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ABSTRACT 
 
We use the Hilbert-Huang Transform (HHT) for the spectral analysis of 
waves during a storm in the North Sea that took place in 1999. We look 
at the contribution of the different Intrinsic Mode Functions (IMF) 
obtained by the Empirical Mode Decomposition algorithm and also 
compare the Hilbert Marginal Spectra and the classical Fourier spectra 
for the data set and for the corresponding IMFs. 
 
KEY WORDS: Hilbert-Huang Transform; Empirical Mode 
Decomposition; Intrinsic Mode Function; Spectral Analysis.  
 
INTRODUCTION 
 
The Hilbert-Huang Transform (HHT) was proposed by Huang et al. 
(1998, 1999, 2003), as an adequate method for the spectral analysis of 
non-stationary, nonlinear processes. Since then it has been used by 
several authors for the analysis of sea waves under different conditions 
(Schlumann, 2000, Veltcheva and Guedes Soares, 2004, Veltcheva, 
2005, among others).  
In this work we study a storm in the North Sea using the HHT. The 
wave data was decomposed into Intrinsic Mode Functions and their 
characteristics are studied and compared to those of the original record. 
We consider both the Hilbert and Fourier Spectra for comparison. 
 
HHT 
 
We give a brief description of the Hilbert Huang Transform. A detailed 
presentation can be found in the original articles of Huang et al. (1998, 
1999) as well as in Huang (2005a, b). 
The Hilbert Huang Transform is based on an empirical algorithm called 
the Empirical Mode Decomposition (EMD), used to decompose a time 
series into individual characteristic oscillations known as the intrinsic 
mode functions (IMF).  This technique is based on the assumption that 
any signal consists of different modes of oscillation based on different 
time scales, so that each IMF represents one of these embedded 
oscillatory modes. Each IMF has to satisfy two criteria: 1) The number 
of local extreme points and of zero-crossings must either be equal or 
differ at most by one, 2) At any instant, the mean of the envelope 
defined by the local maxima and the envelope corresponding to the 

local minima must be zero. These two conditions are required to avoid 
inconsistencies in the definition of the instantaneous frequency. 
Once the signal is decomposed, the Hilbert Transform is applied to 
each IMF. The Hilbert transform y(t) of a function x(t) is defined as 
(1/π) times  the convolution of f with the function 1/t. Then, if z(t) is the 
analytical signal associated to x(t), we have for all t 
 
z(t) = x(t) + iy(t) = A(t) exp(iθ(t)) (3) 
 
with A(t) = (x2(t) + y2(t))1/2 and θ(t) = arctan(y(t)/x(t)).  
The instantaneous frequency is defined now as the derivative of the 
phase function of the analytical signal z(t): 

dt
)t(d)t( θω =  (2) 

Once the signal has been decomposed into IMFs and the Hilbert 
transform for each has been obtained, the signal x(t) can be represented 
as 
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which is a generalized form of the Fourier expansion for x(t) in which 
both amplitude and frequency are functions of time.  
The time-frequency distribution of the amplitude or the amplitude 
squared is defined as the Hilbert amplitude spectrum or the Hilbert 
energy spectrum, respectively. In this work we use the Hilbert energy 
spectrum. 
 
