Avatar

Jesús Rodríguez Viorato

Research Professor

CONACyT - CIMAT

Biography

I am a Topologist and I have worked on many problems about Knot Theory including Universality of Knots, The Kervaire conjecture, Contact manifolds, Cable knots and more. I am interested in applications of topology to other areas of knowledge, especially on Computational Linguistics.

Other areas of interest are 4-manifolds, Trisections, Khovanov Homology, Heegaard-Floer Homology, and Persistent Homology.

Interests

  • Low dimensional Topology,
  • Contact Topology,
  • Topological Data Analisis,
  • Computational Linguistics

Education

  • Visiting Assistant Professo, 2017

    University of Iowa

  • Posdoctoral Position, 2015

    Center of Research in Mathematics

  • Ph.D. in Mathematics, 2014

    National Autonomous University of Mexico

Recent & Upcoming Talks

¿Qué es la topología en dimensión baja? El caso de los nudos fibrados

Veremos qué es y por qué se estudia la topología en dimensión baja. Así mismo veremos el caso particular de los nudos fibrados.

Existence of a transverse universal knot

We prove that there is a knot $k$ transverse to $\xi_{std}$, the tight contact structure of $S^3$, such that every contact 3-manifold …

Repaso de nudos fibrados

Un nudo fibrado $K$, en una tres variedad $M$, es una curva simplemente cerrada tal que $M-F$ es una variedad fibrada por superficies. …

About the existence of a universal transverse knot

Since 2002 thanks to Giroux it is known that any 3-dimensional contact manifold $(M,\xi)$ can be obtained as 3-fold simple covering $f: …

Persistent homology in natural language processing

Natural Language Processing is an area of computer science which has had a lot of success on topics like automatic translations. …

Recent Publications

Existence of a transverse universal knot

We prove that there is a knot $ K $ transverse to $\xi_{std}$, the tight contact structure of $S^3$, such that every contact 3-manifold …

Computing Genera of Satellite Tunnel Number One Knots and Torti-rational Knots

We develop a method to compute the genera and slopes of essential surfaces in 2-bridge link exteriors with one longitudinal boundary …

Coverings of torus knots in $S^2 \times S^1$ and universals

Let $t_{\alpha,\beta}\subset S^2\times S^1$ be an ordinary fiber of a Seifert fibering of $S^2\times S^1$ with two exceptional fibers …

Alternating Montesinos knots and Conjecture $\mathbb{Z}$

Conjecture $\mathbb{Z}$ is a knot theoretical equivalent form of the Kervaire Conjecture. We say that a knot have property $\mathbb{Z}$ …

On pretzel knots and Conjecture $\mathbb{Z}$

Conjecture Z is a knot theoretical equivalent form of the Kervaire conjecture. We show that Conjecture Z is true for all the pretzel …

Contact