
 Paper No. 2006-JSC357 Ortega Page 1 of 8 

A Comparison of Two Methods for Spectral Analysis of Waves 
 

J. Ortega 
Cimat, A.C. 

Guanajuato, Gto., Mexico  
 

José B. Hernández C. 
Universidad Central de Venezuela, 

Caracas, Venezuela  

 
 
 

 

ABSTRACT   
We consider the evolution of spectra of random waves over periods of 
three days. Two segmentation methods are used: Detection of Changes 
by Penalized Contrasts (DCPC) proposed and developed by Lavielle 
(1998, 1999) and Smooth Localized complex EXponentials (SLEX) 
proposed in Ombao et al. (2001). We compare the results obtained with 
both methods. In each case the intervals obtained are considered 
stationary and the corresponding spectra are obtained. For both sets of 
intervals the classical Fourier spectrum is obtained using the WAFO 
software. We compare some of the spectra obtained. We also apply 
both methods to the Hurricane Camille wave height data. 
 
KEY WORDS:  Spectral analysis; random waves; detection of 
changes by penalized contrasts; SLEX; stationarity periods. 
 
INTRODUCTION 
A simple approach to building long-term models of random waves is to 
assume that they are piecewise stationary random processes, i.e. that 
there are instants where the ‘state’ of the waves changes but in-between 
these change-points the waves are a stationary process. One advantage 
of this approach is that the classical spectral analysis can be used in 
each stationarity interval with the usual interpretation of the spectrum 
as the distribution of energy in a range of frequencies. 
To implement this approach it is necessary to have ways of detecting 
changes in the state of the process, and since the spectra characterizes 
the covariance structure of a stationary process it is reasonable to look 
for methods based on changes of the spectra. In this work we compare 
two such methods: Detection of Changes by Penalized Contrasts 
(DCPC) Lavielle (1998, 1999), Lavielle and Ludeña (2000), and 
Smooth Localized complex EXponentials (SLEX) Ombao et al. (2002). 
Both methods have been implemented by their authors in Matlab and 
have been successfully used in other areas, particularly for the analysis 
of EEGs. 
To compare their performance we considered three sets of data. The 
first two correspond to waves in a normal situation while the third set is 
the Hurricane Camille data, which corresponds to a highly non-
stationary situation. In all cases we compare the stationarity intervals 
obtained by both methods and also study three characteristics of the 
spectra: total energy, maximum value and dominant frequency. We 
chart and compare the evolution of all three for both segmentation  

 
 
 
methods and for the three data sets. 
In the next two sections we give brief descriptions of both methods, 
then we consider the two data sets corresponding to normal conditions 
and finally we study Hurricane Camilles’s data. 
 
THE DCPC METHOD 
The problem of estimating the change-points of a sequence of a piece-
wise stationary random process has received considerable attention in 
the literature (see, for example, Brodsky & Darkhovsky (1993), 
Basseville & Nikiforov (1993)). We describe here briefly a method 
proposed by M. Lavielle (1998, 1999) and studied in detail by Lavielle 
and Ludeña (2000). 
Consider a sequence of real random variables Y1,…,Yn and assume that 
the distribution of the process depends on a parameter θ that changes 
abruptly at some unknown instants (tj, 1 ≤ j ≤ K), where K is also 
unknown. To estimate both K and the change-points (tj, 1 ≤ j ≤ K) a 
penalized contrast function of the form 
 
J(t,y) + βpen(t) 

 
is used. The term J(t,y) estimates the change points while the 
penalization term prevents the algorithm from overestimating the 
number of change-points. The latter only depends on the dimension 
K(t) of the model and grows with K. The penalization parameter β 
adjusts the balance between the minimization of  J(t,y), which typically 
requires large values of K, and the minimization of pen(t), which goes 
in the other direction. 
The general principle proposed in the DCPC algorithm is the following: 
For any 1 ≤ k ≤ K let U(Ytk-1+1, …,Ytk

