
CHAPTER 1

Poisson point processes and subordinators.

In this chapter, we introduce basic notions on Poisson point processes and subordina-
tors. Poisson processes and two remarkable families of related martingales are studied. We
also introduce the notion of Poisson random measures in order to define the Poisson point
process. The last part of this chapter concerns to subordinators and their connection with
the Lévy-Kinthine formula.

1. Poisson point processes

1.1. Poisson processes.

DEFINITION 1. A Poisson process with parameter c > 0 is a renewal process where
the time between occurrences is exponentially distributed with parameter c. More precisely
take a sequence (τn, n ≥ 1) of independent exponential random variables with parameter
c and introduce the partial sums Sn = τ1 + · · ·+ τn, n ∈ IN. The right-continuous inverse

Nt = sup
{

n ∈ IN : Sn ≤ t
}

, t ≥ 0,

is called a Poisson process of parameter c.

Let us explain some details of the above definition. We first recall that Sn has the same
law as a Gamma distribution with parameters c and n. Therefore, for any fixed k ∈ IN and
t ∈ IR+

P(Nt = k) = E
(

1I{Sk≤t<Sk+1}

)
= E

(
1I{Sk≤t}P(τn+1 ≥ t− Sk)

)
=

1

Γ(k)

∫ t

0

e−c(t−x)cke−cxxk−1dx =
cktk

k!
e−ct.

This implies that for any fixed t > 0, Nt is a Poisson r.v. with parameter tc, from where
this process takes his name.
The lack of memory property of the exponential law implies that for every 0 ≤ s ≤ t, the
increment Nt+s −Nt has the Poisson distribution with parameter cs and is independent of
the σ-field generated by (Nu, 0 ≤ u ≤ t), i.e. that the Poisson process N = (Nt, t ≥ 0) is a
process with independent and homogeneous increments. In particular, the Poisson process
N is a strong Markov process.
Here, we are interested in two families of martingales related to the natural filtration (Ft)
of the Poisson process N . Let us define

Mt = Nt − ct, and ξq
t = exp

{
− qNt + ct(1− e−q)

}
, t ≥ 0, q > 0.

From the independence and the homogeneity of the increments, we get that

E(Nt+s|Ft) = E(Nt+s −Nt + Nt|Fs) = Nt + cs,
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then substracting c(t + s) in the both sides, we get that M = (Mt, t ≥ 0) is a martingale
related to (Ft). The additivity of the exponents and similar arguments as above, give us
that ξq = (ξq

t , t ≥ 0) is also a martingale related to (Ft).
Recall that one says that a process H = (Ht, t ≥ 0) is called predictable if it is measurable
in the sigma-field generated by the left-continuous adapted processes. If this notion is
difficult to understand, just think in processes that can be approximated by left-continuous
adapted processes.
Now, let us introduce the stochastic integral related to the Poisson process N by∫ t

0

HsdNs =
∑
s≤t

Hs∆Ns, where ∆Ns = Ns −Ns−.

Note that from the definition of N , we have the following identity∫ t

0

HsdNs =
∞∑

n=1

Hτn1I{τn≤t}.

PROPOSITION 1. Let H be a predictible process with

E
(∫ t

0

|Hs|ds

)
< ∞, for all t ≥ 0,

then the compensated integral∫ t

0

HsdNs − c

∫ t

0

Hsds, t ≥ 0,

is a martingale related to (Ft). Moreover, we have the well-known compensation formula

E
(∫ t

0

HsdNs

)
= cE

(∫ t

0

Hsds

)
.

Proof: Let us suppose that H is a simple process, i.e.

Ht = Hti for t ∈ (ti, ti+1]

where t0 < t1 < · · · < tn is a partition of the interval [0, t] and Hti is Fti-measurable. We
also suppose that H is bounded. Then it is clear

E
(
Hti

[
(Nt − ct)− (Nti − cti)

]∣∣∣Fti

)
= 0 for t ∈ (ti, ti+1],

which implies that
∫ t

0
HsdMs is a martingale.

Next, we suppose that H is a left-continuous process bounded for some constant C > 0.
For n ∈ IN, let us define

H
(n)
t = Hk/2n , for k2−n < t ≤ (k + 1)2−n.

Therefore, (H(n), n ≥ 1) is a sequence of simple, bounded and left-continuous processes
such that

H
(n)
t −→ Ht for all t ≥ 0 almost surely.

