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Abstract. Conjecture Z is a knot theoretical equivalent form of the Kervaire

Conjecture. We show that Conjecture Z is true for all the pretzel knots of the

form P (p, q,−r) where p, q and r are odd positive integers.

1. Introduction

A well known unsolved conjecture in combinatorial group theory is the so called
Kervaire Conjecture.

Conjecture 1.1 (Kervaire Conjecture). Let G be a group, G ̸= 1. Then Z ∗ G
cannot be normally generated by one element.

F. González-Acuña and A. Ramı́rez in [? ] have stated a knot theoretical
conjecture equivalent to the Kervaire Conjecture, which they call Conjecture Z.

Conjecture 1.2 (Conjecture Z). If F is a compact orientable and non-separating
surface properly embedded in a knot exterior E, then π1(E/F ) ≈ Z.

They were able to prove that when ∂F is connected, π1(E/F ) ≈ Z (See Propo-
sition 11 in [? ]).

We will say that a surface F in a knot exterior E has Property Z if π1(E/F ) ≈ Z.
And we will say that a knot k has Property Z if for every compact orientable and
non-separating surface (CON surface) F in E (the exterior of k) it is true that
π1(E/F ) ≈ Z.

By Lemma 5.1 we may assume, without loss of generality, that F is incom-
pressible. That is, if we were able to prove that every incompressible, compact,
orientable and non-separating surface (ICON surface) F in the exterior E of a knot
K has Property Z, then it would follow that the knot K has Property Z too. This
is why ICON surfaces are important.

Now, it is natural to ask if there are ICON surfaces with disconnected boundary.
M. Eudave-Muñoz answered this question in [? ]. In fact, for every odd number n,
he found a family of ICON surfaces with exactly n components on their boundary.
He also proved that those surfaces have Property Z. But it is still unknown if the
corresponding knots of those surfaces have Property Z.

The next question that arises is that if there are knots that have Property Z. F.
González-Acuña and A. Ramı́rez in [? ] noted the existence of two families:

• The fibered knots have Property Z. This is because π1(E) has as a quotient
π1(E/F ) ∼= Z ∗ P where P is a perfect group. Proving by contrapositive,
if P is not trivial then the commutator subgroup of Z ∗ P is not finitely
generated, implying that the commutator subgroup of π1(E) also is not
finitely generated, which means that E can’t be the exterior of a fiber knot.
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• A knot K has Property Z if the fundamental group of its exterior has rank
two. This is because rank two implies that Z ∗P has rank at most two and
so, by [? , Chapter 4, Corollary 1.9], the perfect group P has rank at most
1 and is therefore trivial.

Now, we are interested in finding another family of knots having Property Z.
The family that immediately came to our mind was the Montesinos knots family;
because we can make use of the classification of incompressible surfaces that A.
Hatcher and U. Oertel made in [? ].

We were able to find ICON surfaces in Montesinos knots exteriors; moreover, we
were able to classify the ICON surfaces in the family of pretzel knots P (p, q,−r)
where p, q and r are positive odd numbers (see Theorem 4.9). In this family of knots
there exist examples of ICON surfaces where the number of boundary components
is an arbitrary odd positive number.

We also were able to prove that all those pretzels (P (p, q,−r) where p, q and r
are positive odd numbers) have Property Z (see Theorem 5.4).

None of these pretzel knots is a fiber knot (see M. Hirasawa and K. Murasugi
in [? ]) when p, q and r are grater then one. And, by the results of E. Klimenko
and M. Sakuma in [? ], neither of these knots is of rank two except possibly for the
pretzels P (3, 3,−r) with r ̸≡ 0 (mod 3); and only P (3, 3,−1) has tunnel number
one. Then, this is a new family of knots having Property Z .

2. Preliminaries

In this first section, we are going to describe the work of A.E. Hatcher and
U.Oertel in [? ]. And later, we are going to add some modifications to be able to
determine orientability and connectedness of the surfaces constructed.

2.1. Train tracks. First, we are going to recall the topological version of train
track developed by A.E. Hatcher in [? ]. We are going to extend that concept in
3.1. In order to do this, first we are going to separate the concept of train track
into two parts; diagram and weights.

Definition 2.1. A train track diagram T in a surface F , is a graph that satisfies
the following conditions:

(1) T only has vertices of degree one or three.
(2) T is properly embedded in F . This means that ∂F ∩ T is the set of degree

one vertices of T .
(3) All vertices of degree three are locally diffeomorphic to the next picture:

To complete the definition of train track, what we need is to put weights on the
edges of the train track diagram.

Definition 2.2. Let T be a train track diagram. We say that a function f : edges(T ) → Z+

assigns weights compatible with T if f(c) = f(a) + f(b) for all the triplets of edges
a, b and c around a vertex of degree three, in the same order as in Fig. 2.

With the latest two concepts, we can now easily write the definition of train
track.

Definition 2.3. A train track in a surface F is a train track diagram T in F with
an assignment of weights compatible with T .
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Figure 1. Vertices of degree three in a train track diagram

a

c

b

Figure 2. Weights around a vertex of degree three

The weights allow us to build a curve system (a set of disjoint arcs and curves
properly embedded) in the surface F . This can be done as follows:

• For each edge of T , take as many parallel copies as its assigned weight.
• On degree three edges, one of the edges has assigned weight equal to the
sum of the other two. So, it is possible to join the endpoints of the first
edge with the others, in a natural way.

Figure 3 shows an example of this construction on an edge with weights 5, 3 and
2.

Figure 3. Local view of a vertex of degree three
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2.2. Incompressible surfaces on Montesions knots. We are now going to de-
scribe the work of A. Hatcher and U. Oertel in [? ] where they classify the in-
compressible surface in the exterior of Montesinos knots. We also present some
notation and explain the relation with the train tracks.

We are going to consider S3 as the join of two circles A and B; let the circle B
be subdivided as an n-sided polygon. Then the join of A with the ith edge of B is
a ball Bi. These n balls Bi cover S3, meeting each other only in their boundary
spheres. The circle A ⊂ S3, called the axis, is the intersection of all the Bis (see
Fig. 4).

B2

B1

B3B4

B5

Figure 4. Decomposition of S3 as the union of n = 5 3-balls

Inside any ball Bi, K looks like Fig. 5. That is, Ki = K ∩Bi is a rational tangle
of slope pi/qi on Bi and Ki = K ′

i ∪K ′′
i where K ′

i = {four point} × [0, 1] contained
in a collar neighborhood S2 × [0, 1] of ∂Bi and K ′′

i is the union of two disjoint arcs
on S2 × {0} ⊂ int(Bi). We denote K = M(p1/q1, . . . , pn/qn).

Ki Bi

Ci

Figure 5. Montesinos knots inside Bi.
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Now, let F be an incompressible and ∂-incompressible surface properly embedded
in E = S3 − ν(K), where K is a Montesinos knot and ν(K) is the open regular
neighborhood of K. We are interested in the case when ∂F ̸= ∅, so we are going to
add that condition.

Move F until ∂F is transversal to all small meridians of K and intersect them in
the same number of points. Denote with m the number of points that ∂F intersects
each meridian; we will call m the number of sheets of F .

Isotope again F but now to be transversal to the axis of the Montesinos knot K
and reduce the number of points in the intersection to the minimum possible.

Now, move F to put ∂F outside of S0
i (= S2 × {0} ⊂ Bi). So, the intersection

F ∩ S0
i can be reduced to a (possible empty) disjoint collection of parallel loops

that are boundary of parallel circles which separate the arcs of the rational tangle
(we will refer to these parallel loops as slope pi/qi loops).

How this reduction is done, is explained in [? ]. So, F inside S0
i is a (possible

empty) disjoint union of slope pi/qi loops and, the rest of F lies inside a collar Ci

of ∂Bi.
Finally, put F so that the restriction to F of the natural projection of Ci on to

[0, 1] is a Morse function.
We will now study how F intersects any of the levels of the Morse function, that

is, study the intersection of F with ∂Bi × {t} − ν(K) for each value t ∈ [0, 1]. The
sphere with four holes ∂Bi × {t} − ν(K) will be denoted by St

i .
Observe that St

i ∩ F is, for almost all values of t, a system of disjoint arcs and
curves properly embedded in St

i , except for a finite number of values t0, t1, . . . where
F has a saddle and St

i ∩ F has a singularity.
Each curve system St

i∩F can be represented by a train track and if F is oriented,
then we can orient the train track. Because the number of arcs incident to each
hole is the same, the possible train tracks diagrams that we can get for this type of
curve systems are the ones shown on figure 6 (see [? ]).

2.3. The edgepath system model. When passing through a saddle point, a train
track can only transform into a certain set of train tracks (depending on its diagram
and mostly on its assigned weights). With this in mind, Hatcher and Oertel created
a diagram D ⊂ R2 where any two train tracks connected by a saddle are located
as two nearby points.

In this diagram, any train track is represented as a point on the diagram. More-
over, a train track and any of its multiples is represented by the same point. Here,
a train track is a “multiple” of one another if all its weights are obtained by a
multiplication by a constant from the weights of the other.

Let us start by defining the diagram D as a set in R2 that contains all the
points (1 − 1/n,m/n) and (1,m/n) with n ∈ Z+, m ∈ Z and (m,n) = 1. We
will use the following notation for those points: ⟨m/n⟩ = (1 − 1/n,m/n) and
⟨m/n⟩0 = (1,m/n).

Then, we add the segments joining ⟨m1/n1⟩ with ⟨m2/n2⟩ when m1n2−m2n1 =
±1. Those segments are denoted by ⟨m1/n1,m2/n2⟩.