;θ) be a contrast function useful 
for estimating the unknown value of the parameter θ. The minimum 

contrast estimator ),,(ˆ 11 kk tt YY …+−
θ calculated on the k-th segment of 

t is defined as the solution of the following minimization problem: 
 

),;,,()),,(ˆ;,,( 111 111
θθ

kkkkkk tttttt YYUYYYYU ……… +++ −−−
≤  

for all Θ∈θ . For 1 ≤ k ≤ K let 

)),,(ˆ;,,(1),,( 111 111 kkkkkk tttttt YYYYU
n

YYC ……… +++ −−−
= θ  
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then the contrast function is defined as  

J(t,y) ∑
=
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where t0=0 and tK=n.  
Using this general principle, different contrast functions can be used 
according to the situation. In the case of changes of the spectral 
distribution, one considers that the energy of the process in certain 
frequency bands Jjjj ≤≤1),,[ µλ , change suddenly. For any k and 
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be the peridogram of the sequence (Yj) in the frequency band [λj,µj) and 
let 
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be the energy of (Ytk-1+1, …,Ytk
) in the frequency band [λj,µj). The 
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The DCPC algorithm has been implemented in Matlab for different 
criteria: Changes in mean, variance, mean and variance, distribution 
function and spectra. It can be downloaded from M. Lavielle’s personal 
webpage:  http://www.math.u-psud.fr/~lavielle/programs/index.html. 
 
THE SLEX METHOD 
The auto-SLEX algorithm is a statistical procedure that automatically 
divides time series in segments that are approximately stationary and 
automatically chooses a smoothing parameter for the estimation of the 
spectrum that changes with time. The method is based on the SLEX 
(Smooth Localized complex EXponential) transform, which uses the 
SLEX vectors which are closely related to the classical Fourier 
transform. The method is presented in Ombao et al. (2002) and we 
follow here their presentation. The algorithms have been implemented 
in Matlab and are available in the web-page www.stat.uiuc.edu/ 
~ombao. 
As is well-known, Fourier functions are adequate for representing 
stationary random processes, since they are localized in frequency and 
the spectral properties of stationary processes are time-invariant, but 
they cannot represent processes with time-evolving spectral properties. 
To tackle the time localization problem, smooth compactly supported 
windows have been applied, but the functions resulting are no longer 
orthogonal. It is well-known that there does not exist a smooth window 
such that the windowed Fourier basis vectors are both orthogonal and 
localized in time and frequency. The SLEX functions avoid this 
problem using a projection operator, instead of a window, on the 
complex exponentials. It turns out that the action of the projection 
operator on a periodic function is equivalent to applying two especially 
constructed smooth windows to the Fourier basis functions. 
The functions on the SLEX basis )(uωφ are of the form 

)2exp()()2exp()()( uiuuiuu πωπωφω −Ψ+Ψ= −+ , 

where ]2/1,2/1[−∈ω and )(u+Ψ and )(u−Ψ are specific smooth 
real valued functions that will be defined later. The SLEX basis 
functions have support on ]1,[ δδ +− , where 5.00 << δ . Thus 
SLEX functions at different dyadic blocks overlap but they remain 
orthogonal. 

The SLEX basis fun|ctions generalize directly to orthogonal SLEX 
basis vectors for representing time series. Let 10 aa < be two integer 

time points, 01|| aaS −= and the overlap |]|[ Sδε = , where [.] 

denotes the integer part. The support S  of  SLEX vectors on block S 
consists of time points defined on S and the overlap: 

,,,{ 00 aaS …ε−=  }1,1,,, 110 ε+−− aaa …… . A SLEX basis vector 
defined on block S has elements }{ ,, tS kωφ  with 
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where .2/||,,12/|||,|/ SSkSkk …+−==ω The windows can be 
represented in terms of a rising cut-off function r: 
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In the specific implementation we use r is  





