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to Dvoretsky and Erdős [14] and stable Lévy processes with no postive jumps conditioned to stay
positive due to Bertoin [1].

Key words: Self-similar Markov process, self-similar additive processes, future infimum process,
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1 Introduction.

A real Markov process X = (Xt, t ≥ 0) with càdlàg paths is a self-similar process if for
every k > 0 and every initial state x ≥ 0 it satisfies the scaling property, i.e., for some
α > 0

the law of (kXk−αt, t ≥ 0) under Px is Pkx,

where Px denotes the law of the process X starting from x ≥ 0.
In this article, we focus on positive self-similar Markov processes and we will refer to
them as PSSMP. We use the notation X(x) or (X,Px) for the PSSMP starting from
x ≥ 0. These processes are to be found in many areas of probability theory. To give
just a few examples, let us mention: the continuous-state branching process which is
associated to a self-similar Lévy tree (see for instance Duquesne and Le Gall [13]) and
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whose genealogy may be described by the beta-coalescent (see Birkner et al. [8]), the
size of a tagged individual in the self-similar branching Markov chain (see Krell [19]),
the so-called tagged fragment of a self-similar fragmentation (see Bertoin [6]), ... These
processes also appear as the limit of local structure of random quadrangulations (see
Krikun [20]).

Self-similar processes were the object of a systematic study first done by Lam-
perti [21]. In later work, Lamperti [22] studied the Markovian case in detail. The main
result in [22] proves that any PSSMP starting from a strictly positive state is a time-
change of the exponential of a Lévy process. More precisely, let X(x) be a self-similar
Markov process started from x > 0 that fulfills the scaling property for some α > 0,
then

X
(x)
t = x exp

{
ξτ(tx−α)

}
, 0 ≤ t ≤ xαI(ξ), (1.1)

where

τt = inf
{
s ≥ 0 : Is(ξ) > t

}
, Is(ξ) =

∫ s

0

exp
{
αξu
}
du, I(ξ) = lim

t→+∞
It(ξ),

and ξ is a real Lévy process possibly killed at an independent exponential time. This
famous path construction of PSSMP is well-known as the Lamperti representation.
Several authors have studied the problem of the existence of an entrance law at 0 for
(X,Px), see for instance Bertoin and Caballero [3], Bertoin and Yor [4], and Caballero
and Chaumont [9]. Bertoin and Caballero [3] studied for the first time this problem
for the increasing case. Later Bertoin and Yor [4] generalized the results obtained in
[3]. They also gave sufficient conditions for the weak convergence of Px to hold when
x tends to 0, in the sense of finite dimensional distributions. The entrance law was
also computed in the mentioned works. Recently, Caballero and Chaumont [9] gave
necessary and sufficient conditions for the weak convergence of X(x) on the Skorokhod’s
space. In [9], the authors also gave a path construction of this weak limit, that we will
denote by X(0) or (X,P0).

The aim of this work is to describe the upper envelope at 0 and at +∞ for a large
class of PSSMP such that lim supt→∞X

(x)
t = ∞ almost surely, through integral tests

and laws of the iterated logarithm. We will give special attention to the case when the
process has no positive jumps since we may obtain general integral tests and compare
the rate of growth of X(x) with that of its future infimum process and the PSSMP X(x)

reflected at its future infimum.
Several partial results on the upper envelope of X(0) have already been established
before, the most important of which is due to Dvoretsky and Erdős [14] who studied
the case of Bessel processes. More precisely, we have the well known Kolmogorov-
Dvoretsky-Erdös integral test, see for instance Itô and McKean [17].

Theorem 1 (Kolmogorov-Dvoretsky-Erdős) Let h be a nondecreasing, positive
and unbounded function as t goes to +∞, and X(0) be a Bessel process of dimension
δ > 2 starting from 0. Then its upper envelope at 0 is as follows,

P
(
X

(0)
t >

√
th(t), i.o., as t→ 0

)
= 0 or 1,
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according as,

∫
0

hδ(t) exp{−h2(t)/2}t−1dt is finite or infinite.

Thanks to the time inversion property of Bessel processes, we also have the above
integral test for large times. The integral test for transient Bessel processes will be
improved in Section 4 (Theorems 2 and 3).
Recall that the future infimum of a PSSMP starting at x ≥ 0 is defined by

J (x)
s = inf

t≥s
X

(x)
t .

Khoshnevisan et al. [18] studied the asymptotic behaviour of the future imfimum of
transient Bessel processes. In that paper, the authors obtained the following law of
the iterated logarithm (LIL for short) for J (0) and for the Bessel process reflected at
its future infimum, X(0) − J (0):

lim sup
t→+∞

J
(0)
t√

2t log | log t|
= 1 and lim sup

t→+∞

X
(0)
t − J

(0)
t√

2t log | log t|
= 1 a.s. (1.2)

In Section 6, we extend these results and we also study the small time behaviour.
If X(0) is a stable Lévy process with no positive jumps conditioned to stay positive and
with index 1 < α ≤ 2, we have the following LIL due to Bertoin [1],

lim sup
t→0

X
(0)
t

t1/α
(
log | log t|

)1−1/α
= c(α) almost surely, (1.3)

where c(α) is a positive constant. Recently in [23], the author studied the asymptotic
behaviour of the upper envelope of the future infimum of PSMMP under general hy-
photesis. In particular, when X(0) is the aforementioned class of conditioned stable
processes, we have

lim sup
t→0

J
(0)
t

t1/α
(
log | log t|

)1−1/α
= c(α), a. s. (1.4)

We remark that the above LIL is also satisfied for large times and any starting point.
In Section 6, we will see that under the assumption that P(J

(0)
1 > t) is log-regular, i.e.

− log P
(
J

(0)
1 > t

)
∼ λtβL(t) as t→ +∞,

where λ, β > 0 and L is a function which varies slowly at +∞, the upper envelope
of X(x) will be described by an explicit LIL which agrees with the LIL describing the
upper envelope of its future infimum. The asymptotic results presented in Section 6
are consequences of general integral tests which are stated in Sections 3 and 4.
The rest of this paper is organized as follows. Section 2 is devoted to some preliminaries
of Lévy processes and PSSMP. In Section 3, we study the asymptotic properties of the
first passage time of X(0). In Section 4, we give the general integral tests for the upper
envelope of X(x), x ≥ 0. Sections 5 and 6 are devoted to applications of the results of
Sections 3 and 4. Finally in Section 7, we will give some examples.
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2 Preliminaries.

2.1 Weak convergence and entrance law of PSSMP.

Let D denote the Skorokhod’s space of càdlàg paths. We consider a probability measure
in D denoted by P under which ξ will always be a real Lévy process such that ξ0 = 0.
Let Π be the Lévy measure of ξ, that is the measure satisfying∫

(−∞,∞)

(1 ∧ x2)Π(dx) <∞,

and such that the characteristic exponent Ψ, defined by E(eiuξ1) = e−Ψ(u), u ∈ IR, is
given, for some b ≥ 0 and a ∈ IR, by

Ψ(u) = iau+
1

2
b2u2 +

∫
(−∞,∞)

(
1− eiux + iux1I{|x|≤1}

)
Π(dx), u ∈ IR.

Define for x ≥ 0,

Π
+
(x) = Π

(
(x,∞)

)
, Π

−
(x) = Π

(
(−∞,−x)

)
, M(x) =

∫ x

0

dy

∫ ∞

y

Π
−
(z)dz,

and

J =

∫
[1,∞)

xΠ
+
(x)

1 +M(x)
dx.