Also we add the horizontal segments joining ⟨m/n⟩ with ⟨m/n⟩0. We almost
got the full diagram D ; it remains only to add the point ⟨∞⟩ = (−1, 0) and the
segments ⟨∞, n/1⟩ with n ∈ Z.

We will call edges to the segments ⟨α, β⟩ of D . Fig. 7 shows how diagram D
looks like.
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Figure 6. Train tracks diagrams that determine all the essential
curve systems on a sphere with four holes.

When we remove the set D from R2 what remains are planar regions, some of
them are triangular. We will call these triangular regions triangles of D and we will
add them to D . So, now we can think of D as a 2-dimensional simplicial complex.

As we said before, we will associate train tracks to points on D . For each train
track with one of the diagrams of Fig. 6, we associate a point of D with the
following rules:

• If the train track has a diagram of type I with weights (a, b, c), we associate
the point ( b

a+b ,
c

a+b ).

• If the train track has a diagram of type II with weights (a, b, c), we associate
the point ( b

a+b ,−
c

a+b ). In this case we will say that the diagram is of type

I but with weights (a, b,−c).
• If the train track has a diagram of type III with weights (a, b, c), we associate
the point (− b

a+b ,
c

a+b ).

• If the train track has a diagram of type IV with weights (a, b, c), we associate
the point (− b

a+b ,−
c

a+b ). In this case we will say that the diagram is of type

III but with weights (a, b,−c).
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⟨∞⟩

⟨2/1⟩0

...

...

...

...

⟨1/1⟩0

⟨0/1⟩0

⟨−1/1⟩0

Figure 7. Diagram D

This assignment of triples to points on D may seem artificial, but will make sense
when we study its properties. First of all, let us observe that it is a “projective
relation”, that is, a train track and its multiples are assigned to the same point.
And when two train tracks are assigned to the same point, then one is a multiple
of the other.

Another property is that a pair of arcs with slope p/q (p possibly negative), in
the sphere with four holes, can be obtained by a train track diagram of type I or
II with weights (1, q − 1, p); then they correspond to the point ⟨p/q⟩. The same
happens with slope p/q loops; they correspond to the point ⟨p/q⟩0.

Also, two pairs of arcs of slopes p/q and r/s (respectively) can be placed over the
same sphere with four holes without any intersection if and only if ps − qr = ±1.
And when this happens, we can take α parallel copies of the pair of arcs of slope
p/q and β parallel copies of the other, where α and β are any positive integers. The
system of curves thus constructed is associated to a point on the segment ⟨p/q, r/s⟩
in D with the following coordinates:(

1− α+ β

αq + βs
,
αp+ βr

αq + βs

)
∈ ⟨p/q, r/s⟩

We will denote such point as α′⟨p/q⟩ + β′⟨r/s⟩, where α′ = α/(α + β) and
β′ = β/(α+ β). This notation is self explained by the projectivization property of
D .

Finally, something similar happens to a set of three disjoint pairs of arcs, but
that will not be necessary in this paper.

The part of D contained in the half-plane x ≥ 0 will be an infinite strip S . Most
of the time, we are going to work on S . On the other hand, there is an extra edge
of D , the segment that joins ⟨∞⟩0 = (−2, 0) with ⟨∞⟩. When we add this extra

edge, we will call D̂ the extension of D .
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2.4. Candidate surfaces. An edgepath in the diagram D is a path contained in
the 1-skeleton of D .

Definition 2.4. For a Montesions knotK = M(p1/q1, p2/q2, . . . , pn/qn), let edgepaths
γi in D be given, i = 1, . . . , n with the following properties:

(E1) The starting point of γi lies on the edge ⟨pi/qi, pi/qi⟩, and if the starting
point is not the vertex ⟨pi/qi⟩, then the edgepath γi is constant.

(E2) γi is minimal, i.e., it never stops and retraces itself, nor does it ever go
along two sides of the same triangle of D in succession.

(E3) The ending points of the γi’s are rational points of D which all lie on one
vertical line and whose vertical coordinates add up to zero.

(E4) γi proceeds monotonically from right to left, “monotonically” in the weak
sense that motion along vertical edges is permitted.

We are going to associate a family of surfaces to these n edgepaths that satisfy
the conditions E1-E4. But first let us look at a couple of definitions.

Any edgepath γi ends at a point of rational coordinates on a segment of D ; let
us say a point on ⟨p/q, r/s⟩. Then this point can be written uniquely as:

α ⟨p/q⟩+ β ⟨r/s⟩

with α, β ∈ Q+ and α+β = 1. We will call β the fraction of the edge traveled by γi
at the last edge. Denote by ⟨p/q⟩ → α⟨p/q⟩+ β⟨r/s⟩ to indicate that an edgepath
went first from ⟨p/q⟩ and then advanced in direction of ⟨r/s⟩ but only a fraction β.

Finally, we will call length of a path γi to the number of complete edges that are
traveled by γi plus the fraction of edge at the last edge. Denote this number by
|γi|. So, |γi| = 0 if and only if γi is the constant path.

To construct a surface from a given edgepath system that satisfies conditions
E1-E4 first we have to choose a positive integer m such that for any i, the train
track associated with the end points of γi can be scaled to have weight m at the
four vertices. This m can be any common multiple of all ai’s, where (ai, bi, ci)
is a triplet associated to the final point of γi (when the endpoints have negative
x-coordinate m is common multiple of ai + bi).

By its definition, the number m will correspond to the number of leaves of the
surfaces we are going to construct.

Now, to each edgepath γi we are going to associate a finite set of 2-manifolds
Fi in Bi such that ∂Fi ⊂ Ki ∪ ∂Bi and such that meridians of Ki intersect Fi in
exactly m points.

If the path γi is constant, then the starting point is on ⟨pi/qi, pi/qi⟩0 and is
associated with a unique system of arcs and curves in B0

i ; such a system consists
of m parallel copies of the pair of arcs with slope pi/qi and many other parallel
copies of slope pi/qi loops; the number of parallel copies of the loops depends on
the location of the starting point in the segment ⟨pi/qi, pi/qi⟩0. Then, Fi would be
the product of the curve system with an interval, which is contained in the collar
Ci ⊂ Bi, together with a disjoint union of disk capping off the slope pi/qi loops on
∂Bi × 0.

When γi it is not constant, we are going to construct Fi in the collar ∂Bi× [0, 1]
by describing the sequence of saddle points of the Morse function given by the
projection to [0, 1]. Let start with m parallel copies of a pair of arcs of slope pi/qi
at t = 0, for each edge ⟨r0/s0, r1/s1⟩ of γi we will add m saddle points to change
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m parallel arcs of slope r0/s0 to m arcs of slope r1/s1. Each saddle can be chosen
in two different ways as in Fig. 8.

Figure 8. Saddles can be chosen in two different ways

Once the γi and m are chosen, we only have a finite number of possibilities of
Fi.

From condition E3 all Fi will fit together to form a 2-manifold F , called a
candidate surface1. To illustrate how this is done, let us start by gluing F1 and F2.

Suppose that the train track that describes the system of curves of ∂Fi in ∂Bi

is the one shown on Fig. 6 I, and recall that the a-coordinate on their triplet of
weights is the same, that is, the triplet of weights have the form (a, b1, c1) and
(a, b2, c2). But, the condition E3 says that all x-coordinates on D are the same,
this translates onto b1/(a+ b1) = b2/(a+ b2); then b1 = b2 (= b).

The axis of the knot divides each pair (∂Bi, ∂Fi) into two isomorphic pairs of
disks and arcs. Having both a and b coordinates equal, any pair on ∂B1 can be
identified isomorphically with any pair on ∂B2. For instance, on Fig. 9, we can
identify the right disc on a) with the left disk of b).

axis

b

c2
a

a

a
a

b

b)

b

c1
a

a

a
a

b

axis

a)

Figure 9. Train tracks on the boundary of B1 and B2

1Hatcher and Oertel use “surface” as a synonymous of 2-manifold. So candidate surfaces could
be disconnected 2-manifolds. But in any other context, we are going to use surface as a connected

2-manifold.
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It would be easier to identify these disks if we make a little twist around the axis
on the ball B2, such that, the left disk looks exactly as a reflection of the right disk
of B1 (see Fig. 10).Notice, that after this twist the value of c on the right disk of
B2 will be c1+ c2. If we glue now B3, and so on, at the end we will have to glue Bn

with B1 to close the cycle, but this will be only possible if c1 + c2 + · · · + cn = 0;
this is equivalent to saying that all the y-coordinates of the edge path add up to
zero, i.e, condition E3. See Fig. 27 and Fig. 28 for another example.

a

axis

b

c1 + c2

a

a

b

c1

a

a
a

b

b

Figure 10. Train track of type I with weights (a, b, c2) after twist-
ing c1/(a+ b) times around the axis

Moreover, there are some extension of candidate surfaces when the ends of the

edgepaths are on the extended diagram D̂ ; for the full details of the definition of
candidate surface see [? ]. Also in that article they prove the following proposition.

Proposition 2.5 (Hatcher and Oertel). Every incompressible, ∂-incompressible
surface in the exterior of K having non empty boundary of finite slope is isotopic
to one of the candidate surfaces.

2.5. Computing slope. Let F be a candidate surface constructed as before, using
a set of edgepaths γi and a chosenm as the number of sheets. We define the twisting
of F as

τ(F ) = 2(s− − s+)/m

where s+ (s−) is the number of saddles on F that increase (decrease) the slope.
Saddles that produce slope ∞ or arcs, do not contribute to the value of τ(F ).