DATA 
 
Data was recorded from the North Alwyn platform situated in the 
northern North Sea, about 100 miles east of the Shetland Islands 
(60º48.5' North and 1º44.17' East) in a water depth of approximately 
130 metres. There are three Thorn EMI Infra-red wave height meters 
mounted on the platform and their heights are between 25 and 35 
metres above the water. The data are recorded continuously and 
simultaneously at 5Hz and then divided into 20 minute records for 
which the summary statistics of Hs, Tp and the spectral moments are 
calculated. For data with Hs > 3m all the surface elevation records are 
kept. The data was transmitted to Heriot-Watt University on a daily 
basis, creating the largest, continuously recorded set of Metocean data 
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on the UK continental shelf. Further details are available in Wolfram et 
al (1994). Only data from the North East altimeter are used here. 
One set of data was examined. It consists of a series of records of 20 
minutes duration, sampled by the altimeter at a rate of 5 Hz., and 
occurred between midnight on December 23rd and 9.00 a.m. on 
December 26th 1999 and consisted of 244, 20 minute, records This data 
starts at a high level with a significant wave height of about 6.5 to 7 m 
and then drops away to about 3.5 m before increasing back up to 
around 7 m for around 20 hours. It then reduces again, before 
increasing to about 6.5 m, dropping to about 5 and then increasing 
again to around 5.5m  before finally dropping to less than 3.5m at the 
end of the dataset. As such this data includes two relative large 
increases in Hs and a section in which two peaks occur within relatively 
short time period. 
Since there were some short intervals missing in the data, we divided it 
into five sets that cover the storm. In Table 1 we give a list of the five 
sets along with some basic characteristics of the wave records: 
Significant wave height Hs, mean wave period Tm01, spectral peak 
period Tp and spectral bandwidth parameter ν.  Figure 1 shows the 
evolution of significant wave height and peak period during the storm. 
 
Table 1. Basic characteristics of the five intervals of data. 
 

 Duration Hs Tm01 Tp ν # IMFs 
Int. 1 8h. 40m. 5.34 9.31 11.87 0.509 17 
Int. 2 6h. 3.72 8.48 11.22 0.514 15 
Int. 3 18h. 5.07 8.25 10.50 0.510 19 
Int. 4 24h. 5.87 8.99 11.70 0.492 21 
Int. 5 24h. 5.10 8.75 11.70 0.506 20 
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Figure 1. Evolution of significant wave height and peak period.  
 
RESULTS 
 
The five wave records were decomposed into Intrinsic Mode Functions 
(IMFs) using the Empirical Mode Decomposition process. The 
software used was HHT-DPS, developed by Nasa. After a number of 
trials with different sets the sifting criteria was set at 5 siftings and the 
option Endpoint Prediction for the splines was set to Mean Prediction, 
which seemed to give the best results in our case. 
 The number of IMFs obtained varied with each interval and seems to 
increase with its length, as can be seen in table 1. This is probably due 
to the fact that longer intervals allow for the detection of lower 
frequencies in the data.  
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Fig 2 Original data and IMFs 1-8 for Interval 1. 
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Figures 2 and 3 show 10 minutes (at the beginning of the third hour) for 

the original data and for each of the 17 IMFs obtained for the first 
interval. 
As is usual for this decomposition, different IMFs correspond to 
different frequencies, being higher for the first IMF and decreasing 
thereof. This can readily be seen from Figure 4 which shows the 
boxplots for the frequency distribution of each of the 17 IMFs 
corresponding to the first interval. Results for the other time intervals 
were similar. 

 
Fig. 4 Boxplot of frequencies for the different IMFs. 
 
Table 2. Variance for each interval 
 

 Int. 1 Int. 2 Int. 3 Int. 4 Int. 5 
Variance 1.784 0.864 1.606 2.151 1.626 
Sum of Var. 1.821 0.882 1.589 2.102 1.593 
% difference 2.05 2.09 1.61 2.27 2.06 

 
Table 3. Contribution of each IMF to the total variance for Interval 1. 
 

 Variance % of total Cumulative %
IMF5 0.93735 51.488 51.488
IMF6 0.42806 23.513 75.001
IMF4 0.31390 17.242 92.243
IMF7 0.08808 4.838 97.081
IMF8 0.01615 0.887 97.968
IMF3 0.01572 0.863 98.831
IMF9 0.00679 0.373 99.204
IMF10 0.00376 0.207 99.411
IMF2 0.00367 0.202 99.613
IMF11 0.00271 0.149 99.761
IMF12 0.00183 0.100 99.862
IMF13 0.00103 0.057 99.919
IMF1 0.00077 0.042 99.961
IMF14 0.00034 0.019 99.980
IMF15 0.00016 0.009 99.988
IMF16 0.00013 0.007 99.995
IMF17 0.00008 0.005 100.000
Sum 1.8205 100.000 

