Recent & Upcoming Talks

2023

A bound on the number of twice-punctured tori in a knot exterior

We continue a program due to Motegi regarding universal bounds for the number of non-isotopic essential n-punctured tori in the …

2019

¿Qué es la topología en dimensión baja? El caso de los nudos fibrados

Veremos qué es y por qué se estudia la topología en dimensión baja. Así mismo veremos el caso particular de los nudos fibrados.

Existence of a transverse universal knot

We prove that there is a knot $k$ transverse to $\xi_{std}$, the tight contact structure of $S^3$, such that every contact 3-manifold …

Repaso de nudos fibrados

Un nudo fibrado $K$, en una tres variedad $M$, es una curva simplemente cerrada tal que $M-F$ es una variedad fibrada por superficies. …

About the existence of a universal transverse knot

Since 2002 thanks to Giroux it is known that any 3-dimensional contact manifold $(M,\xi)$ can be obtained as 3-fold simple covering $f: …

2018

Persistent homology in natural language processing

Natural Language Processing is an area of computer science which has had a lot of success on topics like automatic translations. …

About Contact Manifolds and Branch Coverings

On this talk, we will introduce the notions of contact structures and branch coverings. We will see that contact structures can be …

Applications of Topology to Natural Language Processing

A model used in text classification is that of co-occurrence networks, where frequent terms in a specific domain corpus are represented …