A formula in terms of γi’s is

τ(F ) = 2(e− − e+)

where e+(e−) is the number of γi’s that increase (decrease) the slope, and fractional
values of e± corresponding to the final edge are allowed. Similarly, edges connected
to ⟨∞⟩ or ⟨∞⟩0 do not contribute to the value of τ(F ).

And the boundary slope of F is

(1) m(F ) = τ(F )− τ(F0)
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where F0 is a Seifert surface in the knot exterior. Computing τ(F0) is possible; we
just need to build a set of edgepaths satisfying conditions E1-E4 with m = 1 and
keeping orientability.

It is convenient to reduce modulo 2 the values p and q in all the vertices ⟨p/q⟩ of
D . With this reduction, all triangles in D have three different vertices: ⟨1/1⟩, ⟨0/1⟩
and ⟨1/0⟩. Now, the condition of orientability in F0 is that each edgepath must use
only one type of edge modulo 2 reduction: ⟨1/1, 0/1⟩, ⟨0/1, 1/0⟩ or ⟨1/0, 1/1⟩. We
call monochromatic to the edgepath that satisfies that condition.

When the pretzel knot has only one even qi we choose a monochromatic edgepath
from ⟨pi/qi⟩ to ⟨∞⟩ for every i. This edgepath is unique for the odd qi and for the
even qi there are two monochromatic options, but only one will make the final union
orientable. When all the qi’s are odd, we choose monochromatic edgepaths passing
for vertices with odd denominator and ending on a vertex at the left border of S ;
those edgepaths are unique except for some vertical extensions that do not affect
the value of τ(F0).

2.6. Finding the edgepath system satisfying E1-E4. In order to find the
edgepaths system, we divide them into three types:

Type I.When all the edgepath ends have positive horizontal coordinates. That is,
when all the edgepath ends are inside S . In this case, the set of possible edgepaths
is computed using the Euclidean algorithm as the main tool.

Type II. This is when all the edgepath ends are on the left border of S . This
system can be extended vertically as much as we want.

Type III. This is when the edgepath ends are on an edge with the ⟨∞⟩ vertex.
This particular system of edgepaths can be extended as close to ⟨∞⟩ as we want.

An algorithm is explained in [? ] which, given p1/q1, . . . , pn/qn finds all the
edgepath systems, of type I, II and III, satisfying E1-E4.

3. The ICON surfaces

Recall that ICON stands for incompressible, compact, orientable and non-separating
surface. So in order to prove that some Montesinos Knots have Property Z , we
are going to modify the theory of Hatcher and Oertel to describe orientability and
connectedness of their candidate surfaces. That is why we developed the concept
of oriented train track.

3.1. Oriented train track. Now, instead of using integers as weights, we are going
to use elements of the free semigroup of rank two; denoted by P2. We will represent
the elements of P2 as finite sequences of symbols 1 and−1 and we will denote its con-
catenation operation as ⊕; for example, (1,−1)⊕ (−1,−1, 1) = (1,−1,−1,−1, 1).

Now, let J be the function J : P2 → P2 such that

J(ϵ1, ϵ2, . . . , ϵn) = (ϵn, ϵn−1, . . . , ϵ1)

Remark 3.1. The function J will become very important later on, mostly in the
proof of Theorem 4.9.

Let Edges(T ) be the set of edges of T with directions, or more precisely,

Edges(T ) = {(v1, v2)|v1, v2 ∈ vertices(T ) and v1v2 an edge of T}.
In this sense, if a = (v1, v2) ∈ Edges(T ) then a−1 = (v2, v1) is another element

of Edges(T ).
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Definition 3.2. Consider a train track diagram T in an oriented 2-manifold F . A
function f : Edges(T ) → P2 is an orientation of T if

(1) f(a−1) = −J ◦ f(a) for all a ∈ Edges(T )
(2) For all a, b and c edges with a common vertex, and oriented as shown in

Fig. 11 (viewed from the positive side of F ), f satisfies:

f(c) = (f(a), f(b)) = f(a)⊕ f(b)

a

c

b

Figure 11. Oriented edges around a vertex of degree 3

Consider the function | · | : P2 → Z+ that assigns to an element its length;
for example, |(1,−1, 1)| = 3. The composition of an orientation f , of a train track
diagram, with |·| give us a weight assignation in the usual sense; that is, an oriented
train track determines a regular train track. In the other way around, for any train
track T we can orientate its arcs in any direction and obtain an oriented train track.
In general, there is a finite set of oriented train tracks that can be obtained like
this; we denote such set as O(T ).

Using an oriented train track we can construct an oriented disjoint set of arcs and
curves. Just take an edge a on T , oriented in any way, consider va its corresponding
oriented weight. Now, take |va| parallel copies of a, and orient them in the same
direction or in opposite direction of a if the corresponding entry on va is positive or
negative, respectively. The correspondence between entries of va and the parallel
copies of a, is from left to right (view Fig. 12). This construction is independent
of the original orientation of a, thanks to the property 1 of Definition 3.2.

(1, 1,−1)

Figure 12. An example of parallel copies taken

On a vertex of degree three, we can suppose that the three arcs around it are
oriented as in Fig. 11. Then, the copies parallel to c can be well joined with the
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copies of a and c, so that, we end with a disjoint set of oriented curves and arcs
properly embedded in F (see Fig. 13).

(1,−1, 1) (1, 1, 1)

(1, 1)

(1,−1)

(1,−1)

(1,−1)

(1,−1,−1)

(1, 1)

(1,−1, 1)

(−1,−1)

Figure 13. Transforming an oriented train track into a disjoint
set of oriented curves and arcs

Notice that property 1 implies that the weight of −a is determined by the weight
of a. So, in order to orient a train track diagram T we only need to specify the
weight for only one orientation of each edge of a ∈ T . In other words, we must
orientate all the edges of T on any direction and later specify the weights of those
edges. For example, Fig. 13 represents an oriented train track.

Another object that we will require, is a parametrized train track, which we
understand as an orientated train track but instead of 1’s and -1’s, we use variables.

Definition 3.3. A parametrized oriented train track with n parameters is a func-
tion {−1, 1}n → O(T ) for some train track T and a positive integer n.

Fig. 14 shows an example of a parametrized oriented train track where n = 2.
In this example, x and y are the parameters.

3.2. Diagram of possible orientations. Remember that a candidate surface F
is the result of gluing 2-manifolds Fi ⊂ Bi. So, it will be necessary to determine
when Fi is orientable, and later, when the gluing of all Fi match together in order
for F to be orientable too.

When the surface Fi is orientable, all its intersections with the levels Si × {t}
in the collar near ∂Bi can be described using a parametrized oriented train track
T t
i where the possible orientations of Fi are the parameters. In the construction

process, we will only know the part of Fi inside the ball boundary by the level
sphere Si × {t}; we will denote it by F t

i . When this part is orientable, we can
describe T t

i as a parametrized train track.
In general F t

i will be disconnected and we will have two possible orientations
per connected component of F t

i . For each possible orientation of F t
i we will have
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an orientation for the train track diagram T t
i . But, we can identify all the possible

orientation of F t
i with the elements of {1. − 1}|F t

i | (|X| denotes the number of
components of X). We will call diagram of possible orientations to the set of
orientations of a diagram T t

i parametrized by the possible orientations of F t
i . Fig.

14 shows an example of a diagram of possible orientations. A simple way of seeing
this diagram, is as a diagram of orientations but instead of ±1 we use variables.

(x,−y,−x)

(−y, x)

(−x,−y, x)

(y,−x, x)
(x,−x, y)

(−x, y)

(−y, x)

Figure 14. Example of a diagram of possible orientations

We will refer to the diagram of possible orientations of Fi as the diagram of
possible orientations of F t

i when t = 1.
So now, in order to get an orientable manifold when we glue all the 2-manifolds

Fi, each pair of diagram of possible orientations of Ti and Ti+1 must satisfy a set
or relations between their parameters. Each relation is of the type xj = ±yl, where
xj is a parameter that defines the orientation of some arc in Ti that glues with
another arc in Ti+1 whose orientation is defined by yl.

3.3. Orientations of each Fi. In order to understand the effect of a saddle on the
orientabillity of a surface we are going to consider the branched covering determined
by the projection R2 → R2/G where G is the group generated by the 180 rotations
with center on Z2 ⊂ R2. Notice that R2/G is a sphere and R2 → R2/G has four
points of ramification.

Now, think of R2/G as a sphere with four holes ( the ramifications points); then
any pair of arcs of slope p/q lifts to lines of slope p/q with rational coordinates on
R2.

On this projection, any two points (x0, y0) and (x1, y1) are projected to the same
point if and only if x0 − y0 and x1 − y1 are even integers. And Z2 projects to the
points of ramification (the four holes), so we are going to name the four holes of
R2/G as an element of its preimage; in particular we are going to name them as
(0, 0), (1, 0), (0, 1) and (1, 1) (Fig. 15 shows the names on a train track).

Suppose that a saddle transforms a pair of arcs of slope p/q into another pair of
arcs u/v. After lifting both pairs of arcs, we can observe that the the parallelogram
(−q,−p), (q, p), (v+ q, u+p), (v− q, u−p) is a fundamental region for the branched
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(0, 1) (1, 1)

(1, 0)(0, 0)

Figure 15. Vertex notation.

covering. The two possible saddles that transform p/q to u/v lift into the ones
shown in Fig. 16; one is on the half parallelogram (0, 0), (q, p), (q + v, p+ u), (v, u)
(named s1) and the other is on the other half parallelogram (named s2).