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where ].1,1[−∈u  
Auto-SLEX also uses the Best Basis Algorithm (BBA) of Coifman and 
Wickerhauser (1992) to choose the best segmentation using a cost 
function defined in terms of logarithms of the SLEX periodograms. 
First, the SLEX spectrum for the whole set is calculated, then the set is 
divided in two and the SLEX spectrum calculated for each half. The 
cost of each configuration is calculated and the algorithm chooses the 
lower cost configuration. This procedure goes on until one arrives at 
the best configuration or the minimum size for the intervals is reached.  
The SLEX spectrum is calculated using the FFT algorithm and the set 
of data must have length a power of 2. Since the subintervals are 
obtained by successive divisions in two of the initial set, the length of 
all intervals obtained is also a power of 2, and their endpoints are sums 
of powers of 2. Since there is a minimum size for the intervals, related 
to the smallest set of data required to have a good estimation of the 
spectra, which in our case was set to 210 = 1024, there is a limit to the 
precision with which the algorithm can detect the change-points of a 
time series. This is a shortcoming of the SLEX algorithm. More details 
can be seen in Ombao et al. (2002). 
 
ANALYSIS OF WAVE DATA FOR NORMAL SEA STATES 
We consider two sets of data corresponding to three days in September 
2005, starting at 0 h. on Sept. 1st, for two buoys deployed by the Costal 
Data Information Program, Integrative Oceanography Division, 
operated by the Scripps Institution of Oceanography (http://cdip.ucsd. 
edu/): Station 067 San Nicholas Island, off the coast of California, with 
a depth of 360 m. and Station 106 Waimea Bay, Hawai, with a depth of 
200 m. In both cases data are sampled at a frequency of 1.28 Hz. We 
used both segmentation methods for these sets of data.  
 
Station 067 
We present in Figure 1 the data for station 067 along with the segments 
produced by both methods. In the upper half are the change-points 
obtained with the DCPC algorithm and in the lower half those produced 
by the SLEX method. The values are given in tables 1 and 2. 
As can be seen from the graph and tables, the DCPC algorithm 
produced more segments: 45 vs. 27 and the change-points are placed at 
different instants. In fact, none of the 27 SLEX cuts have a DCPC cut 
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within 5 minutes, 2 have one within 10 min., another 5 have one within 
20 min. and 6 more have one within a half-hour. So in general the 
segmentations differ. Table 3 gives the basic statistical analysis of the 
length of the intervals with both algorithms. 
 

Station 067: San Nicholas Island, California.
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Figure 1. Wave height for Station 067. The DCPC segmentation is 
shown in the upper half, the SLEX segmentation is in the lower half. 
 
Table 1. SLEX Change-points for Station 067 (min.). 

00:46:57 4:20:17 6:06:57 7:53:37 11:26:57
15:00:17 16:45:31 17:40:17 18:33:37 22:06:57
23:53:37 25:40:17 27:26:57 28:20:17 29:13:37
36:20:17 43:26:57 45:13:37 47:00:17 48:46:57
50:33:37 54:06:57 57:40:17 61:13:37 64:46:57
68:20:17 71:53:37   

 
Table 2 DCPC Change-points for Station 067 (min.). 

1:22:54 1:42:22 2:37:58 4:35:23 7:02:1
7:21:43 9:31:54 10:16:9 10:36:59 11:10:06

14:39:37 17:13:11 19:13:50 20:01:35 21:10:15
21:35:10 22:29:56 23:36:54 24:29:24 26:00:46
26:45:18 29:07:20 29:31:29 29:50:56 32:24:39
35:37:51 35:56:25 40:02:01 42:15:02 42:48:13
46:36:28 47:25:24 47:44:25 48:31:35 52:40:32
53:49:19 54:47:27 55:22:34 56:41:26 58:50:57
59:34:22 60:09:35 60:42:26 64:41:54 71:53:37

 
As can be seen from the graph and tables, the DCPC algorithm 
produced more segments: 45 vs. 27 and the change-points are placed at 
different instants. In fact, none of the 27 Slex cuts have a DCPC cut 
within 5 minutes, 2 have one within 10 min., another 5 have one within 
20 min. and 6 more have one within a half-hour. So in general the 
segmentations differ. Table 3 gives the basic statistical analysis of the 
length of the intervals with both algorithms. 
 
