for periods P8, P9 and P10 to IMF11 for  

Period P3 Period P6 Period P9 
IMF Var. % Cum. % IMF Var. % Cum. % IMF Var. % Cum. %

8 1.221 35.49 35.49 9 1.32 28.001 28.00 6 0.778 41.918 41.92
7 0.592 17.22 52.71 7 1.01 21.383 49.38 5 0.687 37.020 78.94
9 0.430 12.50 65.21 8 1.00 21.207 70.59 7 0.195 10.500 89.44
6 0.352 10.22 75.44 6 0.50 10.637 81.23 4 0.124 6.656 96.09

10 0.272 7.90 83.33 10 0.43 9.129 90.36 8 0.035 1.893 97.99
11 0.145 4.23 87.56 5 0.15 3.132 93.49 3 0.014 0.759 98.75

5 0.145 4.21 91.77 11 0.14 2.946 96.43 9 0.009 0.489 99.23
4 0.052 1.52 93.30 4 0.05 0.991 97.43 10 0.005 0.273 99.51

12 0.043 1.24 94.54 12 0.04 0.865 98.29 11 0.003 0.140 99.65
14 0.032 0.92 95.45 14 0.02 0.449 98.74 12 0.002 0.113 99.76
16 0.025 0.74 96.19 13 0.02 0.383 99.12 2 0.002 0.101 99.86
15 0.020 0.57 96.76 15 0.01 0.284 99.41 13 0.001 0.062 99.92
13 0.018 0.54 97.29 3 0.01 0.199 99.61 14 0.001 0.029 99.95
17 0.017 0.49 97.79 16 0.01 0.173 99.78 1 0.000 0.026 99.98
23 0.012 0.34 98.13 17 0.00 0.099 99.88 15 0.000 0.008 99.99
18 0.012 0.34 98.48 18 0.00 0.047 99.92 16 0.000 0.005 99.99

3 0.012 0.34 98.82 1 0.00 0.020 99.94 17 0.000 0.003 99.995
20 0.011 0.33 99.15 2 0.00 0.014 99.96 20 0.000 0.003 99.998
22 0.011 0.32 99.47 19 0.00 0.013 99.97 18 0.000 0.002 100.00
21 0.009 0.25 99.72 21 0.00 0.012 99.98 19 0.000 0.000 100.00
19 0.007 0.20 99.93 20 0.00 0.009 99.99     

1 0.001 0.04 99.96 22 0.000 0.004 99.997     
2 0.001 0.04 100.00 23 0.000 0.003 100.00     

Sum 3.440 100.0  Sum 4.701 100.0  Sum 1.856 100.0  

Table 3. Variance decomposition for periods P3, P6 and P9. 

period 5. Table 3 gives the contribution of each IMF to the total sum of variances for 

periods P3, P6 and P9 in absolute terms, percentage of total and cumulative percentage 

contribution. As can be seen, there is a large variation in the contribution from each 

IMF to the total variance. This can also be seen in Figure 4 right which shows the 

boxplots for the amplitude content of each IMF for periods 3, 6 and 9. Figure 5 shows 

the contribution (%) of each IMF to the total variance for all periods. Only IMFs from 1 

to 13 are considered. The main contribution to the total energy comes from IMFs 5 to 

11, and this is in contrast to what has been reported previously by Veltcheva and 

Guedes Soares [7] and Veltcheva [8] where the first three IMFs are the most energetic 

ones. For example, in [7],  IMF2 was found to be the most energetic followed by IMF3 

 10



for two of the data sets, and for the other data set IMF1 is first followed by IMF2. 

Schlurmann [9] analyses a transient wave recorded in the Sea of Japan and reports IMF2 

as having the highest energy. 
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Figure 5: Contribution of each IMF to the Total Variance, all Periods. 