 

Fig 3 IMFs 9-17 for Interval 1. 
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The contribution of each IMF to the total energy as measured by the 
variance (or equivalently, by the zero order spectral moment m0) is also 
different. We calculated the variance for the original data and for each 
IMF, and then obtained the sum of the variances for all IMFs. If the 
IMFs were orthogonal, these two quantities should be the same, so the 
difference can be used as a measure of orthogonality. Table 2 gives this 
comparison for the 5 intervals. As can be seen in all cases the 
difference was small. 
Table 3 gives the contribution to the sum of the variances of each IMF 
for interval 1, both in absolute terms, percentage of total and the 
cumulative percentage contribution. It can be seen that the biggest 
contribution comes from IMF5, with over 51% of the total energy, and 
that the four most energetic IMFs (5, 4, 6 and 7) account for over 97% 
of the total energy. Figure 5 shows the boxplots for the amplitudes of 
each IMF, where the same relationship shows up. 
 

 
Fig. 5 Boxplot of amplitudes for the different IMFs. 
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Fig 6 Wave data and remainder after substracting the sum of IMFs 4, 5, 
6 and 7. 
 
Figure 6 shows the same period of time as figures 2 and 3 and 
compares the original data set and the result of substracting the sum of 
the four most energetic IMFs (4-7). As can be seen, the sum has 
captured most of the large-scale variation in the original signal, but 

there is still a lot of information in the remainder.  
 
Similar results were obtained for the other intervals. They are shown in 
Table 4 in terms of the cumulative percentage contribution of the six 
most energetic IMFs and in Figure 7 for the 15 first IMFs. For intervals 
1 and 2, the four most energetic IMFs account for over 96% of the total 
variance. For intervals 3 and 5, five IMFs are required to go over 95% 
and for interval 4, which seems to have the energy more evenly 
distributed among IMFs, seven are needed to go over 95%. 
Table 4. Contribution of the six main IMFs to the total variance for all 
intervals. 
 

IMF 5 6 4 7 8 3 Int. 1 
% Var. 51.49 75.00 92.24 97.08 97.97 98.83
IMF 4 5 3 6 2 7 Int. 2 
% Var. 59.97 82.48 91.97 96.48 98.13 99.05
IMF 6 7 5 8 4 9 Int. 3 
% Var. 35.28 65.92 80.64 91.88 95.35 97.66
IMF 8 7 9 6 10 5 Int. 4 
% Var. 38.81 55.55 70.16 80.46 90.11 93.93
IMF 7 8 6 9 5 10 Int. 5 
% Var. 41.08 61.46 81.28 91.13 95.36 97.17

 
This is in contrast to what was reported by Veltcheva and Guedes 
Soares (2004) for various sea conditions off the Portugal coast and 
Veltcheva (2005) for various sea conditions off the coast of Japan, 
where the first three IMFs are the most energetic ones. For example, in 
the first case, for two of the data sets they analyze in detail, IMF2 is the 
most energetic followed by IMF3, and for the other data set IMF1 is 
first followed by IMF2. It should be pointed out, however, that the sets 
of data for which these authors give a detailed analysis have a much 
lower significant wave height than the sets we are considering.  
It is possible that more complex sea states, such as those that occur 
during a storm, require more IMFs to decompose them and hence the 
energy is distributed differently. Thus the main part of the energy is not 
carried by the very high frequency components but by intermediate 
ones. In calmer sea states these very high frequency components 
probably are not present, or if they are, they are less frequent and can 
be decomposed along with other frequencies in a single IMF. 
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Fig. 7 Contribution of each IMF to the total variance for all time 
intervals. 
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Spectral Analysis. 
 
We analyzed both the Fourier spectra and the Hilbert Spectra for the 
five time intervals but we only present the results corresponding to the 
first one.  Figure 8 gives the Hilbert spectrum with no regularization, as 
produced by HHT-DPS, where the energy level is given in a color 
scale. From this graph it is possible to see a detailed record of the 
variation in frequency and energy with time. For example, one can see 
that most of the energy is concentrated in a band around a frequency of 
0.1 Hz and also that the amount of energy decreases toward the end of 
the period, which is consistent with the significant wave height 
evolution (see figure 1). Although there are high frequency components 
present in the spectrum, most of the energy is in the low frequencies, 
represented by IMFs 4, 5, 6 and 7. 
 