Table 3. Basic Statistics for Interval Length, Station 067 (min.). 

 SLEX DCPC 
Min 49.95 9.42 

1st. Qu 106.66 33.66 
Median 106.66 56.86 
Mean 159.76 93.77 

3rd Qu. 213.33 132.31 
Max 426.66 422.28 
Var 9900.0 7224.1 

 

Station 067. Evolution of the Total Energy.
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Figure 2. Evolution of the Total Energy for Station 067. 
 
We calculated the spectra for each segment using the WAFO software, 
developed by Lund University of Technology, and studied the 
evolution of several properties of the spectra. The three properties we 
focused on were the total energy, the maximum value of the spectrum 
and the frequency corresponding to the maximum value (the dominant 
frequency). We present in figs. 2, 3 and 4 the evolution of these 
quantities as obtained for both segmentation methods. As can be seen 
from them, in general both curves follow similar patterns but since 
DCPC tends to produce smaller intervals, it detects changes that go 
unnoticed for the SLEX method. This can be seen in Figures 2 and 3 
around 10 h. and in Figure 4 between 55 and 65 h. 
 

Station 067. Maximum of the Spectral Density
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Figure 3. Evolution of the Maximum Value of the Spectral Density for 
Station 067. 
 
Looking at Figure 1 and tables 1 and 2 one notices that intervals 
produced by the SLEX algorithm are frequently divided into smaller 
intervals by the DCPC method, but in some cases it is the other way 
round: e.g. the last DCPC interval is divided into 2 segments by SLEX. 
It is interesting to compare the spectra in these cases for both situations.  
We consider first the SLEX interval having endpoints 29:13:37.19 and 
36:20:17.19 and the DCPC intervals having endpoints 29:07:20.63, 
29:31:29.06, 29:50:56.25, 32:24:39.69, 35:37:51.88 and 35:56:25.94. 
The corresponding spectra are shown in Figure 5. Table 4 gives the 
values of the three properties considered before: total energy, 
maximum value and dominant frequency. The intervals are named 
SLEX1 and DCPCn with n=1,…5. 
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Station 067. Dominant Frequency.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60 70 80

Time (h.)

Fr
eq

ue
nc

y 
(r

ad
/s

)

DCPC SLEX

 
Figure 4. Evolution of the Dominant Frequency for Station 067. 
 
As can be seen, the dominant frequency stays roughly constant 
throughout the interval, around 0.66. The total energy in DCPC1 is 
higher than the total energy in SLEX1 but then it decreases for the next 
3 DCPC intervals, being roughly equal to the SLEX1 total energy, and 
in the last DCPC interval it decreases. The maximum value shows a 
similar pattern. Finally, there is a second peak in the SLEX1 spectrum 
that also appears in DCPC1, disappears in DCPC2, moves to a higher 
frequency in DCPC3, goes back to the same frequency in DCPC4 and 
disappears again in DCPC5. 
 

Station 067. Comparison of SLEX and DCPC Spectra

0

500

1000

1500

2000

2500

3000

0 0.5 1 1.5 2 2.5 3

Frequency (rad/s)

En
er

gy
 (m

2 
s/

ra
d)

SLEX

DCPC1

DCPC2

DCPC3

DCPC4

DCPC5

 
Figure 5. Comparison of SLEX and DCPC Spectra. 
 
Table 4. Comparison of Spectral Properties. 

Interval Total 
Energy 

(m2 s/rad.) 

Max. 
Value   

(m2 s/rad.) 