(q + v, p+ u)

(v, u)

(0, 0)

(q, p)(v − q, u− p)

(−q,−p)

x

y

s1

s2

Figure 16. A fundamental region of the branch covering R2 →
R2/G and the lift of saddles

On Fig. 16 we can observe that when we transform a pair of arcs into another,
the transformed arcs pass through slope infinity on the vertices corresponding to
obtuse angles. That is, on Fig. 16, when transforming using the saddle s1 the slope
infinity occurs on vertices (v, u) and (q, p); and when using s2 slope infinity happens
on vertices (0, 0) and (v−q, u−p). And moreover, this change happens on clockwise
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direction around those vertices regardless of the saddle choice. This pass through
slope infinity will be projected on R2/G as a twist around the corresponding holes.

In addition, if we think of x and y as parallel copies of an arc, then s1 will
identify the first copy of x with the first of y; but if we use s2, the last copies of x
and y are the ones that are going to be identified.

Fig. 16 is depicting the case when p/q < u/v. So, when we change the figure for
the other case (p/q > u/v) we can mostly make the same observations as before;
only few things change, like the directions of the twist.

We can summarize this analysis on Table 3.3; this table has all the possibilities.

Saddle effects: twist and parallel arcs connectivity.
Ö p/q < u/v p/q > u/v
twist direction Clockwise Counter-clockwise
s1 Twist around (q, p) and (v, u)
Ö Identify leftmost parallel arcs Identify rightmost parallel arcs
s2 Twist around (0, 0) and (v − q, u− p)
Ö Identify rightmost parallel arcs Identify leftmost parallel arcs

One more thing to notice is that the table describes what is happening on the
projection. We only need to make modulo two reduction on the vertices. We will
prefer to use vertex (v + q, u + p) mod 2 instead of (v − q, u − p) mod 2, just for
simplicity.

3.3.1. Edgepaths of length less than or equal to 1. Using the diagram of possible
orientations we need to describe what happens after passing across a saddle; and
more importantly, we need to determine if Fi is still orientable. We almost answer
this question with the analysis made on the previous section. And we only need to
write down those observations in terms of oriented train tracks.

Consider a train track corresponding to a point on a non horizontal edge or on
the edge ⟨∞, 0/1⟩. Its orientations are determined by the orientations of the edges
incident to the holes.

Now, we are going to focus on determining the possible orientations of these
edges. This means we describe the possible assigned weights on any orientation of
these edges. We will say that the edge is oriented pointing out if the hole is at the
start of the edge; otherwise we say it is oriented pointing in.

In the following theorem, we are going to use the notation shown on Fig. 15 to
denote the four vertices of a train track diagram. And also, we are going to need
ρ : P2 → P2 the permutation function given by

ρ(x1, x2, . . . , xn) = (x2, x3, . . . , xn, x1)

for all n.

Remark 3.4. From now on, we will be using the function ρ and the function J (see
Remark 3.1) on most of the equations, so it is important to keep their definition at
hand.

Theorem 3.5. Let F be the part of an m sheet candidate surface, inside a tangle
and associated to an edgepath contained on ⟨p/q, u/v⟩ (a non-horizontal edge of D)
that starts in ⟨p/q⟩ and ends in the point

m− α

m
⟨p/q⟩+ α

m
⟨u/v⟩
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, where α is any integer that satisfies 1 ≤ α ≤ m. Then:

(1) F is orientable and unique up to isotopy.
(2) F has 2m− α connected components.
(3) The diagram of possible orientations near the four holes, can be described

by the next table

Vertex Diagram Orientation Weight
(0, 0) Out ρ±α(x)
(q + v, p+ u) mod 2 Out ρ±α(y)
(q, p) mod 2 In x
(v, u) mod 2 In y

where the sign of the exponent on ρ would be positive if p/q > u/v, and neg-
ative otherwise. The weights x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , ym)
satisfy xi = yi (i = 1, . . . , α) if p/q > u/v and xm−i = ym−i (i =
0, . . . , α− 1) if p/q < u/v.

Proof. Remember that in the process of construction of F we have two options for
every saddle, these two types of saddles are level interchangeable. And also, we can
push the initial saddle across the ball bounded by ∂B×0 and change its type. This
implies, that all the possibilities of F are isotopic.

Now, we can think F is obtained from the edgepath with all its α saddles parallel
between them (i.e. all of the same type). Each saddle joins one pair of arcs of slope
p/q and transforms it into a pair of slope r/s, reducing the number of components
of F by one. And also, there are no orientability problems, because each arc belongs
to a different component. So, F is orientable and has 2m−α connected components.

If we project the arcs x and y shown on Fig. 16, the orientation will be near
each point like in Fig. 17 a. For simplicity, we are going to write (a, b)2 to denote
the pair with modulo two reduction.

y y

x x
(0, 0)2 (q, p)2

(v, u)2 (v+q, u+p)2

a)

y ρα(y)

ρα(x) x
(0, 0)2 (q, p)2

(v, u)2 (v+q, u+p)2

b)

y ρ−α(y)

ρ−α(x) x
(0, 0)2 (q, p)2

(v, u)2 (v+q, u+p)2

c)

Figure 17. Orientation near vertices

Suppose that p/q > u/v; by Table 3.3, after saddle s2, the leftmost arc of x is
joined with the leftmost arc of y and a twist will occur around vertices (0, 0) and
(v − q, u − p)2 = (v + q, u + p)2. This means that x1 = y1 and that the weights
near (0, 0)2 and (v+ q, u+ p)2 will be changed to ρ(x) and ρ(y), respectively. More
generally, after passing across α saddles of type s2, we will end up with xi = yi for
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i = 1, . . . , α and the weights near (0, 0) and (v+ q, u+ p)2 will be changed to ρα(x)
and ρα(y), respectively (see Fig. 17 b).

In the case that p/q < u/v, after passing across α saddles of type s2 we will end
up with xm−i = ym−i for i = 0, . . . , α− 1 and the weights as in Fig. 17 c.

From the last two paragraphs part (3) follows. □

3.3.2. Monochromatic edgepaths. We can color all the edges of diagram D with
three colors; one for each type of modulo two reduction of its end points: ⟨1/0, 1/1⟩,
⟨1/1, 0/1⟩ and ⟨0/1, 1/0⟩.

We will say that an edgepath is monochromatic if all edges are of the same color.

Theorem 3.6. Let F be a 2 -manifold obtained from a monochromatic edgepath Γ,
with length grater or equal than one. Suppose its last segment starts at ⟨u/v⟩ and
ends at a point of projective coordinates:

m− α

m
⟨u
v
⟩+ α

m
⟨u

′

v′
⟩

for some 0 < α ≤ m. Then, the diagram of orientations for F is described by the
following table:

Vertex Diagram Orientation Weight
(0, 0) Out y
(v, u)2 In ρ±α(y)
(v′, u′)2 In ρ±α(y)
(v+v′, u+u′)2 Out y

The sign of the exponent over ρ is positive if u/v < u′/v′ and negative otherwise.

Proof. We are going to proceed by induction on the length of |γ| ≥ 1 which is
possible by considering m as a constant and observing that m|γ| has to be a positive
integer. Or equivalently, we are proceeding by induction on the number of saddles
defined by γ, but we have at least m saddles.

When |γ| = 1 the result is a direct consequence of theorem 3.5 in the case α = m.
Assume that the result is true for certain value of |γ| = β ≥ 1. Now we are going

to prove that the result is true for |γ| = β + 1/m. That is, we are going to prove
that the result is still true after adding a saddle.

We have two cases depending on whether β is an integer or not.
Case β is an integer. Let γ′ be the edge path resulting from γ after removing

the last 1/m fraction of edge; this implies that |γ′| = β.
By the induction hypothesis γ′ satisfies the result, and as we are assuming that

|γ′| is an integer its end point has to be a vertex, and that means we have to use
α = m for the theorem conditions. So, the following table describes the diagram of
orientations for γ′

Vertex Diagram Orientation Weight
(0, 0) Out y
(v, u)2 In y
(v′, u′)2 In y
(v+v′, u+u′)2 Out y

Notice that ρ±1(y) = y because y has length m.
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Now, to complete γ we need to add a fraction of an edge to γ′; that fraction
starts at ⟨u′/v′⟩ and ends at a point of the form

m− 1

m
⟨u

′

v′
⟩+ 1

m
⟨u

′′

v′′
⟩

this means adding a saddle.
Because γ is monochromatic we get that (v′′, u′′)2 = (v, u)2. This implies that

the diagram at Fig. 16 would keep the same orientation. So, Table 3.3 would apply
in this case, and the twist would occur on the same pair of vertices as before, and
the leftmost relations would translate to x1 = x1 and rightmost to xn = xn adding
superfluous relations.

If we pass through a saddle of type s1 (see Table 3.3), it creates a twist on
(v′, u′)2 = (q, p)2 and changing their corresponding weights from y to ρ(y) if u′/v′ <
u′′/v′′ and to ρ−1(y) otherwise. Thus, the theorem is true in this case.

But if we go through the saddle (of type s2) the weight at the edges near (0, 0)2
and (v′ + v′′, u′ + u′′)2 would change to ρ∓1(y); the exponent is negative if u′/v′ <
u′′/v′′ and positive otherwise. Now, changing the variable y by ρ±1(x) means to
replace on the train track diagram ρ∓1(y) by x and y by ρ±1(x); thus, we would
get the conclusion of the theorem.