 
Fig. 8 Hilbert Spectrum for interval 1. 
 
We also considered the Fourier spectra for the original data and for 
each IMF. They are shown in figure 9. It can be seen from this graph, 
as was pointed out before, that as the IMF number increases the 
corresponding frequency range and peak frequency decreases. 
 

Fourier Spectra. Interval 1.
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Fig. 9  Fourier Spectrum for the original data and IMfs, Interval 1. 
 
It can be seen that the energy order coincides with that given before and 
also that IMFs 4, 5 and 6 have a peak frequency similar to that of the 

whole data set. In table 5 we give some spectral characteristics 
(significant wave height, mean wave period and peak period) for the 
original data and all IMFs. 
 
Table 5 Significant wave height, mean wave period and peak period for 
the original data and all IMFs, Interval 1. 
 

 Hs T01 Tp 
Data 5.34 9.31 11.69 
IMF1 0.11 1.15 1.31 
IMF2 0.24 1.98 2.32 
IMF3 0.50 3.34 3.92 
IMF4 2.24 7.52 9.63 
IMF5 3.87 10.65 11.60 
IMF6 2.62 12.82 12.54 
IMF7 1.19 17.65 18.96 
IMF8 0.51 32.41 35.35 
IMF9 0.33 61.11 63.67 

IMF10 0.25 107.25 157.60 
IMF11 0.21 146.52 278.29 
IMF12 0.17 180.70 354.70 
IMF13 0.13 186.02 364.85 
IMF14 0.07 188.47 367.93 
IMF15 0.05 188.61 368.95 
IMF16 0.05 189.53 369.30 
IMF17 0.04 189.82 369.38 

 

Marginal Hilbert Spectra. Interval 1
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Fig. 10 Marginal Hilbert Spectrum for the original data and all Imfs, 
Interval 1. 
 
Figure 10 gives the marginal Hilbert spectra for the data and the first 12 
IMFs. These spectra are projections of the time-frequency energy 
distribution given in Figure 8, and should be interpreted differently. If 
there is energy associated to a given frequency in the Fourier spectrum, 
then there is a trigonometric component with this frequency and 
amplitude for the complete time span of the data. In the case of the 
marginal Hilbert spectrum, energy at a given frequency means that in 
the time span of the data there is a probability proportional to the 
amount of energy of having a component with this frequency and 
amplitude at any time. 
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The IMFs represent different oscillatory modes present in the original 
data and have different energy. This can be seen from both the Fourier 
and the marginal Hilbert spectra. The first Intrinsic Mode Functions 
cover the tail of the data spectrum while IMFs 4, 5 and 6 are located at 
the central part of the spectrum, with similar peak frequency. IMF 7 
also makes an important contribution to the central part of the 
spectrum, but with a lower frequency range. Higher IMFs correspond to 
lower frequencies, also with lower energy. 
 
CONCLUSIONS 
 
We have considered a set of data coming from a storm in the North Sea 
in 1999. These data were analyzed using the Hilbert Huang Transform, 
a method developed for the analysis of nonlinear and non-stationary 
time series. 
Each of the five data intervals was decomposed into IMFs and their 
contribution to the total energy was assessed. The order in this energy 
contribution reflect the characteristics of the particular data set been 
considered. Other spectral characteristics were also considered. 
The number of Intrinsic Mode Functions needed to decompose a given 
data set seems to be related to its size and is larger than what has been 
reported for normal sea states by other authors. The energy distribution 
among different IMFs is also different than what has been reported so 
far. This may be due to the fact the sea states produced during a storm 
are more complex, hence need more IMFs to be decomposed and their 
energy distribution is different than that for normal sea states. Further 
investigation is needed with other data sets to confirm this. 
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