6. Spectral Analysis  

Using HHT-DPS one can obtain a graph for the Hilbert Energy Spectrum which has 

time and frequency as axes while the energy is shown in a colour scale. Figure 6 shows 

the Hilbert Spectrum for period P3. This graph provides a detailed record of the 

variation of amplitude in frequency and energy with time. For example, one can see that 

most of the energy is concentrated in a band around a frequency of 0.1 Hz and also that 

the amount of energy increases towards the end of the period, which is consistent with 

the significant wave height evolution (see Figure 1). Although there are high frequency 

components present in the spectrum, most of the energy is in the low frequencies, 

represented by IMFs 6, 7, 8 and 9. 

One of the alleged advantages of the HHT algorithm is that it is capable of revealing the 

local (time) behaviour of the analyzed signal. A section of the Hilbert Spectrum 
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Figure 6. Hilbert Spectrum for Period 3. 

corresponding to time points where large waves occurred during the storm was analyzed 

and compared with the shape of the wave-height record. In figure 7 we show the 

contour plot for the Hilbert spectra for a 200-seconds interval that contains two waves 

with amplitude over 10 m. The first large wave occurs at about 40 seconds and is clearly 

identified by the Hilbert spectrum in which high amplitude is assigned to certain 

frequencies at the time the wave occurs. However, for the second wave, the amplitude is 

distributed in several frequencies as a consequence of the EMD. Figure 8 illustrates the 

low frequencies over a shorter time period for both waves. The degree to which the 

IMFs represented a decomposition of the original time variation was checked by adding 

the individual IMFs and comparing with the original time series. The reconstruction 

obtained is very precise, with an absolute error below 5x10-13. 

Looking closer at the decomposition for both large waves one can see that wave 1 (Fig. 

9, left) is mainly the product of the superposition of a small number (5) of IMFs with 
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Figure 7. Hilbert spectrum for a 200 second interval with two big waves. 
 

large amplitudes, while wave 2 (Fig. 9, right) is the result of the superposition of a 

larger number (9) of IMFs having moderate amplitudes that fall into phase at the 

moment the large wave is produced. For wave 2 none of the IMFs has amplitude above 

3 m. 

7. Comparison with Fourier Spectra 

The Fourier spectra from all 10 periods were considered, but we only present the results 

for Period 3. The spectra for all IMFs along with that from the original data was 
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Figure 8. Hilbert spectra for two big waves. 

 
Figure 9. Wave height and 5 IMFs for waves 1 and 2. 

 

number increases the corresponding frequency range and peak frequencies decrease, 

although for higher IMFs (17 and higher) the peak period remains almost constant. 

Also, the energy order coincides with that given in Table 3 with IMFs 6 to 10 having 

the greatest energy level and a peak frequency similar to that of the whole data set.  

Table 4 lists some of the important spectral characteristics obtained from the Fourier 

spectra; significant wave height (Hs), mean wave period (T01) and peak period (Tp) for 
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Fourier Spectra for IMFs and Data, Period 3
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Figure 10. Fourier Spectra for IMFs and Data, Period 3. 

 Data Imf 1 Imf 2 Imf 3 Imf 4 Imf 5 Imf 6 Imf 7 
Hs (m) 7.33 0.14 0.14 0.43 0.92 1.52 2.37 3.08 

Tm01 (s) 9.6 0.82 1.6 2.96 4.34 6.03 8.29 10.16 
Tp (s) 11.9 0.96 2.79 3.17 4.84 6.87 9.69 11.6 

 Imf 8 Imf 9 Imf 10 Imf 11 Imf 12 Imf 13 Imf 14 Imf 15 
Hs (m) 4.42 2.62 2.08 1.53 0.83 0.54 0.71 0.56 

Tm01 (s) 11.52 14.14 15.9 25.04 35.1 53.1 82.1 128.2 
Tp (s) 12.2 14.8 16.5 49.95 43.0 57.8 138.2 253.0 

 Imf 16 Imf 17 Imf 18 Imf 19 Imf 20 Imf 21 Imf 22 Imf 23 
Hs (m) 0.64 0.52 0.44 0.34 0.43 0.37 0.42 0.44 

Tm01 (s) 149.3 162.5 168.6 176.8 183.8 186.5 188.1 187.8 
Tp (s) 334.7 355.7 363.1 366.4 368.2 368.8 369.1 369.1 

Table 4. Spectral Characteristics for the IMFs and Data, Period 3. 

the original data and for all IMFs. Except in very few cases the periods are seen to be 

increasing with the IMFs. 