Dom. 
Freq. 1 
(rad/s) 

Dom. 
Freq. 2 
(rad/s) 

SLEX1 752.8 2509.2 0.66 0.46 
DCPC1 862.2 2936.6 0.64 045 
DCPC2 738.6 2628.9 0.64  
DCPC3 784.3 2568 0.66 0.76 
DCPC4 736.7 2549.4 0.66 0.46 
DCPC5 688.4 1870 0.68  

 
It is interesting to note that DCPC5 is a short interval, lasting less than 
19 min., which includes SLEX1’s right endpoint. 
Next we consider a DCPC interval divided in two by the SLEX 
algorithm. The DCPC interval has endpoints 64:41:54.84 and 

71:53:37.19 while the SLEX endpoints are 64:46:57.19, 68:20:17.19 
and 71:53:37.19. The corresponding spectra are shown in Figure 6. 
Table 5 gives the values of the total energy, maximum value and 
dominant frequency. The intervals are named SLEX1 and 2 and 
DCPC1. 
 

Station 067. Comparison of SLEX and DCPC Spectra
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Figure 6. Comparison of SLEX and DCPC Spectra. 
 
As can be seen from Figure 6 and Table 5, The SLEX spectra are 
rougher and for the first one the energy is higher than for the DCPC 
interval while for the second it is lower. The rest of the properties 
remain approximately constant. 
 
Table 5. Comparison of Spectral Properties. 

Interval Total 
Energy 

(m2 s/rad.) 

Max. 
Value   

(m2 s/rad.) 

Dom. 
Freq. 1 
(rad/s) 

Dom. 
Freq. 2 
(rad/s) 

DCPC1 806.2 2892.4 0.36 0.71 
SLEX1 865.0 2719.0 0.35 0.71 
SLEX2 738.8 2965.8 0.36 0.70 

 
Station 106 
We did a similar analysis for the data from Station 106. Figure 7 shows 
the wave-height record along with the change-points determined by 
both algorithms. These change-points are listed in Tables 6 and 7. 
 

Station 106: Waimea Bay, Hawai.
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Figure 7. Wave height for Station 106. The DCPC segmentation is 
shown in the upper half, the SLEX segmentation is in the lower half. 
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Table 6. SLEX Cuts for Station 106 (min.). 

0:53:20 4:26:40 8:00:01 15:06:40 16:53:20
18:40:00 20:26:40 22:13:20 29:20:00 31:06:40
32:53:20 36:26:40 40:00:00 40:53:20 41:20:00
41:46:40 42:40:00 43:33:20 45:20:00 47:06:40
50:40:00 52:26:40 54:13:20 56:00:00 57:46:40
64:53:20 66:40:00 68:26:40 70:13:20

 
Table 7. DCPC Cuts for Station 106 (min.). 

0:19:05 2:55:36 8:05:37 8:30:54 10:19:13
10:43:12 11:37:22 12:59:15 13:19:49 14:11:26
15:20:59 16:18:16 17:09:02 21:46:47 22:14:12
22:32:08 23:16:22 26:38:53 31:19:17 31:53:26
33:09:50 33:47:24 34:45:59 36:41:30 40:08:13
42:33:41 45:07:46 46:09:01 47:19:35 48:57:30
50:19:56 54:09:13 54:50:14 55:14:27 55:57:46
58:10:02 59:19:57 59:57:07 61:21:34 63:10:04
63:35:07 65:03:36 68:14:47 71:14:24

 
Again, the DCPC algorithm proposes more changes than SLEX: 46 vs. 
30. In this case 4 of the SLEX changes have a DCPC change point 
within 5 minutes, 6 have one within 10 min., 5 within 20 min. and 2 
more within 30 min. So again the segmentations differ but not as 
markedly as before. Table 8 gives the basic statistics for interval length. 
 
Table 8. Basic Statistics for Interval Length, Station 106 

 SLEX DCPC 
Min 26.66 17.2 

1st. Qu 106.66 37.26 
Median 106.66 69.73 
Mean 144.0 93.9 

3rd Qu. 186.67 128.08 
Max 426.67 310.01 
Var 11946.6 5933.58 

 
The next three figures give the evolution of the total energy, maximum 
of the spectral density and dominant frequency for Station 106. As can 
be seen, the remarks made in the previous case are valid again, 
although the differences are less marked. 
 