Let us denote by Px the law, under P, of the PSSMPX(x) starting from x > 0 associated
to the Lévy process ξ via the Lamperti representation. Then according to Caballero
and Chaumont [9], necessary and sufficient conditions for the weak convergence of X(x)

in the Skorokhod’s space are

(H) ξ is not arithmetic and

{
either 0 < E(ξ1) ≤ E(|ξ1|) <∞,

or E(|ξ1|) <∞,E(ξ1) = 0 and J <∞,

and

E
(

log+

∫ T1

0

exp
{
αξs
}
ds

)
<∞, (2.5)

where Tx is the first passage time above x ≥ 0, i.e. Tx = inf{t ≥ 0 : ξt ≥ x}.
The weak limit found in [9], denoted by X(0) or (X,P0), is a PSSMP starting from 0
which fulfills the Feller property on [0,∞) and with the same transition probabilities as
X(x), x > 0. In the sequel, we suppose that the Lévy processes considered here satisfy
conditions (H) and (2.5). We will distinguish the case 0 < E(ξ1) ≤ E(|ξ1|) < ∞ by
saying that m := E(ξ1) > 0. Note that if m > 0, we have that E(T1) < ∞ and hence
condition (2.5) is satisfied. Another example when (2.5) is satisfied is when ξ has no
positive jumps (see Section 2 in [9]).
Now, we introduce the so-called first and last passage times of X(0) by

Sy = inf
{
t ≥ 0 : X

(0)
t ≥ y

}
and Uy = sup

{
t ≥ 0 : X

(0)
t ≤ y

}
,
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for y > 0. Note that when the process X(0) drifts to +∞ (i.e. m > 0), the last passage
time Ux is finite a.s. for x ≥ 0. Moreover, if the process X(0) satisfies the scaling
property with some index α > 0, then we deduce that the first passage time process
S = (Sx, x ≥ 0) and the last passage time process U = (Ux, x ≥ 0) are increasing self-
similar processes with scaling index α−1. From the path properties of X(0) we easily
see that both processes start from 0 and go to +∞ as x increases.

With no loss of generality, we will suppose that α = 1. Indeed, we see from the
scaling property that if X(x), x ≥ 0, is a PSSMP with index α > 0, then

(
X(x)

)α
is a

PSSMP with index equal to 1. Therefore, the integral tests and LIL established in the
sequel can easily be interpreted for any α > 0.

2.2 PSSMP with no positive jumps and some path transfor-
mations.

Here, we suppose that ξ has no positive jumps. It is known that under this assumption,
the process ξ has finite exponential moments of arbitrary positive order (see [2] for
background). In particular, we have that E

(
exp{uξt}

)
= exp{tψ(u)}, for u ≥ 0 where

ψ(u) = −Ψ(−iu). Note that if m > 0, then for all x ≥ 0, Sx and Ux are finite and

X
(0)
Sx

= X
(0)
Ux

= x, almost surely.
From the Caballero-Chaumont construction and the path decomposition in Corollary
1 in [11], we deduce that the first and last passage time processes are increasing self-
similar processes with independent increments. We also remark that when m = 0, the
process S is still an increasing self-similar process with independent increments.
We are interested in describing the law of the process (X

(0)

(Sx−t)− , 0 ≤ t ≤ Sx) and in
obtaining the law of the first passage time in terms of the underlying Lévy process. To
this end we briefly recall the definition of the Lévy process conditioned to stay positive,
denoted by ξ↑, and refer to [10] for a complete account on this subject. The process ξ↑

is an h-process of ξ killed when it first exists (0,∞), i.e. at time R = inf{t : ξt ≤ 0}.
The law of this strong Markov process ξ↑ is defined by its semi-group:

P(ξ↑t+s ∈ dy |ξ↑s = x) =
h(y)

h(x)
P(ξt + x ∈ dy , t < R) , s, t ≥ 0, x, y > 0

and its entrance law:

P(ξ↑t ∈ dx) = h(x)N̂(ξt ∈ dx, t < ζ) ,

where N̂ is the excursion measure of the reflected process ξ− I = (ξt− infs≤t ξs, t ≥ 0),
ζ is the lifetime of the generic excursion and h is the positive harmonic function (for ξ
killed at time R) defined by:

h(x) = E
(∫ ∞

0

1I{It≥−x} dLt

)
, x ≥ 0 ,

where It = infs≤t ξs and L is the local time of the reflected process ξ − I.
Note that ξ↑ has no positive jumps and that almost surely

lim
t↓0

ξ↑t = 0, lim
t↑+∞

ξ↑t = +∞, and ξ↑t > 0 for all t > 0.
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The following time reversal property of ξ↑ is an important tool for our next result. Its
proof can be found in Theorem VII.18 in Bertoin [2].

Lemma 1 The law of (x − ξt, 0 ≤ t ≤ Tx) is the same as that of the time-reversed
process (ξ↑

(γ↑(x)−t)−, 0 ≤ t ≤ γ↑(x)), where γ↑(x) = sup{t ≥ 0, ξ↑t ≤ x}. Moreover, for

every x > 0, the process
(
ξ↑t , 0 ≤ t ≤ γ↑(x)

)
is independent of

(
ξ↑
γ↑(x)+t

− x, t ≥ 0
)
, and

the latter has the same law as that of the process ξ↑.

For every y > 0 let us define

X̃
(y)
t = y exp

{
− ξ↑

τ↑(t/y)

}
t ≥ 0,

where

τ ↑t = inf
{
s ≥ 0 : Is

(
− ξ↑

)
> t
}
, and Is

(
− ξ↑

)
=

∫ s

0

exp
{
− ξ↑u

}
du.

We denote by P̃y, the law of X̃(y). Since ξ↑ drifts towards +∞, we deduce that X̃(y),

reaches 0 at an almost surely finite random time, denoted by ρ̃y = inf{t ≥ 0, X̃
(y)
t = 0}.

Proposition 1 Suppose m ≥ 0. The law of the process time-reversed at its first
passage time above x,

(
X

(0)
(Sx−t)−, 0 ≤ t ≤ Sx

)
is the same as that of the process

(X̃
(x)
t , 0 ≤ t ≤ ρ̃x).

Proof: Let us take any decreasing sequence (xn) of positive real numbers which

converges to 0 and such that x1 = x. By Lemma 1, we can split (X̃
(x)
t , 0 ≤ t ≤ ρ̃x) into

the sequence(
x1 exp

{
− ξ↑

τ↑(t/x1)

}
, x1Iγ(n)

(
− ξ↑

)
≤ t ≤ x1Iγ(n+1)

(
− ξ↑

))
, n ≥ 1,

where γ(n) = sup{t ≥ 0 : ξ↑t ≤ log(xn/x1)}.
To complete the proof, it is enough to show that, for each n ≥ 1(
X

(0)
(Sxn−t)−, 0 ≤ t ≤ S(n)

)
(d)
=
(
x1 exp

{
−ξ↑

τ↑(t/x1)

}
, x1Iγ(n)

(
−ξ↑

)
≤ t ≤ x1Iγ(n+1)

(
−ξ↑

))
where S(n) = Sxn − Sxn+1 .
Fix n ≥ 1. From Theorem 1 in [9], we know that the left-hand side of the above
identity has the same law as(

xn+1 exp
{
ξ

(n+1)

τ (n+1)
(

I
T (n+1)

(
ξ(n+1)

)
−t/xn+1

)}, 0 ≤ t ≤ xn+1IT (n+1)

(
ξ(n+1)

))
, (2.6)

where T (n+1) = inf{t ≥ 0 : ξ(n+1) ≥ log(xn/xn+1)}. On the other hand by Lemma 1,
we know that (−ξ↑t , 0 ≤ t ≤ γ(n)) is independent of ξ↑(n) = (log(x/xn)− ξ↑

γ(n)+t
, t ≥ 0)

and that the latter has the same law as −ξ↑. Since

τ ↑
(
Iγ(n)

(
− ξ↑

)
+ t/x

)
= γ(n) + inf

{
s ≥ 0 :

∫ s

0

exp
{
− ξ

↑(n)
u

}
du ≥ t/xn

}
,
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it is clear that the right-hand side of the above identity the same law as(
xn exp

{
− ξ↑

τ↑(t/xn)

}
, 0 ≤ t ≤ xnIγ↑(log(xn/xn+1))

(
− ξ↑

))
. (2.7)

Therefore, it is enough to show that (2.6) and (2.7) have the same distribution.