Figure 11 gives the marginal Hilbert spectra (obtained as a time integral of the Hilbert 

energy spectra) for the original data and the IMFs. These spectra have a different 

interpretation. In the Fourier case the process is assumed to be stationary and linear and 

the presence of energy associated to a given frequency means that there is a 

trigonometric component with this frequency and amplitude present during the whole 
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time span of the data. In contrast, for the Hilbert marginal spectrum the process need not 

be stationary nor linear and the presence of energy associated to a given frequency 

means that in the time span of the data, there is a probability proportional to the amount 

of energy of having a component with this frequency and amplitude at any time. 

Hilbert Spectra for IMFs, Period 3
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Figure 11. Hilbert Marginal Spectra for IMFs and Data, Period 3. 
 

IMFs are supposed to represent different oscillatory modes present in the original data, 

each having different associated energies. This can be seen both from the Hilbert and 

the Fourier spectra. The first IMFs cover the high frequency range and have increasing 

energy as the IMF number grows. The central part of the spectrum is covered by IMFs 6 

to 10, which have roughly similar peak frequency. In this case the energy grows up to 

IMF 8 and then decreases. Higher IMFs decrease in frequency and energy, the last few 

being concentrated in the very low frequency range but also with low energy. 

8. Conclusions 

We have carried out a spectral analysis for a data set coming from a storm in the North 
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Sea that took place in 1997, using the Hilbert-Huang Transform. The storm was 

decomposed into intervals of 12 hours or less and each data set was considered, 

although we only give results for ten 12-hour periods.  

Each of these sets was decomposed into Intrinsic Mode Functions using HHT-DPS and 

their contribution to the total energy of the period was analyzed. The number of IMFs 

needed to decompose the data was higher than has been reported previously for 

different sea states. The amount of energy associated to each IMF was seen to vary for 

different time periods and reflects the specific characteristics of each period. However, 

it was seen that the energy distribution among different IMFs also differs from that 

reported previously. This may be due to the fact that sea states produced during a storm 

are more complex, and in particular the change in variance during the storm’s evolution, 

requires more IMFs with a different energy distribution to be decomposed than that for 

normal, ‘stationary’ sea states. Moreover, the possibility of analyzing very long data 

sets sampled at high frequencies allows for the detection of frequencies in both 

extremes, high and low, that may not have been present in normal sea states, or which 

could not be detected in the data sets considered by other authors, usually sampled at 

around 1Hz and for 20 min. The influence of sampling rate and length of the data set on 

the EMD and the HHT in general requires further work but preliminary results obtained 

with the same data set suggests that they may have a high impact on both the number of 

IMFs required for signal decomposition and the energy distribution among the different 

IMFs. 

Detailed analysis of two large waves occurring in the time series, showed that in one 

case, the Hilbert spectrum associates a large energy with the wave, if the wave is the 

result of the superposition of a single large, dominant IMF with a contribution from 

smaller ones. In the second case, when the large wave is the sum of several medium-

sized EMFs, the Hilbert spectrum does not have a large amount of energy associated to 
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the big wave. Although the IMFs do not always have a clear physical interpretation, 

these results could point to different mechanisms for generating large waves during a 

storm. 

During a storm the state of the sea is clearly non-stationary. So it is expected that the 

Fourier analysis over a 12 hour period be unstable. On the other hand, the very sharp 

time resolution of the HHT procedure provides a more robust spectral analysis that is 

capable of providing information of the evolution of the data that is not possible with 

the conventional Fourier Spectrum.  
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