From the dominated convergence theorem, we deduce that the integral In
t :=

∫ t

0
H

(n)
s dMs,

where Ms = Ns−cs, converges towards It :=
∫ t

0
HsdMs, almost surely. Since In is a mar-

tingale then I is also a martingale and the result follows for H a bounded left-continuous
adapted process.
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In order to extend the result to any bounded predictable process, we will use the monotone
class theorem. Define,

A =

{
H bounded and predictable :

(∫ t

0

HsdMs, t ≥ 0

)
is a martingale

}
.

Then, from above, A contains the bounded left-continuous adapted processes. Moreover
from the monotone convergence theorem, we get that if Hn is an increasing sequence in A
which converge towards H with H bounded, then H belongs to A. Therefore, applying the
monotone class theorem we obtain that A contains all bounded predictable processes.
Now, for simplicity we suppose that H is positive and define the following stopping time
TC = inf{t ≥ 0 : Hs ≥ C}. Then,

(IC)t :=

∫ TC∧t

0

HsdMs, for t ≥ 0,

is a martingale. From the optimal stopping theorem, we get the compensation formula.
On the other hand, since TC goes to ∞, when C increases, we have that IC converges
towards

∫ t

0
HsdMs, almost surely. Hence applying the monotone convergence theorem, we

have

E
(∫ TC∧t

0

HsdNs

)
−→ E

(∫ t

0

HsdNs

)
as C →∞.

On the other hand, using again the monotone convergence theorem we get that

E
(∫ TC∧t

0

Hsds

)
−→ E

(∫ t

0

Hsds

)
as C →∞,

and now the proof is completed.

Another important family of martingales related to Poisson processes is definde in the
following proposition.

PROPOSITION 2. Let h be a measurable positive function, then the exponential process

exp

{
−
∫ t

0

h(s)dNs + c

∫ t

0

(1− e−h(s))ds

}
, t ≥ 0,

is a martingale related to (Ft). In particular, we have the well-known exponential formula

E
(

exp

{
−
∫ t

0

h(s)dNs

})
= exp

{
−c

∫ t

0

(1− e−h(s))ds

}
.

Proof: Let us suppose that h is a step function. Under this assumption, the result is clear
from the exponential martingale ξq, taking q be equal to the value of h in one step. In order
to extend such result to any h measurable, it is enough to apply the functional version of
the Monotone class theorem.

We remark that the above result is also true when we replace h by H a bounded pre-
dictable process.

We conclude this section by proving a criterion for the independence of Poisson pro-
cesses which will be very important for the sequel. First, we recall the definition of a
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Poisson process related to a given filtration. Let (Ft) be a filtration, an (Ft)-Poisson pro-
cess with parameter c > 0 is a right continuous adapted process, such that N0 = 0 and for
every s < t, and k ∈ IN,

P(Nt −Ns = k|Fs) = ck (t− s)k

k!
exp(−c(t− s)).

PROPOSITION 3. Let N and N ′ be two (Ft)-Poisson processes. They are independent
if and only if they never jump simultaneously, that is

Nt −Nt− = 0 or N ′
t −N ′

t− = 0 for all t > 0 almost surely.

It is crucial in Proposition 3 to assume that N and N ′ are Poisson processes in the same
filtration. Otherwise, the result is not true. For example, if we take N ′

t = N2t it is clear that
N ′ is still a Poisson process which never jumps at the same times that N and that it is not
independent of N .
Proof: First, we suppose that N and N ′ are independent and let (τn, n ≥ 1) be the succes-
sive jumps times of N . Then∑

s>0

(∆Ns)(∆N ′
s) =

∑
s>0

(∆N ′
s) a.s.

On the other hand, since the laws of the jumps are diffuse, it is clear that for every fixed
time t, ∆N ′

t is a.s. zero. From the independence of N ′ and (τn, n ≥ 1), we get ∆N ′
τn

= 0,
a.s. for every n. Hence the processes N and N ′ never jumps simultaneously.
For the converse, we need the following lemma.

LEMMA 1. Let M be a càdlàg martingale of bounded variation and M ′ a càdlàg
bounded martingale in the same filtration. If M and M ′ never jumps simultaneously then
MM ′ is a martingale.

Proof: In order to proof this lemma, it is enough to show that for any bounded stopping
time T , we have

E(MT M ′
T ) = E(M0M

′
0).

Take, 0 = t0 < t1 < · · · < tk = A, a partition of the interval [0, A] with T ≤ A a.s.
Therefore

MT M ′
T −M0M

′
0 =

∑
ti<T

Mti(M
′
ti+1

−M ′
ti
) +

∑
ti<T

M ′
ti
(Mti+1

−Mti)

+
∑
ti<T

(M ′
ti+1

−M ′
ti
)(Mti+1

−Mti).