Case β is not an integer. In this case the end point for γ′ (the edgepath 1/m of
smaller length then γ) has the form

m− α

m
⟨u
v
⟩+ α

m
⟨u

′

v′
⟩

for some 0 < α < m. So, the end point of γ would be the same but with α + 1
instead of α. This is again a one saddle increase.

By induction hypothesis, the diagram of orientations associated to the γ′ edgepath
is the one on the statement of this theorem. Now we are going to study how these
weights changed after adding a saddle.

The effect of the saddle can be understood by analyzing the branch covering in
Fig. 16 but with x = y. By Table 3.3, it is clear that if the saddle is s1 the weights
on (v, u)2 and (v′, u′)2 are going to change to ρ±(α+1)(y). Thus, the theorem is
satisfied in this case.

The remaining case is when the saddle is s2. Here, the saddle affects the weights
on (0, 0) and (v + v′, u + u′)2, changing them from y to ρ∓1(y) (the sign depend-
ing on whether u/v < u′/v′ or not). But, by changing the variable ρ∓1(y) by x
(in consequence, changing ρ±α(y) to ρ±(α+1)(x)) we get that the Theorem is also
satisfied in this case, finishing the last step of the induction.

□

3.3.3. Non-Monochromatic edgepaths. As we saw in the previous subsection, the
number of components of a 2-manifold described by a monochromatic edgepath is
greater then or equal to m. We are going to see that the number of components
will be reduced in the case that the edgepath is not monochromatic.

Let us start considering the case when the edgepath is quasi-monochromatic,
that is, when the edgepath is monochromatic when removing the last edge and this
last edge is of a different color.

Theorem 3.7. Let γ be a quasi-monochromatic edgepath. Let ⟨u0/v0, u1/v1⟩ and
⟨u1/v1, u2/v2⟩ be the last two edges through which it passes.
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Then, the diagram of orientations of the associated surface could be described by
the following table.

Vertex Diagram Orientation Weight
(0, 0) out ρεr(x)
(v0, u0)2 in ρ−εr(x)
(v1, u1)2 in ρ−εs(x)
(v2, u2)2 out ρεs(x)

where r is the number of saddles of the type that twist around (0, 0) and s is the
amount of saddle of the other type, and ε is the sign of u1/v1 − u2/v2. Moreover,
xi = −xm+1−i for i = 1, . . . ,max{r, s}.

Proof. Consider γ′, the monochromatic edgepath resulting from removing the last
edge of γ. From Theorem 3.6 we can get the diagram of orientations for γ′, which
is described by the following table:

Vertex Diagram Orientation Weight
(0, 0) out x
(v0, u0)2 in x
(v1, u1)2 in x
(v2, u2)2 out x

Consider now the branched covering studied in Section 3.3 and the fundamental
region delimited by the slopes u1/v1 and u2/v2. Now, lift the diagram of orienta-
tions of γ′ to this covering, which will look as in Fig. 18.

(v1+v2, u1+v1)

(v2, u2)

(0, 0)

(v1, u1)(v2−v1, u2−u1)

(−v1,−u1)

x

x

s1

s2

Figure 18. Lift of arcs with u1/v1 < u2/v2

So, similarly to Table 3.3 we can describe the effects of saddles s1 and s2; and
we would need to separate the cases u1/v1 < u2/v2 and u1/v1 > u2/v2.

The table on this theorem summarizes all these possibilities.
As we can observe in Fig. 18, regardless which saddle is chosen, the leftmost

arc of slope u1/v1 is identified with the corresponding rightmost arc of the same
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slope; meaning that the last entry of x is equal to the first one. So, if we apply the
same saddle (let say s2) r times it will imply that xi = xm+1−i for i = 1, . . . , r.
But, if we pass through both saddles, the same relation on x will be implied; that
is x1 = xm+1−i with one saddle and xm+1−i = xi with the other. So, if we pass
through s saddles of one type and r saddles of the other, we get the relations
xi = −xm+1−i for i = 1, . . . ,max{r, s}. □

An important corollary of Theorem 3.7 is the following.

Corollary 3.8. No edgepath associated to an ICON surface can contain two full
edges of different color.

Proof. Consider γ, an edgepath with two edges of different color. Take the first
edge where γ changes of color; and only consider the part of γ until that edge.

So, applying the previous theorem (3.7) and the fact that the full last edge
belongs to γ, then we will have r + s = m. As γ is associated to an ICON surface,
m must be odd. So, either r or s must be greater than or equal to half of m. That
is, max{r, s} ≥ (m+ 1)/2.

Hence the identity xi = −xm+1−i must hold for i = (m + 1)/2, ie, x(m+1)/2 =
−x(m+1)/2. Therefore, x(m+1)/2 should be zero, preventing the existence of solu-
tions in {1,−1}. □

The previous corollary means that, for ICON surfaces there are only monochro-
matic or quasi-monochromatic edgepaths.

3.4. Final gluing for type II surfaces with monochromatic edgepaths. In
this section we study the final step in the construction of candidate surfaces for a
specific case, helping us to discard several possibilities in the following chapters.

Theorem 3.9. A candidate surface of type II generated from monochromatic edgepaths
γ1, γ2, . . . , γn of color ⟨1/1, 0/1⟩ is connected if and only if the leaf number m is ex-
actly one.

Proof. Suppose that the edgepath γi ends at the point:

m− ai
m

⟨ki⟩+
ai
m
⟨ki + 1⟩

with ki an integer and ai a non-negative integer smaller than m.
Because γi is monochromatic, we can apply Theorem 3.6 and obtain the diagram

of orientations shown on Fig. 19. This diagram is independent of whether γi goes
down from ⟨k⟩ to ⟨k + 1⟩ or goes up from ⟨k + 1⟩ to ⟨k⟩.

In order to keep orientability, the following relationships must be satisfied at the
vertices:

(2) ρai(xi) = xi+1 i = 1, 2, . . . , n

Finding a solution to the previous system of equations is equivalent to finding
a solution x1 to the equation ρa1+a2+···+an(x1) = x1. But, because the ordinates
of the endpoints add up to zero, it means that a1 + a2 + · · · + an is a multiple of
m, and so ρa1+a2+···+an = identity. Hence, for every value of x1 we can create a
solution for the system 2.

Let {x1, x2, . . . , xn} be a solution of the system (2). Then, when gluing the two
half-planes as in Fig. 20 the orientations of all their arcs will match perfectly. This
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xi ρa(xi)

ρa(xi)xi

ci ci

Figure 19. Diagram of orientations for Fi

is explained by the fact that the train track of a half-plane, like the one in Fig. 20
a), depends entirely on the value of the weights near its vertices.

ρai(xi)

z axis

ρai(xi)

xi+1

z axis

xi+1

a) b)

Figure 20. Half diagram with b = 0

The last argument proves that for every value of x1 we create an orientation for
the candidate surface, but because an ICON surface is orientable and connected,
there should be only two possible orientations. So, the length of the weight x1 ∈
{1,−1}m has to be equal to one; i.e m = 1. □

4. ICON surface in the exterior of the pretzel knots P (p.q.− r)

It is easy to see that CON surfaces are necessarily connected, have zero boundary
slope and an odd number of boundary components. In this chapter we will apply
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Slopes for all the possible edgepaths.
− 1

r
1
q

1
p II III

+ + + 4− 2(p+ q) −2(p+ q)
+ +− 2− 2p −2p
+−+ 2− 2q −2q
+−− 0 * 0 *
−++ 2− 2(p+ q − r) * −2(p+ q − r)
−+− 2(r − q) * 2(r − q) *
−−+ 2(r − p) * 2(r − p) *
−−− 2r − 2 2r

the Hatcher and Oertel algorithm from [? ] to the pretzel knots P (p, q,−r) with p,
q and r odd numbers grater than 1; and we are going to determine the zero ∂-slope
surfaces and determine which of those surfaces are connected with an odd number
of boundary components.

There are only two minimal edgepaths from a vertex ⟨±1/p⟩ to the left border of
S ; one moving always upwards and the other downwards. So, for the three tangles
there would be 23 = 8 combinations. We write these as, e.g., + +−, meaning: the
upward edgepaths in the first two tangles and the downward edgepath in the third.
We write these combinations in Table 4 as Hatcher and Oertel did at [? ]. Recall
that, for the computation of this table, the equation (1) is required and notice that
τ(F0) = 2.

Notice that the cases which are not marked with * have non-zero ∂-slope.

4.1. Candidate surfaces of type II. Let us start by analyzing the candidate
surfaces of type II. As we saw earlier there are only four possibilities in which the
candidate surface may have zero ∂-slope.

+−− The three edgepaths meet the y axis precisely at the vertex 0/1.
−++ can only give zero when p+ q − r = 1.
−+− Necessarily that r = q to have zero ∂-slope. [− − +] is analogous to the

previous case, so it requires that r = p.

Let us start with the simplest case; this is the second one (− + +). Since
the sum of the ordinates of the edgepaths when they reach the y axis is 1, the
edgepaths must be extended at least one edge downwards. But that downward
extension cannot be performed on the paths γ1/p and γ1/q, because it would pass
through two consecutive edges of the same triangle. Then, extension must be made
in the edgepath γ−1/r. But this will imply that γ−1/r would have two full edges
of different color, contradicting Corollary 3.8. Therefore, the surface in this case
cannot be ICON.

In order of difficulty, the following case is the +−−. On it, all the edges can be
extended vertically in either direction (up or down) without contradicting the con-
dition of minimality E2 (Definition 2.4) neither the condition of monochromaticity
(Corollary 3.8). So, we will have many orientable candidate surfaces of slope zero.
But, as the three edgepaths are monochromatic and of the color ⟨1/1, 0/1⟩, they
satisfy the conditions of Theorem 3.9. So, none of these candidate surfaces will be
ICON with disconnected boundary.

