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ABSTRACT   
 
In this work we consider the evolution of power spectra of waves 
during a period of one year. Soukissian and Samalekos (2005) have 
proposed a segmentation method for significant wave height based on 
determining periods of stability, increase and decrease using time-series 
techniques. The second segmentation method is based on the mean 
value over a moving window, and uses a fixed-width band to determine 
the change-points in the register. We compare both segmentation 
methods for several spectral characteristics and give a statistical 
analysis of duration and intensity of sea states in each case.  
 
KEY WORDS: Spectral analysis; stationary periods; time series; 
segmentation procedure. 
 
INTRODUCTION 
 
In this work we consider the evolution of power spectra of waves 
during a period of one year with data from one recording station 
situated at Waimea Bay, Hawaii. Using the wave-height record we 
calculate the spectra every 15 minutes in order to capture the short term 
evolution of some wave characteristics that can be obtained from the 
spectra. WAFO was used for obtaining the spectra and the spectral 
characteristics. 
Soukisissian and Samalekos (2005) have proposed a segmentation 
method for significant wave height based on determining periods of 
stability, increase and decrease using time-series techniques. Their 
method is based on local linear regression and the initial and end points 
of the intervals are extreme points (local maxima and minima) of the 
time series. They use a cost function to determine the best 
configuration of intervals. We apply this method to some spectral 
characteristics and compare the results obtained with another 
segmentation method which will be described next. 
The second segmentation method is based on calculating mean values 
over moving windows, and using a fixed-width band to determine 
change points in the wave-height data. Those intervals in which the 
values remain within a fixed-width interval around the mean are 
considered to be stationary, those in which the values go above (or 
below) will be considered increasing (or decreasing). In this way the 
stationary, increasing and decreasing intervals are determined. Both 

methods were implemented in MATLAB. 
We will consider the following spectral characteristics: Significant 
wave height ( )(4 XVarH m = ), spectral moments of order zero 
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peak periods ( 202 mmTp π= ). 
After calculating the spectral characteristics the results were smoothed 
using a finite moving average filter of order 5, to get rid of the local 
noise, see Brockwell and Davis (1996) for details. 
The time series we considered are from Station 10601 in Waimea Bay, 
Hawaii, with the following characteristics. Deployment latitude: 
21°40.364' N, longitude: 158°06.949' W, water depth (m):  198.00. The 
time series has a sampling rate of 1.280 Hz. 
The rest of the paper is organized as follows. In the next section we 
describe the Soukissian and Samalekos algorithm, and apply this 
method to the time series. Next we describe the band method and its 
application to the time series. In the following two sections we make an 
analysis of the results for both methods and give our conclusions. 
 
SOUKISSIAN’S ALGORITHM 
 
Consider a time series of significant wave height observations Hm = h1, 
h2, …, hn with n  terms; the goal is to find a k-segmentation of Hm, i.e. 
Hm = Hm1, Hm2, …, Hmk with Hmi disjoint and non-overlapping intervals. 
The first step in time series segmentation is to define a representation 
model that approximates the data in each segment. Once we find the 
representation model, the quality of the approximation is evaluated by a 
cost function to minimize the representation error. For this a linear 
regression model is used (Charbonnier, 2005), and the representation 
error is defined based on the sum of squares of distances between the 
actual values of the time series and the values of the representation 
model fitted. 
The total cost of a k-segmentation is 
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where kikicost ≤≤1),,(  is the cost of i-th segment of a k-
segmentation. 
The linear regression model is employed because Hm data exhibit 
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alternating occurrences of monotonically increasing and decreasing 
trends and the model is well suited to detect these features. 
The algorithm initially creates a fine segmentation of n-1 segments and 
n breakpoints ],[,],,[],,[ 13221 nn tttttt −K  based on the raw data. This 
first partition is based on local extreme (local maxima and minima). 
Then a linear regression model is fitted for each segment of partition 
and the representation error is calculated.  
Assuming [ ]ii es ,  where s and e denote the start and end points for i-th 
segment, the fitted values of the data 

iiii eess hhhh ,,,,
11 −+
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calculated with the linear regression model described as follows 
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for ii ets <<  and ieis hhh