Now, let us define the exponential functional of
(
ξ

(n+1)

(T (n+1)−t)−
, 0 ≤ t ≤ T (n+1)

)
as follows,

B(n+1)
s =

∫ s

0

exp
{
ξ

(n+1)

T (n+1)−u

}
du for s ∈ [0, T (n+1)],

and set H(t) = inf
{
0 ≤ s ≤ T (n+1), B

(n+1)
s > t

}
, the right continuous inverse of the

exponential functional B(n+1).
By a change of variable, it is clear that B

(n+1)
s = IT (n+1)

(
ξ(n+1)

)
− IT (n+1)−s

(
ξ(n+1)

)
. If

we set t = xn+1B
(n+1)
s , then s = H(t/xn+1) and hence

τ (n+1)
(
IT (n+1)

(
ξ(n+1)

)
− t/xn+1

)
= τ (n+1)

(
IT (n+1)−s

(
ξ(n+1)

))
= T (n+1) −H(t/xn+1).

Therefore, we can rewrite (2.6) as(
xn+1 exp

{
ξ

(n+1)

T (n+1)−H(t/xn+1)

}
, 0 ≤ t ≤ xn+1B

(n+1)

T (n+1)

)
. (2.8)

Applying Lemma 1, we get that (2.8) has the same law as that of the process defined
in (2.7).

An important consequence of this Proposition is the following time-reversed identity.
For any y < x, (

X
(0)
(Sx−t)−, Sy ≤ t ≤ Sx

)
(d)
=
(
X̃

(x)
t , 0 ≤ t ≤ Ũy

)
, (2.9)

where Ũy = sup
{
t ≥ 0, X̃

(x)
t ≤ y

}
.

Recall that a random variable X is self-decomposable if for every constant 0 < c < 1
there exists a variable Yc which is independent of X and such that Yc + cX has the
same law as X.

Corollary 1 Let m ≥ 0. For every x > 0, Sx has the same law as x

∫ ∞

0

exp{−ξ↑u}du.
Moreover, S1 is self-decomposable.

Proof: Let I(−ξ↑) :=

∫ ∞

0

exp{−ξ↑u}du. From Proposition 1, we see that Sx and

ρ̃x have the same law. By the Lamperti representation of X̃(x), we deduce that ρ̃x =
xI
(
− ξ↑

)
and then the identity in law follows.

Now, let 0 < c < 1. Since ξ↑ does not have positive jumps, it is clear that

I
(
− ξ↑

)
=

∫ γ↑(log(1/c))

0

exp{−ξ↑u}du+ c

∫ +∞

0

exp
{
− ξ↑

γ↑(log(1/c))+u
− log c

}
du.

Hence, the self-decomposability follows from Lemma 1.
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3 The lower envelope of the first passage time.

In this section, we are interested in describing the lower envelope at 0 and at +∞ of
the first passage time of X(0) with the help of integral tests. We first deal with the case
when X(0) has no positive jumps since we may obtain explicit integral tests in terms of
the tail probability of I(−ξ↑) and also we may consider the case when X(0) oscillates
(i.e. that m = 0).

3.1 The case with no positive jumps.

Let us define F ↑(t)
(def)
= P

(
I(−ξ↑) < t

)
and denote by H−1

0 , the totality of positive
increasing functions h(x) on (0,∞) that satisfy

i) h(0) = 0 and

ii) there exists β ∈ (0, 1) such that sup
t<β

h(t)/t <∞.

The lower envelope at 0 of the first passage process S is given as follows.

Proposition 2 Let m ≥ 0 and h ∈ H−1
0 .

i) If

∫
0+

F ↑ (h(x)/x)x−1dx <∞, then for all ε > 0

P
(
Sx < (1− ε)h(x), i.o., as x→ 0

)
= 0.

ii) If

∫
0+

F ↑ (h(x)/x)x−1dx = ∞, then for all ε > 0

P
(
Sx < (1 + ε)h(x), i.o., as x→ 0

)
= 1.

The above result is a consequence of Lemma 3.1 of Watanabe [25], Corollary 1 and
the fact that S is an increasing self-similar process with independent increments. It is
important to note that Proposition 2 may be proved using similar arguments to those
of Theorems 3 in [23]. In this respects, it is enough to exchange I(ξ̂) by I(−ξ↑) and
note that Γ = 1.
The integral test for large times is very similar. In this case, we need to define H−1

∞ ,
the totality of positive increasing functions h(t) on (0,∞) that satisfy

i) limt→∞ h(t) = +∞ and

ii) there exists β ∈ (1,+∞) such that sup
t>β

h(t)

t
<∞,

and replace

∫
0+

F ↑ (h(x)/x)x−1dx by

∫ ∞
F ↑ (h(x)/x)x−1dx.
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3.2 The general case.

Let us define
G(t)

(def)
= P

(
S1 < t

)
and F (t)

(def)
= P

(
I(ξ̂) < t

)
.

The lower envelope at 0 of the first passage process S is given as follows.

Proposition 3 Let m > 0 and h ∈ H−1
0 .

i) If

∫
0+

G (h(x)/x)x−1dx <∞, then for all ε > 0

P
(
Sx < (1− ε)h(x), i.o., as x→ 0

)
= 0.

ii) If

∫
0+

F (h(x)/x)x−1dx = ∞, then for all ε > 0

P
(
Sx < (1 + ε)h(x), i.o., as x→ 0

)
= 1.

Proof: We first prove part (i). Let (xn) be a decreasing sequence of positive numbers
which converges to 0 and let us define the events An = {Sxn+1 < h(xn)}.
Now, we choose xn = rn, for r < 1. From the first Borel Cantelli’s Lemma, if∑

n P(An) <∞, it follows
Srn+1 ≥ h

(
rn
)

P-a.s.,

for all sufficiently large n. Since the function h and the process S are increasing, we
have

Sx ≥ h(x) for rn+1 ≤ x ≤ rn.

On the other hand, from the scaling property, we get that∑
n

P
(
Srn < h

(
rn+1

))
≤
∫ ∞

1

P
(
rtS1 < h

(
rt
))

dt

= − 1

log r

∫ r

0

G

(
h(x)

x

)
dx

x
.

From our hypothesis, this last integral is finite. Then from the above discussion, there
exist x0 such that for every x ≥ x0

Sx ≥ r2h(x), for all r < 1.

Clearly, this implies that

P0

(
Sx < r2h(x), i.o., as x→ 0

)
= 0,

which proves part (i).
Part (ii) follows from part (ii) of Theorem 3 in [23].
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As in the case with no positive jumps, there is an integral test for large times which
holds for h ∈ H−1

∞ .
Note now that the integral tests of Proposition 3 no longer depends on F ↑ as in the

case with no positive jumps and that we are assuming that m > 0. We also remark
that F (t) ≤ G(t), for t ≥ 0, but for our purpose Proposition 3 will be very useful for
our applications (see Sections 5 and 6 below).

4 The upper envelope of PSSMP.

Here, we are interested in describing the upper envelope at 0 and at +∞ of PSSMP
through integral tests. For the same reasons as those mentioned in the preceding
section, we will first study the case with no positive jumps.

4.1 The case with no positive jumps.

The following theorem shows in particular that the upper envelope at 0 of X(0) only
depends on the tail behaviour of the law of I(−ξ↑) and on the additional hypothesis

E
(

log+ I
(
− ξ↑

)−1
)
<∞. (4.10)

Let us recall that F ↑(t) = P(I(−ξ↑) < t), and denote by H0 the totality of positive
increasing functions h(t) on (0,∞) that satisfy

i) h(0) = 0 and

ii) there exists β ∈ (0, 1) such that sup
t<β

t

h(t)
<∞.

Theorem 2 Let m ≥ 0 and h ∈ H0.

i) If

∫
0+

F ↑ (t/h(t)) t−1dt <∞, then for all ε > 0

P0

(
Xt > (1 + ε)h(t), i.o., as t→ 0

)
= 0.

ii) Assume that (4.10) is satisfied. If

∫
0+

F ↑ (t/h(t)) t−1dt = ∞, then for all ε > 0

P0

(
Xt > (1− ε)h(t), i.o., as t→ 0

)
= 1.

Proof: Let (xn) be a decreasing sequence which converges to 0. We define the events

An =
{
There exists t ∈ [Sxn+1 , Sxn ] such that X

(0)
t > h(t)

}
. From the fact that Sxn

tends to 0, a.s. when n goes to +∞, we see{
X

(0)
t > h(t), i.o., as t→ 0

}
= lim sup

n→+∞
An.