It only remains the case −+− (which is analogous to −−+). The edgepaths γ−r

and γq are monochromatic of color ⟨1/0, 1/1⟩ and if they are extended vertically,
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this will imply that γ−r and γq are quasi-monochromatic; in both edgepaths we
can use Theorem 3.7 and obtain their diagrams of orientations; both will look like
Fig. 21 a). As the path γp is monochromatic, we can use the table in Theorem 3.6
to describe its diagram of orientations (Fig. 21 b).

ρ∓r(xi) ρ∓s(xi)

ρ±r(xi) ρ±s(xi)

· · ·

· · ·

· · ·

· · ·

a) b)

y ρa(y)

y ρa(y)

Figure 21. Diagram of orientations near the holes for the case +−+.

Now, in order to keep orientability, when we glue the two diagrams from Fig. 21,
the relations ρ∓s(x) = y and ρ±s(x) = −J(y) must be satisfied. But, combining
these two last identities we get that

ρ±s(x) = −J(ρ∓s(x))

ρ±s(x) = −ρ±s(J(x))

x = −J(x)(3)

But as |x| = m must be odd (to be ICON) and by 3 the middle entry of x
should be zero. Therefore, the system has no solution in {1,−1}m and therefore
the obtained candidate surface shall be non-orientable.

In summary, throughout this section we have proved the following statement.

Proposition 4.1. In the pretzel knots P (p, q,−r) with p, q and r odd integers
greater than 1, there are no ICON candidate surfaces of type II, with disconnected
boundary.

4.2. Candidate surface of type III. Type III candidates surfaces for cases −+−
and −−+ are compressible by Proposition 2.5 (b) in [? ]. This is because the path
γ−1/r will be completely reversible and

∑
i ki = 0 (see [? ]).

For the case + − − we will have to do a bit more work. In this case, all paths
shall terminate at the same point in the edge ⟨0/1,∞⟩. So, we can say that all
three edges end at the following point:

m− k

m
⟨0/1⟩+ k

m
⟨∞⟩

where k is an integer between 0 < k < m.
First observe that the saddles that transform slope ⟨0/1⟩ into ⟨∞⟩ are the ones

shown in Fig. 22 a). And if we use ri of one type and si of the other, the diagram of
orientation will be the one shown on Fig. 22 b), and the first max{ri, si} coordinates
of xi are equal to the negative of the last ones; more precisely, we can write xi =
zi ⊕ yi ⊕−J(zi) where |zi| = max{ri, si}

It is not hard to see, that if s1 = s2 = s3 (consequently r1 = r2 = r3) then, the
candidate surface will be disconnected. So, without loss of generality we can say
that m/2 > s1 > s2 > 0
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a)

xi

xi

ri si

b)

ρsi(xi)

ρ−si(xi) ρ−si(xi)

ρsi(xi)

Figure 22. Train track with final point m−k
m ⟨0/1⟩+ k

m ⟨∞⟩

Now, gluing these last two train tracks, we get the relations ρs1(x1) = ρs2(x2)
and ρ−s1(x1) = ρ−s2(x2); combining these two we get that ρ2(s1−s2)(x1) = x1. By
definition ρm(x1) = x1 in consequence we have that:

(4) ρg(x1) = x1 where g = g.c.d(m, s1 − s2)

Let w1 be the subarray of z1 formed by its first g coordinates; that is, z1 =
w1 ⊕ h1. Then w1 ⊕ h1 ⊕ y1 ⊕ J(−h1) ⊕ J(−w1) = x1 = ρg(x1) = h1 ⊕ y1 ⊕
J(−h1) ⊕ J(−w1) ⊕ w1; this implies that J(−w1) = w1. But |w1| = g is odd; so
the middle coordinate of w1 should be zero, implying that there is no solution in
{1,−1}.

We have proven the following proposition.

Proposition 4.2. In the pretzel knots P (p, q,−r) with p, q and r odd integers
greater than 1, there are no ICON candidate surfaces of type III with disconnected
boundary.

4.3. Candidate surfaces of type I. Let us start by remembering that there are
several possibilities for the paths γp, γq and γ−r. Such possibilities can only move
from right to left in the highlighted part of Fig. 23. Fig. 23 a) shows the possibilities
for path γp (a similar figure applies to the edgepath γq) and Fig. 23 b) shows the
possibilities for γ−r.

As we are in the case of type I candidate surfaces, we need to find x ∈ (0, 1)
such that γp(x) + γq(x) + γ−r(x) = 0 where γi can be the function γ+

i , γ−
i or the

constant path for i = p, q,−r. Each of these functions can be given precisely:

γ+
i (x) = 1− x for i = p, q and x ∈ [0, i− 1/i)(5)

γ−
i (x) = x/(i− 1) for i = p, q and x ∈ [0, i− 1/i)(6)

γ+
−r(x) = −x/(r − 1) for x ∈ [0, r − 1/r)(7)

γ−
−r(x) = x− 1 for x ∈ [0, r − 1/r)(8)

We are going to proceed by cases. Let us begin with the case where all the
edgepaths are constant.
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a) b)

Figure 23. Type I edgepaths

Solutions of γp(x) + γq(x) + γ−r(x) = 0.
1
p

1
q − 1

r Solution on x

+ + + (2r − 2)/(2r − 1)*
+ + − 1
+ − + (rq − r − q + 1)/(rq − 2r + 1)*
+ − − 0
− + + (rp− r − p) + 1)/(rp− 2r + 1)*
− + − 0

Proposition 4.3. For the pretzels P (p, q,−r) with p, q and r odd integers grater
than 1, there are no type I candidate surfaces with three constant paths.

Proof. On this case the equation γp(x) + γq(x) + γ−r(x) = 0 will be equivalent to
1/p+ 1/q = 1/r, but this is impossible because p, q and r are odd. □

Now we study what happens if none of the edgepaths is constant. In the following
lemma we will discard most of the cases. The right inequality in condition (9)
follows from the fact that edgepaths are not constant (see the possible values of x
on equations 5, 6, 7 and 8) and the left inequality follows from the type I condition
on the candidate surface.

Lemma 4.4. If none of the paths γ∗ is constant, then the equation γp(x)+γq(x)+
γ−r(x) = 0 will have a solution in x with

(9) 0 < x < min

{
q − 1

q
,
p− 1

p
,
r − 1

r

}
only if γp(x) = γ−

p (x) = x/(p− 1) and γq(x) = γ−
q (x) = x/(r − 1).

Proof. As each edgepath γ∗ has two possibilities, 8 cases need to be considered. In
order to prove the proposition, we only need to discard them all but cases − − +
and −−−; that is, when γp = γ−

p , γq = γ−
q and γr any of the two possibilities.

For each case (excluding the two exceptions), γp(x) + γq(x) + γ−r(x) = 0 will
be a linear equation with unique solution (not necessarily satisfying condition (9)).
On the following table we write the solutions for every case:
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By the condition (9), x cannot be 1 or 0. So, there only remain the possibilities
marked with asterisk. But condition (9) fails for those too, as we will show below:

• For the case +++ we can notice that: (2r−2)/(2r−1) < r−1
r ⇔ 2r < 2r−1;

which is impossible.
• For the case +−+ we use that (rq−r−q+1)/(rq−2r+1) < r−1

r ⇔ r < 1;
but this is impossible because r is a positive odd integer.

• Case −++ is analogous to the previous one.

□

Now using Lemma 4.4 we can prove the following proposition.

Proposition 4.5. Candidate surfaces of type I for the Pretzel P (p, q,−r) and
associated to non-constant edgepaths are not ICON.

Proof. By Lemma 4.4 there are only two cases that remain:

• Case −−+ means that γr = γ+
r . So the equation γp(x)+γq(x)+γ−r(x) = 0

will have a non trivial solution if and only if

1

p− 1
+

1

q − 1
=

1

r − 1

In that case, all rational x where 0 < x < 1 − max{1/p, 1/q, 1/r} are
solutions. Let x0 be a rational value of x. The number of sheets (m) must
satisfy that αp = mx0/(p − 1)(1 − x0), αq = mx0/(q − 1)(1 − x0) and
αr = mx0/(r − 1)(1 − x0) are integers. So, we can write the end point of
each edgepath γi as follows:

αi

m
⟨1
i
⟩+ βi

m
⟨0⟩(10)

where i is one of p, q or r and βi = m−αi. We can notice, that by definition
αp + αq = αr.

Applying Theorem 3.5 we can see that the diagrams of orientations of
γp. γq and γr look like the ones of Fig. 24, where |ai| = βi, |zi| = |wi| = αi.

ap

ap

wp

wp

zp

zp

aq

aq

wq

wq

zq

zq

ar

ar

wr

wr

zr

zr

Figure 24. Diagrams of orientations for a Type I candidate sur-
face when γp = γ−

p , γq = γ−
q and γr = γ+

r

By observing these diagrams, we can see that the first arc of aq glues
with the first arc of ar on the tangle 1/r, and also glues to the (αq + 1)-th
arc of ap. And, the first arc of ar glues to the (αr − αp + 1)-th arc of ap.
But αr−αp+1 = αq+1, so the gluing actually closes a surface; this means
that the candidate surface is disconnected.
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Possibilities for γq and γ−r when they are not constant and γp is constant a
Case γq(x) γ−r(x) Affirmation
++ 1− x −x

r−1 There is no solution with x < 1

+− 1− x x− 1 There is no solution on x
−+ x

q−1
−x
r−1 The solutions correspond to nonzero slope

−− x
q−1 x− 1 There is no solution with x < (q − 1)/q

• Case − − −. In this case γr(x) = x − 1. Let x0 be the solution of the
equation γp(x) + γq(x) + γ−r(x) = 0, that is, x0 = (p− 1)(q − 1)/(pq − 1).
This solution will be in the required interval if and only if r > 1/(1− x0).