i
<< , where t is time, ht the significant 

wave height at time t, εt is the random error and ai, bi are the estimates 
of αi and βi respectively. The parameter ai represents the intercept and 
bi the slope (regression coefficients) of the regression lines. Next the 
algorithm merges the lowest cost pair of segments until the 
representation error is less than the maximum error defined by the user. 
This process gives all the increasing and decreasing intervals. For 
extracting the stationary sea states one proceeds by applying a criterion 
which for the increasing intervals is of the form )%p(hh

ii
se +≤ 100  

and for decreasing intervals is of the form )%100( phh
ii es +≤ . (see 

Soukissian and Samalekos, 2006; Labeyrie, 1990 and Athanassoulis et 
al., 1992). Next we present the results obtained for station 106. 
 
Table 1. Statistics for significant wave height, Hm, 
max-error = 0.015, p = 4% (min) 
 Increase Decrease Stationary Total 
Num. inter 337 368 446 1151 
Minimum 15 15 15 15 
1st Quartile 60 75 15 45 
Median 120 150 90 120 
Mean 159.21 180.82 114.99 148.98 
3rd Quartile 220 240 165 210 
Maximum 720 900 675 900 
Variance 17383.83 19822.63 14082.11 17658.53 
 
Table 2. Statistics for spectral moment or order zero, m0,  
max-error = 0.001, p = 6%. (min) 
 Increase Decrease Stationary Total 
Num. inter 384 428 373 1185 
Minimum 15 15 15 15 
1st Quartile 45 71.25 15 45 
Median 105 135 45 105 
Mean 153.20 175.20 100.98 144.71 
3rd Quartile 195 225 135 195 
Maximum 1020 1260 675 1260 
Variance 21877.57 26517.93 13546.69 21858.55 
 
 
 
 
 
 
 
 

Table 3. Statistics for spectral moment or order two, m2,  
max-error = 0.0025, p = 7%. (min) 
 Increase Decrease Stationary Total 
Num. inter 402 415 372 1189 
Minimum 15 15 15 15 
1st Quartile 60 60 15 45 
Median 120 135 45 105 
Mean 157.09 174.90 96.09 144.22 
3rd Quartile 180 210 135 180 
Maximum 960 1275 810 1275 
Variance 22892.88 33110.38 13716.94 24659.77 
 
 
Table 4. Statistics for Up-crossing peak periods, Tp,  
max-error = 0.07, p = 3% (min) 
 Increase Decrease Stationary Total 
Num. inter 375 366 417 1158 
Minimum 15 15 15 15 
1st Quartile 60 75 15 45 
Median 120 135 105 120 
Mean 158.68 166.52 122.37 148.08 
3rd Quartile 210 225 195 210 
Maximum 855 855 705 855 
Variance 16583.48 15690.37 14097.96 15761.49 
 
Notice that for each spectral characteristic we choose a different value 
for the max-error and for p, because the scale of each spectral 
characteristic is different. The range for Hm is [0.8298, 5.3873], for m0 
it is [0.0431, 1.82], for m2 it is [0.041, 2.1926] and for Tp it is [3.4958, 
12.2582].  
The slope for each sea state and each spectral characteristic was also 
calculated. The mean values were as follows: significant wave height: 
increasing slope 0.035, decreasing slope -0.030; spectral moment of 
order zero: increasing slope 0.013, decreasing slope -0.012; spectral 
moment of order two: increasing slope 0.017, decreasing slope -0.016; 
up-crossing peak periods: increasing slope 0.090, decreasing slope -
0.079. To give an idea of the corresponding distributions we show the 
corresponding boxplots in figures 9 – 12. 
 
 
ALGORITHM OF BANDS 
 
We now describe the band algorithm. This segmentation procedure is 
based on calculating the mean values over a moving window with fixed   
bandwidth. We start by calculating the mean of the first two data points 
and then we add successively new points and recalculate the mean. 
Let mi be the mean value of X1,…, Xi and let 2h be the chosen 
bandwidth. If the next point Xi+1 belongs to the interval [ ]hmhm ii +− ,  
the mean is recalculated adding the new point Xi+1, to obtain mi+1, and 
the new interval is [ ]hmhm ii +− ++ 11 , . This process continues until the 
new point does not belong to the interval, in which case it is marked as 
a breakpoint. The previous points form a stationary interval. The 
process starts again. If successive points fall above (or below) the 
corresponding fixed-width band, they determine an increasing 
(decreasing) interval. 
 