10



Since h is an increasing function the following inclusions hold{
xn > h

(
Sxn

)}
⊂ An ⊂

{
xn > h

(
Sxn+1

)}
. (4.11)

Now, we prove part (i). We choose xn = rn, for r < 1 and hr(t) = r−2h(t). Since h is
increasing, we deduce that∑

n

P
(
rn > hr

(
Srn+1

))
≤
∫ +∞

1

P
(
rt > h

(
Str
))

dt ≤ − 1

log r

∫ r

0

P
(
t > h

(
St

))dt

t
.

Replacing h by hr in (4.11), we see that we can obtain our result if∫ r

0

P
(
t > h

(
St

))dt

t
<∞.

From elementary calculations and Corollary 1, we deduce that∫ r

0

P
(
t > h

(
St

))dt

t
= E

(∫ h−1(r)

0

1I{
t/r<I(−ξ↑)<t/h(t)

}dt

t

)
,

where h−1(s) = inf{t > 0, h(t) > s}, the right inverse function of h. Then, this integral

converges if

∫ h−1(r)

0

P
(
I(−ξ↑) < t/h(t)

)
t−1dt <∞. This proves part (i).

Next, we prove the divergent case. We suppose that h satisfies

∫
0+

F ↑ (t/h(t)) t−1dt

diverges. Take, again, xn = rn, for r < 1 and define

Bn
(def)
=

∞⋃
m=n

Am =
{

There exists t ∈ (0, Srn ] such that X
(0)
t > hr(t)

}
.

Note that the family (Bn) is decreasing and

B
(def)
=
⋂
n≥1

Bn =
{
X

(0)
t > hr(t), i.o., as t→ 0

}
.

Hence it is enough to prove that lim P(Bn) = 1 to obtain our result.
Again replacing h by hr in inclusion (4.11), we see

P(Bn) ≥ 1− P
(
rj ≤ hr

(
Srj)

)
, for all n ≤ j ≤ m− 1

)
, (4.12)

where m is chosen arbitrarily m ≥ n+ 1.

Now, we define the events Cn
(def)
=

{
rn > rh

(
Srn)

)}
. We will prove that

∑
P(Cn)

diverges. Since the function h is increasing, from the identity in law of Corollary 1 it
is straightforward to show that∑

n≥1

P(Cn) ≥
∫ +∞

0

P
(
rt > h

(
Srt

)))
dt = − 1

log r

∫ 1

0

P
(
t > h

(
tI
(
− ξ↑

)))dt

t
.

11



Hence, if this last integral is infinite, we get that
∑

P(Cn) = ∞. In this direction, we
have ∫ r

0

P
(
t > h

(
tI
(
− ξ↑

)))dt

t
= E

(∫ h−1(r)

0

1I{
t/r<I(−ξ↑)<t/h(t)

}dt

t

)
.

On the other hand, we see that∫ h−1(r)

0

P
(
I
(
− ξ↑

)
<

t

h(t)

)
dt

t
=

∫ h−1(r)

0

P
(
t

r
< I
(
− ξ↑

)
<

t

h(t)

)
dt

t

+

∫ h−1(r)

0

P
(
I
(
− ξ↑

)
<
t

r

)
dt

t
,

and ∫ h−1(r)

0

P
(
I
(
− ξ↑

)
<
t

r

)
dt

t
≤ E

(
log+ h−1(r)

r
I
(
− ξ↑

)−1
)

which is clearly finite from our assumptions. We thus deduce that

E

(∫ h−1(r)

0

1I{
t/r<I(−ξ↑)<t/h(t)

}dt

t

)
= ∞,

and hence
∑

P(Cn) = ∞.
Next, for n ≤ m− 1, we define

H(n,m)
(def)
= P

(
rj ≤ rh

(
Srj − Srm

)
, for all n ≤ j ≤ m− 1

)
.

We will prove that there exist two increasing sequences to ∞, (nl) and (ml), such that
0 ≤ nl ≤ ml − 1 and H(nl,ml) tends to 0 as l goes to infinity.
Suppose the contrary, i.e., there exist δ > 0 such that H(n,m) ≥ δ for all sufficiently
large integers m and n. From the independence of the increments of S,

1 ≥ P

(
∞⋃

m=n+1

Cm

)
≥

∞∑
m=n+1

P

(
Cm

⋂(
m−1⋂
j=n

Cc
j

))

≥
∞∑

m=n+1

P
(
rm > rh

(
Srm

))
H(n,m) ≥ δ

∞∑
m=n+1

P
(
Cm

)
.

Since
∑

P(Cn) diverges there is a contradiction and we see that our assertion is true.
Now, we define

ρnl,ml
(x)

(def)
= P

(
rj ≤ rh

(
Srj − Srml−1 + x

)
for, nl ≤ j ≤ ml − 2

)
, x ≥ 0,

and
G(nl,ml)

(def)
= P

(
rj ≤ rh

(
Srj

)
for, nl ≤ j ≤ ml − 1

)
.

12



Since h is increasing, we see that ρnl,ml
(x) is increasing in x.

If we denote by µ and µ̄ the laws of S1 and S1−Sr respectively, by the scaling property
we may express H(nl,ml) and G(nl,ml) as follows

H(nl,ml) =

∫ +∞

0

µ̄(dx)1I{
h(rml−1x)≥rml

}ρnl,ml
(rml−1x) and,

G(nl,ml) =

∫ +∞

0

µ(dx)1I{
h(rml−1x)≥rml

}ρnl,ml
(rml−1x).

In particular, we get that for l sufficiently large

H(nl,ml) ≥ ρnl,ml
(N)

∫ +∞

N

µ̄(dx) for N ≥ rC,

where C = supx≤β x/h(x).
Since H(nl,ml) converges to 0, as l goes to +∞ and µ̄ does not depend on l, then
ρnl,ml

(N) also converges to 0 when l goes to +∞, for every N ≥ rC.
On the other hand, we have

G(nl,ml) ≤ ρnl,ml
(N)

∫ N

0

µ(dx) +

∫ ∞

N

µ(dx).

Letting l and N go to infinity, we get that G(nl,ml) tends to 0. Then, by (4.12) we
get that lim P(Bn) = 1 and with this we finish the proof.

For the integral tests at +∞, we define H∞, the totality of positive increasing functions
h(t) on (0,∞) that satisfy

i) limt→∞ h(t) = ∞ and

ii) there exists β > 1 such that sup
t>β

t

h(t)
<∞.

The upper envelope of X(x) at +∞ is given by the following result.

Theorem 3 Let m ≥ 0 and h ∈ H∞.

i) If

∫ +∞
F ↑ (t/h(t)) t−1dt <∞, then for all ε > 0 and for all x ≥ 0,

Px

(
Xt > (1 + ε)h(t), i.o., as t→ +∞

)
= 0.

ii) Assume that (4.10) is satisfied. If

∫ +∞
F ↑ (t/h(t)) t−1dt = ∞, then for all ε > 0

and for all x ≥ 0

Px

(
Xt > (1− ε)h(t), i.o., as t→ +∞

)
= 1.

13



Proof: We first consider the case where x = 0. In this case the proof of the tests at +∞
is almost the same as that of the tests at 0. It is enough to apply the same arguments
to the sequence xn = rn, for r > 1.

Now, we prove (i) for any x > 0. Let h ∈ H∞ such that

∫ +∞
F ↑ (t/h(t)) t−1dt is finite.

Let x > 0 and Sx = inf{t ≥ 0 : X
(0)
t ≥ x}. Since clearly

∫ +∞
F ↑ (t/h(t− Sx)) t

−1dt is

also finite, from the Markov property at time Sx, we have for all ε > 0

P0

(
Xt > (1+ε)h(t−Sx), i. o., as t→∞

)
= Px

(
Xt > (1+ε)h(t), i. o., as t→∞

)
= 0,

which proves part (i). Part (ii) can be proved in the same way.