If we take the expectation of the above equality, it is clear that the expectation of the first
two terms of the right hand-side are equal to 0, hence

E(MT M ′
T −M0M

′
0) = E

(∑
ti<T

(M ′
ti+1

−M ′
ti
)(Mti+1

−Mti)

)
.

On the other hand, since M ′ is bounded and M is of bounded variation, we have

(1.1)

∣∣∣∣∣∑
ti<T

(M ′
ti+1

−M ′
ti
)(Mti+1

−Mti)

∣∣∣∣∣ ≤ C

∣∣∣∣∣∑
ti<T

(Mti+1
−Mti)

∣∣∣∣∣ ≤ CV A
0 (M) ≤ C ′,
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where V A
0 (M) is the total variation of M . When the length of the longest of the subintervals

in the partition goes to 0, we have that∑
ti<T

(M ′
ti+1

−M ′
ti
)(Mti+1

−Mti) −→
∑
s<T

(∆Ms)(∆M ′
s) = 0,

the convergence follows from the fact that M (also recall that M is of bounded variation)
and M ′ are càdlàg and never jump simultaneously. Hence applying the dominated conver-
gence theorem, we obtain the result.

Now, let h and h′ be two step functions and define the exponential martingales

Mt = exp

{
−
∫ t

0

h(s)dNs + c

∫ t

0

(1− e−h(s))ds

}
,

and

M ′
t = exp

{
−
∫ t

0

h′(s)dN ′
s + c′

∫ t

0

(1− e−h′(s))ds

}
,

which are defined on the same filtration. Since N and N ′ never jumps simultaneously,
the martingales M and M ′ never jumps simultaneously too and their product is also a
martingale from the previous lemma. Hence E (MtM

′
t) = 1, which implies that

E

(
exp

{
−
∫ t

0

h(s)dNs −
∫ t

0

h′(s)dN ′
s

})

= exp

{
−c

∫ t

0

(1− e−h(s))ds

}
exp

{
−c′

∫ t

0

(1− e−h′(s))ds

}
= E

(
exp

{
−
∫ t

0

h(s)dNs

})
E
(

exp

{
−
∫ t

0

h(s)dNs

})
,

and the independence is proved.

1.2. Poisson measures and Poisson point processes.

DEFINITION 2. Let (E, E , µ) be a measurable space with µ a σ-finite measure. A
Poisson random measure with intensity measure µ is a familly of random variables M =
{M(A), A ∈ E} defined on some probability space (Ω,F , P) such that

i) If B ∈ E is such that µ(B) < ∞, the random variable M(B) has a Poisson
distiribution with parameter µ(B), i.e.

P(M(B) = k) =
µ(B)k

k!
exp{−µ(B)}, for k = 0, 1, . . .

If µ(B) = ∞, then M(B) = ∞ a.s.
ii) Let B1, B2, . . . , Bn be a finite sequence of pairwise disjoint sets of E , the random

variables M(B1), . . . ,M(Bn) are independent.

Example: Let E = IR+, E its Borel σ-field and µ = cλ, where λ is the Lebesgue
measure and c > 0. The process

t −→ M([0, t]),
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is a Poisson process with parameter c. Conversely, let N be a Poisson process with param-
eter c = 1 and define

M(B) =

∫ ∞

0

1IB(s)dNs,

it is not difficult to show (good exercice: use the exponential martingale and the additivity
of exponents to prove it), that the familly M is a Poisson random measure.
From their definition and Proposition 3, it is clear that Poisson random measures satisfy the
following properties:

• Superposition property: Let (µn, n ≥ 1) be a sequence of σ-finite measures
and define µ =

∑
n≥1 µn. If µ is also a σ-finite measure and M (1), M (2), . . . are

independent Poisson random measures with intensity measures µ1, µ2, . . . respec-
tively, then M =

∑
n≥1 M (n) is a Poisson random measure with intensity measure

µ.
• Splitting property: Let M be a Poisson random measure on (E, E) with in-

tensity µ and (Bi) a sequence of pairwise disjoint sets of E , then the restic-
tions M |B1 , M |B2 , . . . are independent Poisson random measures with intensity
µ(· ∩B1), µ(· ∩B2), . . . respectively.

• Image property: Let f : (E, E) → (G,G) be a measurable function, µ a σ-finite
measure on (E, E) and γ the image measure of µ by f . We suppose that γ is also
σ-finite. If M is a Poisson random measure on (E, E) with intensity measure µ
and if we define

M ◦ f−1(C) = M(f−1(C)), for C ∈ G.