Now, the edgepath γp ends at the point with coordinates (x0, x0/(p−1)),
that is the point

q − 1

p+ q − 2
⟨1/p⟩+ p− 1

p+ q − 2
⟨0⟩.

So, τ(γp) = (p − 1)/(p + q − 2). Similarly, we can compute τ(γq) = (q −
1)/(p+ q − 2).

By substitution into the slope formula for candidate surfaces we got

slope = 2− 2(τ(γp) + τ(γq) + τ(γ−r)) = −2τ(γ−r)

But, as the edge path γ−r is not constant and always decreases, we must
have τ(γ−r) ̸= 0. So, the candidate surface has nonzero slope.

□

Now we will concentrate on the cases where two edgepaths are constants and
the other not. Remember that the slope of a candidate surface is computed by
2 − 2(τ(γp) + τ(γq) + τ(γ−r)). As we want this number to be zero and the two
edgepaths to be constant, the nonconstant edgepath γi should have twist number
equal to 1, that is, τ(γi) = 1 . Therefore γi has negative slope and travels a full
edge which implies that i = −r, that is, γ−r is the nonconstant edgepath.

Now, τ(γ−r) = 1 means that γ−r goes from ⟨−1/r⟩ to ⟨−1/(r − 1)⟩. The x-
coordinate of the point ⟨−1/(r−1)⟩ is x0 = (r−2)/(r−1) and γ−r(x0) = −1/(r−1).
But x0 has to be the solution of the equation γp(x) + γq(x) + γ−r(x) = 0, which is
equivalent to

1

p
+

1

q
=

1

r − 1

but this is impossible due to the parity condition on p, q and r. We have therefore
proved the following proposition.

Proposition 4.6. There are no zero slope candidate surfaces for the pretzels P (p, q,−r)
with two constant edgepaths. Here, p, q and r are odd positive integers greater than
1.

One last possibility is when one edgepath is constant and the other two are not.
Suppose that γp is the constant one, then we will have four possibilities for γq

and γ−r. For none of these possibilities there are candidate surfaces with zero slope.
Now, we are ready to prove the following proposition.

Proposition 4.7. If the pretzel P (p, q,−r) has an ICON surface with disconnected
boundary then the surface must be described by a candidate surface of type I with the
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Possibilities for γp and γq when they are not constant and γ−r is constant
Case γp(x) γq(x) Assertion
++ 1− x 1− x τ(γ∗) < 0 for ∗ ∈ {p, q}, so the candidate surface has nonzero slope
+− 1− x x

q−1 τ(γp) < 0 and τ(γq) < 1, so the candidate surface has nonzero slope

−+ x
p−1 1− x analogous to previous case

−− x
p−1

x
q−1 This is the only possibility

edgepath γ−r constant with image ⟨−1/r⟩ and the other two are downward edgepaths.
Moreover, the following relation must be satisfied:

1

p− 1
+

1

q − 1
=

1

r − 1

Proof. By Propositions 4.1 and 4.2 the candidate surface must be of type I and
by Propositions 4.5 and 4.6 the edgepath must have one and only one constant
edgepath.

As we observed before, if γp or γq is constant there would be no candidate
surface with zero slope. The remaining case is when γ−r is constant and the other
two edgepaths are not.

There are four possibilities for γp and γq, each one described on Table 4.3. The
table discards all cases but γp = γ−

p and γq = γ−
q .

Once we have defined the three edgepaths, we can compute the solution of γp(x)+
γq(x) + γ−r(x) = 0 and for that solution we can compute τ(γ∗). We need that
τ(γp) + τ(γq) = 1 in order to have zero slope for the candidate surface. But this
identity will be true if and only if

1

p− 1
+

1

q − 1
=

1

r − 1

In this case, the solution of γp(x)+γq(x)+γ−r(x) = 0 is x0 = (r−1)/r; therefore
the image of the edgepath γ−r is exactly the point ⟨−1/r⟩. □

One last lemma to continue.

Lemma 4.8. Let a, b and c be three positive integers such that

1

a
+

1

b
=

1

c

. Then there are integers u, v and g such that (u, v) = 1 and

a = gu(u+ v)

b = gv(u+ v)(11)

c = guv

Proof. Let g = gcd(a, b, c); then we can write a = ga′, b = gb′ and c = gc′ with
a′, b′ and c′ three integers without a common factor such that 1/c′ = 1/a′ + 1/b′.
Then let h = gcd(a′, b′), so we have a′ = hu and b′ = hv with u and v relatively
prime integers. Making the appropriate substitutions we have

(12) (u+ v)c′ = huv
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As a′, b′ and c′ have no common factors, gcd(h, c′) = 1, so c′ must divide uv.
Now, as gcd(u, v) = 1 we will have gcd(u+ v, uv) = 1. In consequence u+ v must
divide h. Hence

(13)
h

u+ v
· uv
c′

= 1.

Therefore, both factors have to be equal to 1; this means, h = u+v and c′ = uv.
This concludes the proof. □

Now we are ready for the final theorem of this section.

Theorem 4.9. Let k be a pretzel knot P (p, q,−r) where p, q and r are odd numbers
greater than 1. Then k has an ICON surface F in its exterior with disconnected
boundary if and only if

1

p− 1
+

1

q − 1
=

1

r − 1
and(14)

g.c.d(p− 1, q − 1)

g.c.d(p− 1, q − 1, r − 1)
is odd(15)

Moreover, the quotient (15) is the number of boundary components of F .

Proof. From Proposition 4.7 the integers p, q and r must satisfy identity (14). And
by Lemma 4.8 there are integers u, v and g such that g.c.d(u, v) = 1 and:

p− 1 = gu(u+ v)

q − 1 = gv(u+ v)(16)

r − 1 = guv

Then, it is not hard to see that the quotient (15) is equal to u+ v. Now we will
prove that u + v is a divisor of the number of sheets m and as consequence u + v
will be odd. Later we will show that m = u+ v.

First notice that the solution of γp(x) + γq(x) + γ−r(x) = 0 is x0 = (r − 1)/r.
We can easily verify that the points v

u+v ⟨1/p⟩+
u

u+v ⟨0/1⟩ and
u

u+v ⟨1/q⟩+
v

u+v ⟨0/1⟩
have x0 as x coordinate. So, the number of sheets m must satisfy that the fractions
mv/(u+ v) and mu/(u+ v) are integers. This means that u+ v is a divisor of m,
as we wanted to prove.

We have proved necessity; to prove sufficiency we need to show that a pretzel knot
k = P (p, q,−r) with the conditions requested, has an ICON surface in its exterior.
Moreover, we will show that the surface has as many boundary components as the
quotient (15).

Let γp, γq and γ−r be as before; that is, γp start at ⟨1/p⟩ and ends at v
u+v ⟨1/p⟩+

u
u+v ⟨0/1⟩; γq start at ⟨1/q⟩ and ends at u

u+v ⟨1/q⟩+
v

u+v ⟨0/1⟩; γ−r is the constant

edgepath on the vertex ⟨−1/r⟩. Here, we are considering u and v (and also g) the
integers from lemma 4.8. The twist of this surface is 2

One thing to notice, is that g has to be an even integer. To see this, recall that
p, q and r are odd numbers. Then, from equations (16) all the integers gu(u+ v),
gv(u+ v) and guv have to be even, but by condition (15) u+ v has to be odd. So,
one of the expressions u(u+ v) or v(u+ v) has to be odd, implying that g must be
even.
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By Proposition 2.1 in [? ], the candidate surfaces associated to the edgepath
system γp, γq and γ−r are incompressible. And also, its slope would be zero. So,
we only need to determine if one of the candidate surfaces is orientable with more
than one odd number of sheets.

Now, let m be a possible number of sheets. As we know, m must be a multiple of
u+v; let k be the integer such that m = k(u+v). Now, we can write the endpoints
of each edgepath in homogeneous coordinates:

End(γp) = (m,muvg, kv)

End(γq) = (m,muvg, ku)

End(γ−r) = (m,muvg,−m)

So, the diagrams of orientations for γp and γq are the ones shown on Fig. 25.
Here, wp, ap, zp, bp and cp are weights of lengths kv, ku, kv, muvg and muvg,
respectively; analogously wq, aq, zq, bq and cq are weights of lengths ku, kv, ku,
muvg and muvg, respectively.

cp
zp

zp
ap
wp

ap
wp

bp cq
zq

zq
aq
wq

aq
wq

bq

Figure 25. Diagram of orientation for the edgepaths γp and γq.

By the diagram of orientations, we got the relations c∗ ⊕ z∗ = z∗ ⊕ b∗ and
b∗ ⊕−J(w∗) = −J(w∗)⊕ c∗ for ∗ = p, q (see Fig. 25). Now, we observe that:

(17) b∗ ⊕−J(w∗)⊕ z∗ = −J(w∗)⊕ c∗ ⊕ z∗ = −J(w∗)⊕ z∗ ⊕ b∗

for ∗ ∈ {p, q}

That is, bp commutes with −J(wp)⊕ zp. Also observe that |−J(wp)⊕ zp| = 2kv
divides |bp| = muvg (recall that g is even andm = k(u+v)), so by ([? ], Proposition
7.1.5) we got that bp has to be a power of − J(wp) ⊕ zp. Same thing happens for
cp and zp ⊕−J(wp).