4.2 The general case.

Proposition 4 Let m > 0 and h ∈ H0.

i) If

∫
0+

G (t/h(t)) t−1dt <∞, then for all ε > 0

P
(
X

(0)
t > (1 + ε)h(t), i.o., as t→ 0

)
= 0.

ii) If

∫
0+

F (t/h(t)) t−1dt = ∞, then for all ε > 0

P
(
X

(0)
t < (1− ε)h(t), i.o., as t→ 0

)
= 1.

Proof: Let (xn) be a decreasing sequence which converges to 0. We define the events

An =
{
There exists t ∈ [Sxn+1 , Sxn) such that X

(0)
t > h(t)

}
. From the fact that Sxn

tends to 0, a.s. when n goes to +∞, we see{
X

(0)
t > h(t), i.o., as t→ 0

}
= lim sup

n→+∞
An.

Since h is an increasing function the following inclusion holds

An ⊂
{
xn > h

(
Sxn+1

)}
. (4.13)

Next, we prove the convergent part. We choose xn = rn, for r < 1 and hr(t) = r−2h(t).
Since h is increasing, we deduce∑

n

P
(
rn > hr

(
Srn+1

))
≤ − 1

log r

∫ r

0

P
(
t > h

(
St

))dt

t
.

Replacing h by hr in (4.13), we see that we can obtain our result if

∫ r

0

P
(
t > h

(
St

))
t−1dt

is finite. From elementary calculations, we get∫ r

0

P
(
t > h

(
St

))dt

t
= E

(∫ h−1(r)

0

1I{
t/r<S1<t/h(t)

}dt

t

)
,
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where h−1(s) = inf{t > 0, h(t) > s}, the right inverse function of h. Then, this integral

converges if

∫ h−1(r)

0

P (S1 < t/h(t)) t−1dt is finite. This proves part (i).

The divergent part follows from part (ii) of Theorem 1 in [23].

Proposition 5 Let m > 0 and h ∈ H∞.

i) If

∫ +∞
G (t/h(t)) t−1dt <∞, then for all ε > 0 and for all x ≥ 0

P
(
X

(x)
t > (1 + ε)h(t), i.o., as t→ +∞

)
= 0.

ii) If

∫ +∞
F (t/h(t)) t−1dt = ∞, then for all ε > 0 and for all x ≥ 0

P
(
X

(x)
t < (1− ε)h(t), i.o., as t→ +∞

)
= 1.

Proof: We first consider the case where x = 0. In this case the proof of the tests at +∞
is almost the same as that of the tests at 0. It is enough to apply the same arguments
to the sequence xn = rn, for r > 1.

Now, we prove (i) for any x > 0. Let h ∈ H∞ such that

∫ +∞
G (t/h(t)) t−1dt is finite.

Let x > 0 and Sx and note by µx the law ofX
(0)
Sx

. Since clearly

∫ +∞
G (t/h(t− Sx)) t

−1dt

is also finite, from the Markov property at time Sx, we have for all ε > 0

P0

(
Xt > (1 + ε)h(t− Sx), i. o., as t→∞

)
=

∫
[x,+∞)

Py

(
Xt > (1 + ε)h(t), i. o., as t→∞

)
µx(dy) = 0.

(4.14)

If x is an atom of µx, then equality (4.14) shows that

P
(
X

(x)
t > (1 + ε)h(t), i. o., as t→∞

)
= 0

and the result is proved. Suppose that x is not an atom of µx. From Theorem 1 in [9],

we know that X
(0)
Sx

(d)
= xeθ, where θ is a positive r.v. such that

ξTz − z
(w)−−−−→

z→+∞
θ.

Then from Section 2 in [9], the law of θ is given by

P(θ > t) = E(σ1)

∫
(t,∞)

sν(ds), t ≥ 0,

15



where σ is the upward ladder height process associated with ξ and ν its Lévy measure.
Hence, P(eθ > z) > 0 for z > 1, and for any α > 0, µx(x, x+α) > 0. Now (4.14) shows
that there exists y > x such that

P
(
X

(y)
t > (1 + ε)h(t), i. o., as t→∞

)
= 0,

for all ε > 0. The previous arguments allow us to conclude part (i). Part (ii) can be
proved in the same way.

5 The regular case.

In this section, we will assume that m > 0. According to Chaumont and Pardo [11] the
law of U1, the last passage time below level 1, is the same as νI(ξ̂) where ν is a positive
random variable bounded above by 1 and independent of the exponential functional
I(ξ̂). Hence, we have the following inequality νI(ξ̂) ≤ I(ξ̂) a.s.
Now, let us define F ν(t) := P

(
νI(ξ̂) < t

)
, and suppose that

ctβL(t) ≤ F (t) ≤ F ν(t) ≤ CtβL(t) as t→ 0, (5.15)

where β > 0, c and C are two positive constants such that c ≤ C and L is a slowly
varying function at 0. An important example included in this case is when F and F ν

are regularly varying functions at 0.

Proposition 6 Under condition (5.15), we have that

ctβL(t) ≤ G(t) ≤ Cεt
βL(t) as t→ 0,

where Cε is a positive constant bigger than C.

Proof: The lower bound is clear since F (t) ≤ G(t), for all t ≥ 0 and our assumption.

Now, let us define M
(0)
t = sup0≤s≤tX

(0)
s and fix ε > 0. Then, by the Markov property

and the fact that J (x) is an increasing process, we have

P0

(
J1 >

1− ε

t

)
≥ P0

(
J1 >

1− ε

t
,M1 ≥

1

t

)
= E

(
S1/t ≤ 1,P

X
(0)
S1/t

(
J1−S1/t

>
1− ε

t

))
≥ E

(
S1/t ≤ 1,P

X
(0)
S1/t

(
J0 >

1− ε

t

))
.

Since X
(0)
S1/t

≥ 1/t a.s., using the Lamperti representation (1.1), we deduce that

E
(
S1/t ≤ 1,P

X
(0)
S1/t

(
J0 >

1− ε

t

))
≥ P

(
S1/t < 1

)
P
(

inf
s≥0

ξs > log(1− ε)
)
.
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On the other hand, under the assumption that ξ drifts towards +∞, we know from
Section 2 of Chaumont and Doney [10] (see also Proposition VI.17 in [2]) that for all
ε > 0

Kε := P
(

inf
s≥0

ξs > log(1− ε)
)
> 0.

Hence

K−1
ε P0

(
J1 >

1− ε

t

)
≥ P

(
S1 < t

)
which implies that

CK−1
ε

(
t

1− ε

)β

L(t) ≥ K−1
ε P

(
U1 <

t

1− ε

)
≥ P

(
S1 < t

)
, as t→ 0.

The proposition is proved.

Theorem 4 Under condition (5.15), the lower envelope of S at 0 and at +∞ is as
follows.

i) Let h ∈ H−1
0 , such that either limx→0 h(x)/x = 0 or lim infx→0 h(x)/x > 0, then

P
(
Sx < h(x), i.o., as x→ 0

)
= 0 or 1,

accordingly as

∫
0+

F (h(x)/x)x−1dx is finite or infinite.

ii) Let h ∈ H−1
∞ , such that either limx→+∞ h(x)/x = 0 or lim infx→+∞ h(x)/x > 0,

then
P
(
Sx < h(x), i.o., as x→∞

)
= 0 or 1,

accordingly as

∫ +∞
F (h(x)x)x−1dx is finite or infinite.

Proof: First let us check that under condition (5.15) we have∫ λ

0

F

(
h(x)

x

)
dx

x
<∞ if and only if

∫ λ

0

G

(
h(x)

x

)
dx

x
<∞. (5.16)

Since F (t) ≤ G(t) for all t ≥ 0, it is clear that we only need to prove that∫ λ

0

F

(
h(x)

x

)
dx

x
<∞ implies that

∫ λ

0

G

(
h(x)

x

)
dx

x
<∞.

From the hypothesis, either limx→0 h(x)/x = 0 or lim infx→0 h(x)/x > 0. In the first
case, from condition (5.15) there exists λ > 0 such that, for every x < λ

c

(
h(x)

x

)β

L

(
h(x)

x

)
≤ F

(
h(x)

x

)
≤ C

(
h(x)

x

)β

L

(
h(x)

x

)
.
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Since, we suppose that

∫ λ

0

F (h(x)/x)x−1dx is finite, then

∫ λ

0

(
h(x)

x

)β

L

(
h(x)

x

)
dx

x
<∞.