Station 106. Evolution of the Total Energy
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Figure 6. Evolution of the Total Energy for Station 106. 
 

Station 106. Maximum of the Spectral Density
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Figure 7. Evolution of the Maximum Value of the Spectral Density for 
Station 106. 
 

Station 106. Dominant Frequency.
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Figure 8. Evolution of the Dominant Frequency for Station 106. 
 
HURRICANE CAMILLE DATA 
As a final step in the comparison of the two methods we consider a 
highly non-stationary situation: we analyze the Hurricane Camille data. 
This set of data is well-known and has been previously considered by 
several authors (see, e.g. Forristall (1978) and Guedes Soares et al. 
(2004)).  
Hurricane Camille occurred on August 17, 1969, was one of the 
strongest hurricanes to reach the USA coastline in the last century. It 
passed within 23 km. from a platform where a wave staff was 
measuring the wave height. This measuring device broke down around 
4:30 pm on August 17 and the time series starts at 6 pm of the previous 
day, sampling at a rate of 1 Hz. We applied both methods to this data 
set and the results obtained are shown in Figure 9 and Tables 9-10. 
 
Table 9. SLEX Change-points for Hurricane Camille (min.). 

0:18:48 0:52:56 2:01:12 3:09:28 4:17:44
6:34:16 8:50:48 13:23:52 15:40:24 17:56:56

20:13:28  
 

Table 10. DCPC Change-points for Hurricane Camille (min.). 
3:16:57 4:16:00 10:40:14 11:14:39 13:11:54

13:42:35 13:52:34 16:54:56 18:04:59 19:12:24
20:00:59 21:11:13 21:24:27 
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Figure 9. Wave height for Hurricane Camille. The DCPC segmentation 
is shown in the upper half, the SLEX segmentation is in the lower half. 
 
This time the number of change-points is similar, 11 vs. 13, but the 
location is again different, except for 4 of the change-points which are 
reasonably close. The SLEX intervals tend to be evenly spaced while 
DCPC produces both very small and very large intervals. Table 11 
gives the basic statistics for interval length. It can be seen from this 
table that the distribution for the SLEX intervals is more concentrated. 
 
Table 11. Basic Statistics for Interval Length, Hurricane Camille (min.) 

 SLEX DCPC 
Min 18.8 9.98 

1st. Qu 68.27 27.36 
Median 136.53 65.55 
Mean 112.5 90.0 

3rd Qu. 136.53 93.74 
Max 273.07 384.23 
Var. 4548.9 9888.4 

 
We compare the evolution of the total energy, the maximum value of 
the spectral density and the dominant frequency for both methods. The 
results are shown in Figures 10-12. 
 

Hurricane Camille. Evolution of the Total Energy
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Figure 10. Evolution of the Total Energy for Hurricane Camille 
 

Hurricane Camille. Maximum of the Spectral Density
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Figure 11. Evolution of the Maximum Value of the Spectral Density for 
Hurricane Camille. 
 
Again, for each graph both curves show similar patterns, except at the 
end for Figures 10 and 11, where the SLEX algorithm fails to detect a 
change that occurs around 20 h. On the other hand, SLEX detects a 
change in the dominant frequency that occurs at the beginning while 
DCPC does not. 
In Figure 9 one can see that the first DCPC interval in divided into 4 by 
the SLEX algorithm, while the last SLEX interval is divided into 3 
subintervals. We now compare the corresponding spectra in both 
situations. We consider first the DCPC interval having endpoints 0 and 
3:16:57, and the SLEX intervals having endpoints 0:18:48, 0:52:56, 
2:01:12 and 3:09:28. The corresponding spectra are shown in Figure 13 
and Table 12 gives the values for the three properties considered. 
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Figure 12. Evolution of the Dominant Frequency for Hurricane 
Camille. 
 
Table 12. Comparison of Spectral Properties. 