Now, we can write bp and cp in terms of wp and zp as follows:

bp = (−J(wp)⊕ zp)
u(u+v)g

2 cp = (zp ⊕−J(wp))
u(u+v)g

2
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Similarly,

bq = (−J(wq)⊕ zq)
v(u+v)g

2 cq = (zq ⊕−J(wq))
v(u+v)g

2

From Fig. 25 we can observe that after gluing both orientation diagrams, we
will have the following relations:

ap = wq zp = aq ap = zq wp = aq bp = cq

These imply that ap = wq = zq and aq = wp = zp. Then, we can rewrite the
last relation in terms of ap and aq:

(−J(aq)⊕ aq)
u(u+v)g

2 = bp = cq = (ap ⊕−J(ap))
v(u+v)g

2

By ([? ], Proposition 7.1.6), this implies that both words −J(aq) ⊕ aq and
ap ⊕−J(ap) are powers of a smaller word s, which has length equal to the greatest
common divisor of their lengths: | − J(aq) ⊕ aq| = 2kv and |ap ⊕ −J(ap)| = 2ku
which is 2k. But, since w = −J(w) where w = −J(aq) ⊕ aq is a power of s, then
s = −J(s). So there is a word t of length k such that s = t⊕−J(t).

Summarizing, using the word t we can define the values of all the variables
involved in the two diagrams of orientations in Fig. 25, and the relations resulting
from gluing will be satisfied. Now, as the edgepath γ−r is constant, it will not bring
any new relation, so the variable t parametrizes the set of possible orientations of
the candidate surface; then the candidate surface will be orientable with |t| = k
connected components. As we want the surface to be connected, then we need
k = 1.

We have therefore proved that the candidate surface, in addition to being incom-
pressible and with zero slope, is orientable and has m = k(u+ v) = u+ v boundary
components.

□

5. The Main Theorem

Lemma 5.1. Let F be a CON (compact, orientable and non-separating) surface
in the exterior E of a knot. Then, there is another surface F ′ ICON on E with
g(F ′) ≤ g(F ) and |∂F ′| ≤ |∂F | such that there is an epimorphism π1(E/F ′) →
π1(E/F ).

Proof. If F is incompressible there is nothing else to do. If F is compressible there
is an incompressible disk for F , that is, a disk D on E such that F ∩ D = ∂D,
∂E ∩D = ∅, and ∂D does not bound a disk on F .

Now, we have two possibilities, that ∂D separates F or not.
Case 1. F − ∂D is connected. We can do surgery on F along D, and get a new

surface F̃ (see Fig. 26).
Let B = D × [0, 1] be the cylinder containing D such that B ∩ F = ∂D × [0, 1]

and B ∩ F̃ = D × {0, 1}. Now, the natural projections E/F → E/(F ∪ B) and

E/F̃ → E/(F ∪ B) induce two morphisms on fundamental groups; the first one is
an isomorphism because B/(B∩F ) ⊂ E/F is π1 trivial and the second one induces

an epimorphism because π1(B/(B ∩ F̃ )) ∼= Z. So, there is an epimorphism from

π1(E/F̃ ) to π1(E/F ).
As we can recall, F is orientable and non-separating. That implies that there is

an arc α over ∂E − ∂F such that α touches both sides of F . Since the interior of
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F

D

F̃ F̃

B = D × [0, 1]

Figure 26. Compression of F with a disk D.

α is contained in the complement of F̃ , F̃ will be non-separating. Then we have
found a surface with the required conditions.

Case 2. F − ∂D is disconnected. Let F ′ be the closure of the component of

F − ∂D with an odd number of boundary components. Now, F̃ = F ′ ∪ D is a
properly embedded surface in E which is non-separating because it has slope zero,
with an odd number of boundary components.

Therefore, we have the following morphisms of groups:

π1

(
E

F ′

)
→ π1

(
E

F̃

)
(18)

π1

(
E

F ′

)
→ π1

(
E

F

)
(19)

The first morphism (18) is an isomorphism because D in the quotient E/F ′ is
π1 trivial. Similarly, the morphism (19) is an epimorphism because the image of
F − F ′ is a connected subset in E/F ′. Therefore, there is an epimorphism from

π1(E/F̃ ) to π1(E/F ) as we want.

Summarizing, in both cases we were able to construct a surface F̃ that has less

genus and satisfies that there is an epimorphism π1(E/F̃ ) → π1(E/F ).

We can repeat this process repeatedly (now for F̃ ) until we end with an incom-
pressible surface satisfying all the conditions of the theorem. □

Definition 5.2. A knot has Property A-ICON if for every F ICON surface with
disconnected boundary embedded in the knot exterior E, there is an arc α on ∂E
connecting two different components of ∂F such that ∂α = α∩∂F and [α] is trivial
in π1(E/F ).

Now we are going to prove that Property A-ICON is equivalent to Property Z.

Theorem 5.3. A knot has Property A-ICON if and only if it has Property Z.

Proof. To see that Property Z for a knot k implies Property A-ICON observe that
the closure of at least one component of ∂E − ∂F has a spanning arc α that is
nulhomologous in E/F , because the algebraic intersection of a meridian in ∂E with
∂F is ±1, and therefore some arc α of ∂E (that is the closure of a component of
∂E−F ) intersects F on opposite directions. Then, if π1(E/F ) = Z, α is trivial in
π1(E/F ).

Now we are going to prove that Property A-ICON implies Property Z. We
can apply the second part of the arguments on the proof of Theorem 14 in [?
]; it proves that we can reduce the number of components of F by 2 by doing
surgery on F along the annulus in ∂E containing α. The new surface F ′ satisfies
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that π1(E/F ′) ∼= π1(E/F ). But F ′ can be compressible; then by Lemma 5.1 we
can find another surface F ′′ now incompressible (ICON) with no more boundary
components than F ′ such that there is an epimorphism π1(E/F ′′) → π1(E/F ′).
We can iterate this process until the constructed surface has connected boundary;
but for connected boundary Property Z is satisfied. Following back the iteration
to the original surface we will end up with an epimorphism from Z to π1(E/F ).
Therefore π1(E/F ) ∼= Z.

□

Now, back to our case of interest. The following theorem establishes Property Z
for the pretzels knots we have been discussing.

Theorem 5.4. Let E the exterior of a pretzel knot P (p, q,−r) with p, q and r
odd positive integers. Then, π1(E/F ) ∼= Z for all compact, orientable and non-
separating surfaces F properly embedded in E.

Proof. If one of p, q or r is equal to 1 then the pretzel P (p, q,−r) would be a two-
bridge knot. But two-bridge knots have rank two, that is, the fundamental group
of their exteriors have rank two. But it was observed in [? ] that Property Z holds
for rank two knots.

From now on, we are going to consider the pretzel k = P (p, q,−r) where p, q
and r are greater than 1. We are going to prove that this pretzel has Property
A-ICON.

Let F be an ICON surface in the exterior of k. As we have seen, if F has
connected boundary then π1(E/F ) ∼= Z. So, the interesting case is when F has
disconnected boundary.

Suppose that F has disconnected boundary; by Theorem 4.9, we may assume
that p, q and r satisfy conditions (14) and (15)

Le D1, D2 and D3 be the left half of the oriented train tracks defined by F on
each of the three tangles 1/p, 1/q and −1/r, respectively (see Fig. 27).

−1
r

axis

1
p

1
q

Figure 27. Half-planes D1, D2 and D3
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From the proof of Theorem 4.9 we can draw a detailed diagram for each half-
plane Di as shown in Fig. 28 where a = ((−1)v, (−1)v−1, . . . , (−1)2,−1) and x =
((−1)0, (−1)1, . . . , (−1)u−1).

D1

a

x

a

x

a

a

a
x

a

x

ax

ax

a⊕ x

a x

D2 D3

Figure 28. Half-planes D1, D2 and D3

On Fig. 28, we highlight three regions whose union is a hexagon Ω. On the same
figure, we can observe that three alternating sides of Ω are on F and the other three
over ∂E.

On the upper left hole of every diagram Di, there are two edges with weights
a and x. Between those two edges, there are two arcs, one touches opposite sides
of F and the other does not. The arc αi ⊂ Di that touches the same side of F
is the one that belongs to Ω. The other arc βi ∈ Di, touches different sides of F
and is the only arc properly embedded in ∂E that does that; so, all the βi’s belong
to the same component of ∂E − ∂F . In consequence all αi’s also belong to the
same component; therefore, they are isotopic in π1(E/F ), i.e,[α1] = [α2] = [α3].
Moreover, 1 = [∂Ω] = [α1] · [α−1

2 ] · [α3] in π1(E/F ); this implies that the arcs αi are
trivial in π1(E/F ). □

Final comments

Conceivably, Conjecture Z can be proven, with similar techniques, for not-too-
complicated Montesinos knots, perhaps those with 3 rational tangles. If we have
a Montesinos knot with n rational tangles, the number of cases that have to be
analyzed grows exponentially with n.

In a not-too-serious vein we think of Conjecture Z as a kind of inverse of the
Poincaré Conjecture: in the latter, X is 1-connected and one proves X is S3; in the
former, Y is the 2-point compactification of the complement if an (I)CON surface
in the exterior of a knot in S3, and one has to prove that Y is 1-connected.
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Acknowledgments
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