Hence from Proposition 6, we get that

∫ λ

0

G (h(x)/x)x−1dx is also finite. In the second

case, since, for any 0 < δ < ∞ P
(
I < δ

)
> 0, and lim infx→0 h(x)/x > 0, we have for

any y ∈ IR

0 < P
(
I < lim inf

x→0

h(x)

x

)
< P

(
I <

h(y)

y

)
. (5.17)

As, F (t) ≤ G(t) for all t ≥ 0, we deduce that∫ λ

0

F

(
h(x)

x

)
dx

x
=

∫ λ

0

G

(
h(x)

x

)
dx

x
= ∞.

Now, let us check that for any constant β > 0,∫ λ

0

F

(
h(x)

x

)
dx

x
<∞ if and only if

∫ λ

0

F

(
βh(x)

x

)
dx

x
<∞. (5.18)

Again, from the hypothesis, either limx→0 h(x)/x = 0 or lim infx→0 h(x)/x > 0. In the
first case, we deduce (5.18) from (5.15). In the second case, from (5.17) both of the
integrals in (5.18) are infinite.

Next, it follows from Proposition 3 part (i) and (5.16) that if

∫
0+

F (h(x)/x)x−1dx is

finite, then for all ε > 0,

P
(
Sx < (1− ε)h(x), i.o., as x→ 0

)
= 0.

If

∫
0+

F (h(x)/x)x−1dx diverges, then from Proposition 3 part (ii) we have that for all

ε > 0,
P
(
Sx < (1 + ε)h(x), i.o., as x→ 0

)
= 1.

Equation (5.18) allows us to drop ε in these implications.

From the previous Theorem, we deduce that under condition (5.15) the first and the
last passage time processes have the same lower functions ( see Theorem 5 in [23]). In
fact, we may deduce that under the same condition a PSSSMP and its future infimum
have the same upper functions ( see Theorem 6 in [23]). We state the following result
without proof since it follows from the same arguments as those presented for the lower
envelope of the first passage time.

Theorem 5 Under condition (5.15), the upper envelope of the PSSMP at 0 and at
+∞ is as follows:
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i) Let h ∈ H0, such that either limt→0 t/h(t) = 0 or lim inft→0 t/h(t) > 0, then

P
(
X

(0)
t > h(t), i.o., as t→ 0

)
= 0 or 1,

accordingly as

∫
0+

F (t/h(t)) t−1dt is finite or infinite.

ii) Let h ∈ H∞, such that either limt→+∞ t/h(t) = 0 or lim inft→+∞ t/h(t) > 0, then
for all x ≥ 0

P
(
X

(x)
t > h(t), i.o., as t→∞

)
= 0 or 1,

accordingly as

∫ +∞
F (t/h(t)) t−1dt is finite or infinite.

6 The log-regular case.

In this section, we also assume that m > 0 and study two types of behaviour of F and
F ν , which allow us to obtain laws of the iterated logarithm for the upper envelope of
X(0). The first type of behaviour that we will consider is when logF and logF ν are
regularly varying at 0, i.e.

− logF ν(1/t) ∼ − logF (1/t) ∼ λtδL(t), as t→ +∞, (6.19)

where λ > 0, δ > 0 and L is a slowly varying function at +∞.
The second type of behaviour that we will consider is when logF and logF ν satisfy
that

− logF ν(1/t) ∼ − logF (1/t) ∼ K(log t)γ, as t→ +∞, (6.20)

where K and γ are strictly positive constants.

6.1 Laws of the iterated logarithm for PSSMP.

Proposition 7 Under condition (6.19), the tail probability of S1 satisfies

− logG(1/t) ∼ λtδL(t) as t→ +∞. (6.21)

Similarly, under condition (6.20), the tail probability of S1 satisfies

− logG(1/t) ∼ K(log t)γ as t→ +∞. (6.22)

Proof: First, we prove the upper bound of (6.21). With the same notation as in the
proof of Proposition 6, we see

− log P
(
νI(ξ̂) < 1/t

)
= − log P0

(
J1 > t

)
≥ − log P0

(
M1 > t

)
,

which implies

1 ≥ lim sup
t→∞

− log P0

(
M1 > t

)
λtδL(t)

.
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Since P0

(
M1 > t

)
= P

(
S1 < 1/t

)
, we get the upper bound.

Now, fix ε > 0. Again from the proof of Proposition 6, we have

P0

(
J1 > (1− ε)t

)
≥ P

(
St < 1

)
P
(

inf
s≥0

ξs > log(1− ε)
)
.

On the other hand, we know

Kε := P
(

inf
s≥0

ξs > log(1− ε)
)
> 0,

Hence,

− log P0

(
J1 > (1− ε)t

)
≤ − log P

(
S1 < 1/t

)
− logKε,

which implies the following lower bound

(1− ε)δ ≤ lim inf
t→∞

− log P
(
S1 < 1/t

)
λtδL(t)

.

Since ε can be chosen arbitrarily small, (6.21) is proved.
The upper bound of tail behaviour (6.22) is proven in the same way. For the lower
bound, we follow the same arguments as above and we get that

− log P0

(
J1 > (1− ε)t

)
≤ − log P

(
S1 < 1/t

)
− logKε,

which implies that

1 = lim inf
t→∞

(
log(1− ε)t

log t

)γ

≤ lim inf
t→∞

− log P
(
S1 < 1/t

)
K(log t)γ

,

and the proposition is proved.

The following result gives us laws of the iterated logarithm for the first passage time
process when condition (6.19) is satisfied. Define the functions

ϕ(x) :=
x

inf
{
s : 1/F (1/s) > | log x|

} , x > 0, x 6= 1,

and

ϑ(t) :=
t2

ϕ(t)
, t > 0, t 6= 1.

Theorem 6 Under condition (6.19), we have the following law of the iterated loga-
rithm for S.

lim sup
x→0

Sx

ϕ(x)
= 1 and lim sup

x→∞

Sx

ϕ(x)
= 1 almost surely.

The upper envelope of PSSMP, under condition (6.19), are described by the following
law of the iterated logarithm. For all x ≥ 0

lim sup
t→0

X
(0)
t

ϑ(t)
= 1, and lim sup

t→+∞

X
(x)
t

ϑ(t)
= 1, a.s.
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Proof: This Theorem is a consequence of Propositions 3,4, 5, and 7, and it is proven
in the same way as Theorem 4 in [11], we only need to emphasize that we can replace
logG by logF , since they are asymptotically equivalent.

Note that under condition (6.19) a PSSMP and its future infimum satisfy the same
law of the iterated logarithm (see Theorem 8 in [23]) but they do not necessarily have
the same upper functions.
Similarly, under condition (6.20) we may establish laws of the iterated logarithm for
the upper envelope of PSSMP and their future infimum. In this direction, let us define

φ(x) := x exp
{
−
(
K−1 log | log x|

)1/γ
}
, x > 0, x 6= 1,

and

Φ(t) :=
t2

φ(t)
, t > 0, t 6= 1.

We recall that J (x) = (J
(x)
t , t ≥ 0) is the future infimum process of X(x), for x ≥ 0,

where J
(x)
t = infs≥tX

(x).

Theorem 7 Under condition (6.20), we have the following laws of the iterated loga-
rithm.

i) Almost surely, lim sup
x→0

Sx

φ(x)
= 1 and lim sup

x→∞

Sx

φ(x)
= 1.

ii) Almost surely, lim sup
x→0

Ux

φ(x)
= 1 and lim sup

x→+∞

Ux

φ(x)
= 1.

The upper envelope of a PSSMP and its future infimum processes under condition
(6.20) are described by the following laws of the iterated logarithm:

iii) Almost surely, lim sup
t→0

X
(0)
t

Φ(t)
= 1 and lim sup

t→0

J
(0)
t

Φ(t)
= 1.

iv) For all x ≥ 0, almost surely lim sup
t→+∞

X
(x)
t

Φ(t)
= 1 and lim sup

t→0

J
(x)
t

Φ(t)
= 1.