Interval Total 
Energy 

(m2 s/rad.) 

Max. 
Value   

(m2 s/rad.) 

Dom. 
Freq. 1 
(rad/s) 

Dom. 
Freq. 2 
(rad/s) 

DCPC1 0.127 0.159 0.48 1.2 
SLEX1 0.0779 0.157 1.4 1.2 
SLEX2 0.0791 0.165 1.3 1.2 
SLEX3 0.111 0.168 1.2 0.46 
SLEX4 0.169 0.382 .48 1.2 
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Figure 13. Comparison of DCPC and SLEX Spectra for the First DCPC 
interval. 
 
As can be seen, in the SLEX spectra the dominant frequency moves 
down and for the last interval it coincides with the dominant frequency 
for the DCPC interval. All five spectra have approximately the same 
two dominant frequencies, 0.48 and 1.2 rads/s, but their relative 
importance is different. The graph shows that all the spectra have at 
least 4 peaks. 
The total energy and the maximum vale also change, the SLEX spectra 
energy grows and the DCPC value is in-between the third and fourth 
value for the SLEX spectra. The maximum value for the fourth SLEX 
spectra is twice the size of the rest. 
The last SLEX interval, with endpoints 20:13:28 and 22:30:00, is 
divided into 3 subintervals by the DCPC algorithm, having endpoints 
20:00:59, 21:11:13, 21:24:27 and 22:30:00. The spectra are shown in 
Figure 14 and Table 13 gives the values of the spectral properties. 
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Figure 14. Comparison of SLEX and DCPC Spectra. 
 
Table 13. Comparison of Spectral Properties. 

Interval Total 
Energy 

(m2 s/rad.) 

Max. 
Value   

(m2 s/rad.) 

Dom. 
Freq. 1  
(rad/s) 

Dom. 
Freq. 2  
(rad/s) 

SLEX1 6.35 50.94 0.46  
DCPC1 7.47 29.83 0.45 0.43 
DCPC2 8.84 43.44 0.49  
DCPC3 10.982 60.93 0.47  

 
In this case the dominant frequency stays approximately constant and 

the main change occur in the energy, reflected both by the change in 
total energy and the maximum value of the spectral density. The shape 
of the different spectra is similar. 
 
CONCLUSIONS 
We have considered two methods for detecting change-points in a time 
series: Detection of Changes by Penalized Contrasts (DCPC) and 
Smooth Localized complex EXponentials (SLEX). These algorithms 
were tried on three set of data two of them coming from ‘normal’ sea 
states (stations 067 and 106) and one from a hurricane. 
The results obtained by these methods differ. In normal conditions 
DCPC tends to produce more change-points and hence smaller 
stationarity intervals. For hurricane data the number of change-points is 
approximately the same, although SLEX produced intervals that were 
more uniform in length.  
For each interval we estimated the spectral density and also analyzed 
the evolution of some spectral characteristics: the total energy, the 
maximum of the spectral density and the dominant frequency. The 
general pattern of evolution is the same for both methods in all three 
cases but DCPC seem to capture more variation than SLEX. This is 
probably due to the fact that it produces more change-points. 
In some cases we also compared the spectra for intervals that were 
subdivided by the other method.  
SLEX is fast and easy to use and gives more information than we have 
used here (SLEX spectra are automatically calculated and stored, and a 
graph of frequency vs. time is given where different ‘intensities’ for the 
frequencies are color-coded. This graphs gives an idea of the spectral 
evolution of the data being analyzed). DCPC is slower and cannot 
handle very large sets of data, but on the other hand it is not restricted 
to finding intervals having lengths a power of 2. This accounts for the 
longer time it takes to analyze the data sets. 
In our view none of the methods seemed completely satisfactory but 
this is probably not a flaw of the segmentation methods considered but 
of the basic assumption that changes in the wave pattern occur 
abruptly. 
It is important to remark that our conclusions are based on only 3 data 
sets. Further research is required to validate our conclusions, specially 
regarding hurricane conditions. 
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