The algorithm is as follows 
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1. Read data file of spectral characteristic 
2. Set j = 1, n = length of data file 
3. While j<n-2,  
       mj = mean (pi,…,pf), where pi is starting point and pf is endpoint 
       If  pf+1 ∈ [mj – h, mj + h] then pf =pf+1 
       Else   
            Set pf as breakpoint 
            Set pi = pf  and  pf = pf +1 
       End 
4. Go to 3. 
 
Next we present the results of applying this algorithm to the data of 
station 106. 
 
Table 5. Statistics for significant wave height, Hm, bandwidth = 0.125 
(min) 
 Increase Decrease Stationary Total 
Num. inter 792 848 1179 2819 
Minimum 15 15 15 15 
1st Quartile 30 45 30 30 
Median 45 45 45 45 
Mean 55.63 56.76 67.26 60.84 
3rd Quartile 60 75 90 75 
Maximum 360 240 600 600 
Variance 1253.18 866.40 4358.36 2464.00 
 
Table 6. Statistics for the spectral moment of order zero, m0, bandwidth 
= 0.035 (min) 
 Increase Decrease Stationary Total 
Num. inter 748 798 1054 2600 
Minimum 15 15 15 15 
1st Quartile 30 45 30 30 
Median 45 45 45 45 
Mean 55.99 57.31 79.58 65.96 
3rd Quartile 63.75 75 90 75 
Maximum 375 240 1110 1110 
Variance 1350.76 911.12 10484.11 5042.16 
 
Table 7. Statistics for the spectral moment of order two, m2, bandwidth 
= 0.06 (min) 
 Increase Decrease Stationary Total 
Num. inter 740 773 1009 2522 
Minimum 15 15 15 15 
1st Quartile 30 45 30 30 
Median 45 45 45 45 
Mean 59.23 61.07 79.74 68.00 
3rd Quartile 75 75 90 75 
Maximum 300 300 1020 1020 
Variance 1542.44 1686.65 13102.26 6299.97 
 
Table 8. Statistics for Up-crossing peak periods, Tp, bandwidth = 0.28 
(min) 
 Increase Decrease Stationary Total 
Num. inter 809 751 1114 2674 
Minimum 15 15 15 15 
1st Quartile 30 45 30 30 
Median 45 45 45 45 
Mean 56.68 57.82 73.80 64.13 
3rd Quartile 75 75 90 75 
Maximum 210 255 705 705 
Variance 1012.89 1067.75 5344.99 2898.31 
 

In this case, as with Soukissian’s algorithm and for the same reason, the 
value of the bandwidth parameter is different for each spectral 
characteristic. The value of bandwidth h for each spectral 
characteristics were chosen after a many proof with several values of h 
and analyzing the number of intervals, duration of intervals, starting 
and ending point of it, etc. 
Again, we calculated the slope for each sea state and each spectral 
characteristic, obtaining the following results for the mean values: 
significant wave height: increasing slope 0.054, decreasing slope           
-0.051; spectral moment of order zero: increasing slope 0.018, 
decreasing slope -0.017; spectral moment of order two: increasing 
slope 0.028, decreasing slope -0.026; up-crossing peak periods: 
increasing slope 0.121, decreasing slope -0.119. The corresponding 
boxplots are given in figures 9 – 12. 
 
ANALYSIS OF RESULTS 
 
In the analysis of wave data with both algorithms one can see that the 
number of breakpoints as well as the distribution of interval length are 
different. The band algorithm shows more breakpoints than 
Soukissian’s algorithm. Moreover, the breakpoints do not always match 
one another. In the next table (Table 9) we give the total number of 
breakpoints and matched breakpoints. The fourth column of table 9 
shows the percentage of breakpoints obtained with Soukissian’s 
algorithm that matched with those obtained the band algorithm. As can 
be seen the best agreement was obtained using the significant wave 
height time series. And in Figure 1 we show a segment of the time 
series with both breakpoints for significant wave height. 
 