Proof: We first prove part (i) for small times. Note that it is easy to check that both
φ(x) and φ(x)/x are increasing in a neighbourhood of 0, moreover the function φ(x)/x
is bounded by 1, for x ∈ [0, 1).
From condition (6.20) and Proposition 7, we have for all k1 < 1 and k2 > 1 and for all
x sufficiently small,

k1K(log(1/x))γ ≤ − logG(x) ≤ k2K(log(1/x))γ,

so that for φ defined above,

k1 log | log x| ≤ − logG (φ(x)/x) ≤ k2 log | log x|.
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Hence G (φ(x)/x) ≥ (| log x|)−k2 . Since k2 > 1, we obtain the convergence of the

integral

∫
0+

G (φ(x)x)x−1dx. This allows us to deduce with the help of Proposition 3

(i) that for all ε > 0,

P(Sx < (1− ε)φ(x), i.o., as x→ 0) = 0.

The divergent part is proven in the same way using that from Proposition 4 part (ii),
one has for all ε > 0,

P(Sx < (1 + ε)φ(x), i.o., as x→ 0) = 1.

Condition (6.20) implies that φ(x) is increasing in a neighbourhood of +∞ whereas
φ(x)/x is decreasing in a neighbourhood of +∞. Hence, the proof of the result at +∞
is done in the same way as at 0.
The parts (ii), (iii) and (iv) can be proved following the same arguments. It is enough
to note that the LIL of the last passage process and the future infimum process will
use the integral tests in [23], (see Theorems 1,2,3 and 4 in [23])

6.2 The case with no positive jumps.

Here, we suppose that the PSSMP X(x) has no positive jumps. Our next result means
in particular that if there exists a positive function that describes the upper envelope
of X(x) by a LIL then the same function describes the upper envelope of the future
infimum of X(x) and the PSSMP X(x) reflected at its future infimum.

Theorem 8 Let us suppose that lim sup
t→0

X
(0)
t

Λ(t)
= 1 a.s., where Λ is a positive func-

tion such that Λ(0) = 0, then

lim sup
t→0

J
(0)
t

Λ(t)
= 1 and lim sup

t→0

X
(0)
t − J

(0)
t

Λ(t)
= 1 almost surely.

Moreover, if for all x ≥ 0, lim sup
t→+∞

X
(x)
t

Λ(t)
= a.s., where Λ is a positive function such

that limt→+∞ Λ(t) = +∞, then

lim sup
t→+∞

J
(x)
t

Λ(t)
= 1 and lim sup

t→+∞

X
(0)
t − J

(0)
t

Λ(t)
= 1 almost surely.

Proof: First, we prove the result for large times. Let x ≥ 0. Since J
(x)
t ≤ X

(x)
t for

every t ≥ 0, in light of our hypothesis tha is clear

lim sup
t→+∞

J
(x)
t

Λ(t)
≤ 1 almost surely.
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Now, fix ε ∈ (0, 1/2) and define

Rn = inf

{
s ≥ n :

X
(x)
s

Λ(s)
≥ (1− ε)

}
.

From the above definition, it is clear that Rn ≥ n and that Rn diverges a.s. as n goes
to +∞. From our hypothesis, we deduce that Rn is finite, a.s.
Since X(x) has no positive jumps, applying the strong Markov property and the Lam-
perti representation (1.1), we have

P

(
J

(x)
Rn

Λ(Rn)
≥ (1− 2ε)

)
= P

(
J

(x)
Rn
≥

(1− 2ε)X
(x)
Rn

(1− ε)

)

= E

(
P

(
J

(x)
Rn
≥

(1− 2ε)X
(x)
Rn

(1− ε)

∣∣∣∣X(x)
Rn

))

= P
(

inf
t≥0

ξ ≥ log
(1− 2ε)

(1− ε)

)
= cW

(
log

1− ε

1− 2ε

)
> 0,

where W : [0,+∞) → [0,+∞) is the unique absolutely continuous increasing function
with Laplace exponent ∫ +∞

0

e−λxW (x)dx =
1

ψ(λ)
for λ > 0,

and c = 1/W (+∞), (see Bertoin [2] Theorem VII.8).
Since Rn ≥ n,

P

(
J

(x)
t

Λ(t)
≥ (1− 2ε), for some t ≥ n

)
≥ P

(
J

(x)
Rn

Λ(Rn)
≥ (1− 2ε)

)
.

Therefore, for all ε ∈ (0, 1/2),

P

(
J

(x)
t

Λ(t)
≥ (1− 2ε), i.o., as t→ +∞

)
≥ lim

n→+∞
P

(
J

(x)
Rn

Λ(Rn)
≥ (1− 2ε)

)
> 0.

The event of the left hand side is in the upper-tail sigma-field ∩tσ{X(x)
s : s ≥ t} which

is trivial. Therefore

lim sup
t→+∞

J
(x)
t

Λ(t)
≥ 1− 2ε almost surely.

The proof of part (ii) is very similar, in fact

P

(
X

(x)
Rn
− J

(x)
Rn

Λ(Rn)
≥ (1− 2ε)

)
= P

(
J

(x)
Rn
≤
εX

(x)
Rn

1− ε

)
= E

(
P

(
J

(x)
Rn
≤
εX

(x)
Rn

1− ε

∣∣∣∣X(x)
Rn

))

= P
(

inf
t≥0

ξ ≤ log
ε

1− ε

)
= 1− cW

(
log

1− ε

ε

)
> 0.
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Since Rn ≥ n,

P

(
X

(x)
t − J

(x)
t

Λ(t)
≥ (1− 2ε), for some t ≥ n

)
≥ P

(
X

(x)
Rn
− J

(x)
Rn

Λ(Rn)
≥ (1− 2ε)

)
.

Hence, for all ε ∈ (0, 1/2),

P

(
X

(x)
t − J

(x)
t

Λ(t)
≥ (1− 2ε), i.o., as t→∞

)
≥ lim

n→+∞
P

(
X

(x)
Rn
− J

(x)
Rn

Λ(Rn)
≥ (1− 2ε)

)
> 0.

The event of the left hand side of the above inequality is in the upper-tail sigma-field
∩tσ{X(x)

s : s ≥ t} which is trivial and this establishes part (ii) for large times.
In order to prove the LIL for small times, we now define the following stopping time

Rn = inf

{
1

n
≤ s :

X
(0)
s

Λ(s)
≥ (1− ε)

}
.

Following same arguments as above, we get that for a fixed ε ∈ (0, 1/2) and n sufficiently
large,

P

(
J

(0)
Rn

Λ(Rn)
≥ (1− 2ε)

)
> 0 and P

(
X

(0)
Rn
− J

(0)
Rn

Λ(Rn)
≥ (1− 2ε)

)
> 0.

Next, we note

P

(
J

(0)
Rp

Λ(Rp)
≥ (1− 2ε), for some p ≥ n

)
≥ P

(
J

(0)
Rn

Λ(Rn)
≥ (1− 2ε)

)
,

and

P

(
X

(0)
Rp
− J

(0)
Rp

Λ(Rp)
≥ (1− 2ε), for some p ≥ n

)
≥ P

(
X

(0)
Rn
− J

(0)
Rn

Λ(Rn)
≥ (1− 2ε)

)
.

Since Rn converges a.s. to 0 as n goes to ∞, the conclusion follows taking the limit
when n tends to +∞.

Hence, when F ↑ satisfies condition (6.19) we have the following laws of the iterated
logarithm for the future infimum of X(x) and the PSSMP X(x) reflected at its future
infimum.

Corollary 2 Under condition (6.19), we have the following laws of the iterated loga-
rithm.

i) For all x ≥ 0, lim sup
t→0

J
(0)
t

ϑ(t)
= 1 and lim sup

t→+∞

J
(x)
t

ϑ(t)
= 1 a.s.

ii) For all x ≥ 0, lim sup
t→0

X
(0)
t − J

(0)
t

ϑ(t)
= and lim sup

t→+∞

X
(x)
t − J

(x)
t

ϑ(t)
= 1 a.s.
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7 Examples.

