Maestría en Probabilidad y Estadística Curso Propedéutico

Problemas 5

Los problemas 4 y 14 son para entregar el lunes 4/08/14

1. Dada la función de probabilidad conjunta definida por

$$r_{ij} = C(i+j)$$

en los puntos (1,1); (2,1); (2,1) y (3,1), donde C es una constante, determine en valor de C y obtenga la función de probabilidad marginal correspondiente a la primera variable.

- 2. Considere un grupo de cartas que consiste de J, Q, K y A de las cuatro pintas. Se extraen dos cartas del grupo sin reposición y llamamos X e Y al número de diamantes y corazones obtenidos, respectivamente. Obtenga la función de probabilidad conjunta y la función marginal correspondiente a X.
- 3. Una caja tiene 6 bolas numeradas del 1 al 6. Las bolas numeradas 1 y 2 son rojas mientras que las otras son blancas. Extraemos dos bolas al azar de la caja y sean X, Y las variables aleatorias que representan el número de bolas rojas y el número de bolas pares en la muestra, respectivamente. Halle la distribuciones de X e Y y su distribución conjunta. Determine si estas variables son independientes.
- 4. Una caja contiene ocho bolas numeradas del 1 al 8. Las primeras cuatro son rojas y las otras blancas. Seleccionamos dos bolas al azar de la caja y definimos las siguientes variables: X es el número de bolas blancas en la muestra, Y es el número de bolas pares y Z el número de bolas en la muestra cuyo número es menor que 6. Halle la distribución conjunta de las variables (X,Y); (X,Z); (Y,Z) y (X,Y,Z). Estudie la independencia de estas variables.
- 5. Considere dos variables aleatorias X e Y con distribución conjunta discreta definida por la siguiente tabla para la función de probabilidad conjunta, donde h = 1/60.

$$\begin{array}{c|ccccc} & X_1 & & & \\ & 0 & 1 & 2 \\ \hline 0 & h & 2h & 3h \\ X_2 & 1 & 2h & 4h & 6h \\ 2 & 3h & 6h & 9h \\ 3 & 4h & 8h & 12h \\ \end{array}$$

Calcule a)
$$P(X \le 1, Y \le 1)$$
 b) $P(X + Y \le 1)$ c) $P(X + Y > 2)$ d) $P(X < 2Y)$ e) $P(X > 1)$ f) $P(X = Y)$ g) $P(X \ge Y | Y > 1)$ h) $P(X^2 + Y^2 \le 1)$

6. Repita el ejercicio anterior para la siguiente función de probabilidad conjunta (de nuevo h = 1/60).

				X	1		
			0		1		2
	0		h	6	h	6	bh
X_2	1	2	2h	8	h	G	h
	2	9	3h	2	h	1	2h
	3	4	1h	4	:h	3	3h

- 7. Lanzamos un dado dos veces. Sea X el resultado del primer lanzamiento, Y el mayor de los resultados de los dos lanzamientos. Halle la distribución conjunta y las distribuciones marginales de estas variables. Determine si son independientes.
- 8. Lanzamos una moneda tres veces y definimos las siguientes variables aleatorias: X es el número de águilas, Y es la longitud de la mayor sucesión de águilas en la muestra. Por ejemplo Y(A, S, A) = 1, Y(A, A, S) = 2. Halle la distribución conjunta, las distribuciones marginales y determine si estas variables son independientes.

- 9. Lanzamos una moneda cuatro veces y definimos las siguientes variables aleatorias: X vale 1 si hay más águilas que soles y vale 0 si esto no es cierto. Por otro lado, Y representa la longitud de la mayor sucesión de águlas en la muestra. Hallar la distribución conjunta y las marginales. Determine si estas variables son independientes.
- 10. Consideremos un experimento que tiene resultados $\omega_1, \omega_2, \dots, \omega_8$ con probabilidades correspondientes 0,1; 0,1; 0,2; 0,2; 0,1;0,1;0,1;0,1. Sea X,Y y Z las variables aleatorias definidas por la siguiente tabla

	X	Y	Z
ω_1	1	1	1
ω_2	2	2	2
ω_3	1	3	3
ω_4	2	1	4
ω_5	1	2	1
ω_6	2	3	2
ω_7	1	1	3
ω_8	2	2	4

Halle las distribuciones de probabilidad de $X, Y \vee Z \vee I$ las distribuciones conjuntas de (X, Y); (X, Z); $(Y, Z) \vee (X, Y, Z)$.

- 11. Considere dos eventos A y B tales que P(A) = 1/4, P(B|A) = 1/2 y P(A|B) = 1/4. Definimos las variables X e Y por $X = \mathbf{1}_A$, $Y = \mathbf{1}_B$, donde $\mathbf{1}_E(x)$ vale 1 si $x \in E$ y vale 0 si $x \notin E$. Diga si las siguientes proposiciones son ciertas o
 - a. Las variables aleatorias X e Y son independientes.
 - b. $P(X^2 + Y^2 = 1) = 1/4$.
 - c. $P(XY = X^2Y^2) = 1$.
 - d. La variable aleatoria X tiene distribución uniforme en el intervalo (0,1).
 - e. Las variables X e Y tienen la misma distribución.
- 12. Considere las variables aleatorias X e Y con densidad conjunta dada por

$$f(x,y) = \begin{cases} \frac{1}{4} & \text{si } 0 \le x \le 2, \ 0 \le y \le 2\\ 0 & \text{en cualquier otro caso.} \end{cases}$$

Calcule

$$\begin{array}{lll} \text{a. } P(X \leq 1, \ Y \leq 1) & \quad \text{b. } P(X + Y \leq 1) \\ \text{c. } P(X + Y > 2) & \quad \text{d. } P(X < 2Y) \\ \text{e. } P(X > 1) & \quad \text{f. } P(X = Y) \\ \text{g. } P(Y > 1, \ X < 1) & \quad \text{h. } P(X > Y | Y > 1) \end{array}$$

13. Repita el ejercicio anterior para la densidad

$$f(x,y) = \begin{cases} \exp(-(x+y)) & \text{si } x \ge 0, \ y \ge 0\\ 0 & \text{en cualquier otro caso} \end{cases}$$

- 14. Sean $X \in Y$ variables aleatorias independientes con distribución uniforme en [0,1]. Calcule

- a) P(X+Y<0,5) b) P(X-Y<0,5) c) P(XY<0,5) d) P(X/Y<0,5) e) $P(X^2<0,5)$ f) $P(X^2+Y^2<0,5)$ g) $P(e^{-X}<0,5)$ h) $P(\cos\pi Y<0,5)$.
- 15. Dada la densidad f(x,y) = 8xy, 0 < x < 1, 0 < y < 1, calcule

$$P(X < 0, 5, Y < 0, 5), \qquad P(X < 0, 5), \qquad P(Y < 0, 5).$$

A partir de estos cálculos, ¿qué se puede decir sobre la independencia de X e Y?

16. Dada la densidad $f(x,y) = xy e^{-(x+y)}$, x > 0, y > 0, calcule P(X > 1, Y > 1). Son independientes estas variables aleatorias?

2