Table 9. Number of matches breakpoints 

 Bandwidth 
algorithm 

Soukissian 
algorithm 

Number or 
matchpoint 

Percent 

Hm 2819 1151 938 91.49% 
m0 2600 1185 957 82.64% 
m2 2522 1189 974 82.19% 
Tp 2674 1158 956 80.40% 

 

 
Figure 1. Three  segments of significant wave height calculated from 
the data of Station 106. 
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Next are two tables that show number of breakpoint that match between 
two different spectral characteristics with both algorithms 
 
Table 10. A comparison of segmentation results for different spectral 
characteristics with the band algorithm. 

Spectral 
characteristics 

Number of 
breakpoints 

Number of 
matchpoints 

Percentage 

Hm 
m0 

2819 
2600 2402 85.21% 

m0 
Tp 

2600 
2674 799 29.88% 

m2 
Tp 

2522 
2674 894 33.43% 

Hm 
m2 

2819 
2522 1112 39.45% 

Hm 
Tp 

2819 
2674 882 31.29% 

m0 
m2 

2600 
2522 1607 61.81% 

 
Table 11. A comparison between different spectral characteristics with 
Soukissian’s algorithm. 

Spectral 
characteristics 

Number of 
breakpoints 

Number of 
matchpoints 

Percentage 

Hm 
m0 

1151 
1185 930 78.48% 

m0 
Tp 

1185 
1158 198 16.71% 

m2 
Tp 

1189 
1158 246 20.69% 

Hm 
m2 

1151 
1189 282 23.72% 

Hm 
Tp 

1151 
1158 192 16.58% 

m0 
m2 

1185 
1189 283 23.80% 

 
 
In the boxplots (Figs. 2 ~ 5) the segmentation obtained with both 
algorithms can be compared For the band algorithm the duration of 
stationary intervals is larger than the duration of periods of increase and 
decrease for all spectral characteristics considered, while for 
Soukissian’s algorithm it is the other way round. For the band 
algorithm increase and decrease periods have similar distributions 
while for Soukissian’s algorithm decrease periods tend to longer than 
periods of increase. The distributions, however, vary with the spectral 
characteristic being considered. 0On the other hand, for both algorithms 
the percentages of number of different kinds of intervals are similar for 
all spectral characteristics as can be seen in table 12. 
 
 
Table 12. Percentage and number of different types of intervals 
obtained with both algorithms for station 106 
 
Significant wave height  

Soukissian algorithm Band algorithm  
Num. interv Percent Num. interv Percent 

Increase 337 29.28% 792 28.10% 
Decrease 368 31.97% 848 30.08% 
Stationary 446 38.75% 1179 41.82% 
 
 

 
Spectral moment of order zero 

Soukissian algorithm Band algorithm  
Num. interv Percent Num. interv Percent 

Increase 384 32.41% 748 28.77% 
Decrease 428 36.12% 798 30.69% 
Stationary 373 31.48% 1054 40.54% 
Spectral moment of order two 

Soukissian algorithm Band algorithm  
Num. interv Percent Num. interv Percent 

Increase 402 33.81% 740 29.34% 
Decrease 415 34.90% 773 30.65% 
Stationary 372 31.29% 1009 40.01% 
 
Up-crossing peak periods 

Soukissian algorithm Band algorithm  
Num. interv Percent Num. interv Percent 

Increase 375 32.38% 809 30.25% 
Decrease 366 31.61% 751 28.09% 
Stationary 417 36.01% 1114 41.66% 
 

 
Figure 2. Boxplot for segmentation of Hm obtained with Soukissian’s 
algorithm (left) and band algorithm (right)  

 
Figure 3. Boxplot for segmentation of m0 obtained with Soukissian’s 
algorithm (left) and band algorithm (right) 
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Figure 4. Boxplot for segmentation of m2 obtained with Soukissian’s 
algorithm (left) and band algorithm (right). 

 
Figure 5. Boxplot for segmentation of Tp obtained with Soukissian’s 
algorithm (left) and band algorithm (right). 
 
In figures 6 – 8, one for each sea state, we show boxplots of all spectral 
characteristics for both algorithms. 