Example 1. The first examples that we will consider are the only continuous PSSMP
up to a power rate: Bessel processes. Recall that a Bessel process of dimension δ ≥ 0
with starting point x ≥ 0 is the diffusion R whose square satisfies the stochastic
differential equation

R2
t = x2 + 2

∫ t

0

Rsdβs + δt, t ≥ 0, (7.23)

where β is a standard Brownian Motion.
From Itô’s formula, we get that the underlying Lévy process of a Bessel process of
dimension δ is ξ = (2(Bt + at), t ≥ 0), where B is a standard Brownian motion and
a = (δ − 2)/2. The process ξ satisfies the conditions under which we can define X(x)

when x = 0. When a > 0, X(x) is transient and when a = 0, the process X(x) oscillates.
Gruet and Shi [16] proved that there exist a finite constant K > 1, such that for any
0 < s ≤ 2,

K−1s1−δ/2 exp

{
− 1

2s

}
≤ P(S1 < s) = F ↑(s) ≤ Ks1−δ/2 exp

{
− 1

2s

}
. (7.24)

Hence, from (7.24) and Proposition 2, we may obtain integral tests for the lower en-
velope of the first passage time of the squared Bessel process X(0). Similarly, but now
using Theorems 3 and 4 , we may obtain a variant of the Kolmogorov-Dvoretsky-Erdős
integral tests for the upper envelope of Bessel processes. Finally, we also note that F ↑

satisfies condition (6.19).
Example 2. Let X(0) be a stable Lévy process conditioned to stay positive and index
0 < α ≤ 2 (see [10] for a proper definition). From Chaumont et al. [12], we know that
when X(0) has positive jumps then there exists a constant C such that

F (t) ∼ Ctαρ−1, as t→ 0,

where ρ is the positivity parameter of the stable Lévy processes.
On the other hand, from Fourati [15], we have that

F ν(t) ∼ Ctαρ, as t→ 0.

Hence under the assumption that X(0) has positive jumps, we get the following corol-
lary. Here, we only the state the results at 0 but we recall that the results for large
times also holds.

Corollary 3 Let S be the first passage time of the stable Lévy process conditioned to
stay positive X(0) with index α ∈ (0, 2]. The lower envelope at 0 is described as follows.
Let h ∈ H−1

0 be such that either limx→0 h(x)/x = 0 or lim infx→0 h(x)/x > 0. Then

P
(
Sx < h(t), i.o., as x→ 0

)
= 0 or 1,
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accordingly as∫
0+

(
h(x)

x

)αρ−1
dx

x
is finite or

∫
0+

(
h(x)

x

)αρ
dx

x
is infinite.

The upper envelope of X(0) at 0 is described as follows. Let h ∈ H0, such that either

lim
t→0

t/h(t) = 0 or lim inf
t→0

t/h(t) > 0.

Then
P
(
X

(0)
t > h(t), i.o., as t→ 0

)
= 0 or 1,

accordingly as∫
0+

(
h(x)

x

)αρ−1
dx

x
is finite or

∫
0+

(
h(x)

x

)αρ
dx

x
is infinite.

Now, suppose that X(0) has no positive jumps. In this case, it is known that 1 < α ≤ 2.
From [23], we know that X(0) drifts towards +∞ and that

− logF (1/t) ∼ α− 1

α

(
1

α

)1/(α−1)

t1/α−1 as t→ +∞.

Then applying Proposition 6, Theorem 6 and Corollary 2, we get the following LIL.

Corollary 4 Let X(0) be a stable Lévy process with no positive jumps conditioned to
stay positive and α > 1. Then, the first passage time process satisfies

lim inf
t→0

St

(
log | log t|

)α−1

tα
=

1

α

(
1− 1

α

)α−1

, almost surely.

The processes X(0), J (0) and X(0) − J (0) satisfy the following laws of the iterated loga-
rithm

lim sup
t→0

X
(0)
t

t1/α
(
log | log t|

)1−1/α
= α (α− 1)−

α−1
α , almost surely,

lim sup
t→0

J
(0)
t

t1/α
(
log | log t|

)1−1/α
= α (α− 1)−

α−1
α , almost surely,

lim sup
t→0

X
(0)
t − J

(0)
t

t1/α
(
log | log t|

)1−1/α
= α (α− 1)−

α−1
α , almost surely.

Example 3. Let ξ be a Lévy process which drifts towards +∞, with finite exponential
moments of arbitrary positive order. Note that this condition is satisfied, for example,
when the jumps of ξ are bounded from above by some fixed number and in particular
when ξ is a Lévy process with no positive jumps. In that case, we have

E
(
eλξt
)

= exp
{
tψ(λ)

}
< +∞, t, λ ≥ 0.
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From Theorem 25.3 in Sato [24], we know that this hypothesis is equivalent to assuming
that the Lévy measure Π of ξ satisfies∫

[1,∞)

eλxΠ(dx) < +∞ for every λ > 0.

Under this condition and with the hypothesis that ψ varies regularly at +∞ with index
β ∈ (1, 2), the author in [23] gave the following estimates of the tail probabilities of
I(ξ̂) and νI(ξ̂),

− log P
(
νI(ξ̂) < 1/x

)
∼ − log P

(
I(ξ̂) < 1/x

)
∼ (β − 1)

↼

H(x) as x→ +∞,

where
↼

H(x) = inf
{
s > 0 , ψ(s)/s > x

}
,

is a regularly varying function with index (β − 1)−1.
Hence, the PSSMP associated to ξ satisify condition (6.19). This allows us to obtain
an LIL for the first passage time process and for the PSSMP in terms of the function

f(t) :=
log | log t|

ψ(log | log t|)
for t > 1, t 6= e.

Using integration by parts, we can see that the function ψ(λ)/λ is increasing. Hence it
is straightforward that the function tf(t) is also increasing in a neighbourhood of ∞.
Similarly to Example 2, we only state the LIL for small times.

Corollary 5 If ψ is regularly varying at +∞ with index β ∈ (1, 2), then

lim inf
x→0

Sx

xf(x)
= (β − 1)β−1, almost surely.

Let us define

g(t) :=
ψ(log | log t|)

log | log t|
for t > 1, t 6= e.

Corollary 6 If ψ is regularly varying at +∞ with index β ∈ (1, 2), then

lim sup
t→0

Xt

tg(t)
= (β − 1)−(β−1), almost surely.

Moreover, if the processes X(0) has no positive jumps, J (0) and X(0) − J (0) satisfy the
following laws of the iterated logarithm:

lim sup
t→0

J
(0)
t

tg(t)
= (β − 1)−(β−1) and lim sup

t→0

X
(0)
t − J

(0)
t

tg(t)
= (β − 1)−(β−1) a.s.
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Example 4. Let ξ = N be a standard Poisson process. We remark that in this case
the limit process X(0) may not be defined with Caballero and Chaumont’s construction.
This is a consequence of the fact that N is arithmetic.
According to Bertoin and Caballero [3], we can define a limit process for the PSSMP
X(x) associated to N in the sense of finite dimensional distributions. With an abuse
of notation, we will denote such limit process by X(0). From Proposition 3 in Bertoin
and Yor [5] and Example 1 in [23], we know that

− log P
(
I(ξ̂) < t

)
∼ − log P

(
νI(ξ̂) < t

)
∼ 1

2
(log 1/t)2, as t→ 0.

Hence, we obtain the following LIL. Let us define

m(t) := t exp
{
−
√

2 log | log t|
}
.

Corollary 7 Let N be a Poisson process, then the PSSMP X(x) associated to N by
the Lamperti representation satisfies the following law of the iterated logarithm,

lim sup
t→0

X
(0)
t m(t)

t2
= 1 almost surely.

For x ≥ 0

lim sup
t→+∞

X
(x)
t m(t)

t2
= 1 almost surely.

The first passage time process S associated to X(0) satisfies the following law of the
iterated logarithm,

lim inf
x→0

Sx

m(x)
= 1, and lim inf

x→+∞

Sx

m(x)
= 1, almost surely.
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