 
Figure 6. Boxplot for increasing intervals for all spectral characteristics 
obtained with both algorithms  

 
Figure 7. Boxplot for decreasing intervals for all spectral characteristics 
obtained with both algorithms. 

 
Figure 8. Boxplot for stationary intervals for all spectral characteristics 
obtained with both algorithms. 
 
In figures 9-12, one for each spectral parameter, we show boxplots for 
the absolute value of the slope for increasing and decreasing intervals. 

 
Figure 9. Boxplot for the absolute value of the slope for intervals of 
increase and decrease for significant wave height.  
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Figure 10. Boxplot for the absolute value of the slope for intervals of 
increase and decrease for the spectral moment of order zero.  
 

 
Figure 11. Boxplot for the absolute value of the slope for intervals of 
increase and decrease for the spectral moment of order two.  
 

 
Figure 12. Boxplot for the absolute value of the slope for intervals of 
increase and decrease for the up-crossing peak period.  
 

As can be seen from these previous four figures, the slopes differ from 
one algorithm to the other, but the increase and decrease slopes are very 
similar for any given algorithm. In all cases the distribution for the 
decreasing slope seems to have less dispersion than the distribution for 
the increasing case. 
As can be seen from tables 1 and 5 and figure 8 the duration of 
intervals for the band algorithm is shorter than the duration for 
Soukissian’s algorithm for the corresponding spectral parameters. As 
an example from Tables 1 and 5 one can see that the mean duration of 
stationary intervals for significant wave height for the band algorithm is 
67.26 min while with Soukissian’s algorithm is 114.99 min. In fact, the 
mean duration for all intervals is 60.84 min for the band algorithm and 
for Soukissian’s algorithm is 148.98 min for significant wave height.  
In figure 13, it can be seen an interval where the segmentations for 
significant wave height is similar in number of breakpoints, there are 
12 for Soukissian’s algorithm and 18 for the band algorithm. In this 
interval you can see that both algorithms detect some breakpoint in 
those points where data reach local maximum or minimum, but not at 
the same points. Whereas Soukissian’s algorithms detect breakpoints 
only in local maxima and minima band algorithm can detect breakpoint 
in any point (local maxima, minima or any other point) 

 
Figure 13.  Segmentation for significant wave height, Station 106. The 
Soukissian segmentation is shown in blue (solid line), the band 
segmentation in red (dashed line). 
 
CONCLUSIONS 
  
We have considered two segmentation procedures for detecting 
change-point in a time series: Soukissian’s algorithm and the band 
algorithm. These algorithms were used on the set of data coming from 
Station 106 for four different spectral characteristics. 
The results were different with regard to the number of intervals or 
change-points and in the distribution of duration of intervals. The 
intervals obtained with Soukissian’s algorithm have longer duration 
than the intervals obtained with the band algorithm for all spectral 
characteristics, but the distribution of duration is regular for both 
algorithms. 
One disadvantage of Soukissian’s algorithm is that took a long time to 
run with a large set of data. Despite that, the algorithm works fine to 
detect the change-points of a large data set. On the other hand, the band 
algorithm is fast and easy to use, although it tends to find much more 
intervals than Soukissian’s algorithm. Nevertheless, for the band 
algorithm we are looking for ways of fixing bandwidth parameters 
automatically in order to avoid subjectivity of users in the choice. 
For different spectral characteristics but with the same algorithm, 
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similar results for the number of breakpoints were obtained, and also 
the mean duration time for each kind of interval was similar. 
Significant wave height is the most commonly used spectral 
characteristic to determine segmentation of wave height time series. 
One advantage of using significant wave height is that it can be related 
to the evolution of sea before calculating the breakpoints, and the same 
holds for up-crossing peak periods. But in view of the fact that there are 
not large differences in the results from one spectral characteristic to 
another, one can use any of them.  
For both algorithms parameters are fixed by the user but once this is 
done, the calculation of intervals is automatic, which avoids the 
subjective selection of intervals. We are looking at automatic methods 
of parameter selection, but so far results are not satisfactory. 
In our view both algorithms work fine to detect change-point of a time 
series when the sea conditions are ‘normal’, it necessary to study the 
sea in presence of extreme conditions, for example during a hurricane, 
in order to establish if they work well or not. 
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