Then M ◦ f−1 is a Poisson random measure with intensity measure γ.

We now turn our attention to the construction of Poisson random measures. First, let us
suppose that µ(E) < ∞ and define the probability measure

ρ(B) =
µ(B)

µ(E)
, for B ∈ E .

Let us take (ξn, n ≥ 1) a sequence of independent and identically distributed random
variables with law ρ and N a Poisson random variable with parameter µ(E) which is inde-
pendent of (ξn, n ≥ 1).
Next, we define the random measure

M(dx) =
N∑

i=1

δξi
(dx),

where δy is the Dirac measure in y. The random measure M is a counting measure, i.e. for
any B ∈ E

M(B) = card{i ≤ N : ξi ∈ B},
and we claim that M is a Poisson random measure with intensity measure µ (we will
prove this fact below). In the σ-finite case, we can construct a Poisson random measure
using the superposition property and the splitting property. More precisley, we chose a
partition (Bn, n ≥ 1) of E such that each element of the partition is measurable and of
finite measure. Then, we construct a sequence of independent Poisson random measures
whose intensity measures are the restiction of µ on each Bn. Finally, the superposition
property give us the desired result.
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Let us verify the contruction in the finite case, for simplicity we choose µ(E) = 1. First,
we compute the distribution of M(B), for B ∈ E

P(M(B) = k) =
∞∑

j=k

P(N = j)P

(
j∑

i=1

1I{ξi∈B} = k

)
.

Since (1I{ξi∈B}, i ≥ 1) is a sequence of Bernoulli random variables with parameter µ(B),
then

P(M(B) = k) =
∞∑

j=k

e−1

j!

(
k

j

)
µ(B)k(1− µ(B))j−k

=
µ(B)k

k!
e−1

∞∑
l=0

(1− µ(B))l

l!

= e−µ(B)µ(B)k

k!
.

Now, we prove the independence (property (ii)). Let B and B′ be two disjoint sets in E and
define Xt = ξNt where (Nt, t ≥ 0) is a Poisson process with parameter 1 (or µ(E)) which
is independent of (ξn, n ≥ 1), and (Ft) the natural filtration of X = (Xt, t ≥ 0).
Next, we define the counting processes

NB
t = card{i ≤ Nt : ξi ∈ B} and NB′

t = card{i ≤ Nt : ξi ∈ B′}.

The processes NB and NB′ are two (Ft)-Poisson processes and since B and B′ are disjoints
sets, they never jump simultaneously. Therefore, the independence follows from the above
and noting that M(B) = NB

1 and M(B′) = NB′
1 .

PROPOSITION 4 (Campbell’s formula). Lef f : E → IR+ be a measurable function
and M a Poisson random measure with intensity measure µ. Let us define

< M, f >=

∫
E

f(x)M(dx),

then

(1.2) E
(

exp
{
− < M, f >

})
= exp

{
−
∫

E

(
1− e−f(x)

)
µ(dx)

}
.

Proof: Let us first suppose that µ(E) < ∞ and that f is a simple function, i.e.

f(x) =
∞∑
i=1

ci1I{x∈Bi}, ci ≥ 0 and (Bi) a partition of E,

it is then clear that < M, f >=
∑∞

i=1 ciM(Bi).
From the previous construction, we have < M, f >=

∑N
i=1 f(ξi), where (ξ, i ≥ 1) is a

sequence of independent and identically distributed r.v.’s with law ρ(·) = µ(·)/µ(E) and
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N a Poisson r.v. with parameter µ(E) which is independent of (ξn, n ≥ 1). Therefore,

E
(

exp
{
− < M, f >

})
= E

(
exp

{
−

N∑
i=1

f(ξi)

})

=
∞∑

k=0

µ(E)k

k!
e−µ(E)E

(
e−f(ξ1) · · · e−f(ξk)

)
=

∞∑
k=0

µ(E)k

k!
e−µ(E)

(∫
e−f(x)µ(dx)

µ(E)

)k

= exp

{
−
∫

E

(
1− e−f(x)

)
µ(dx)

}
.

In order to prove Campbell’s formula for any positive measurable function, we define the
integral < M, f > by approximation . More precisely, let us define

fn(x) =
k

2n
on

{
x :

k

2n
≤ f(x) <

k + 1

2n

}
.

Then, it is clear that fn converge towards f and applying the monotone convergence theo-
rem, we get

< M, f >= lim
n→∞

< M, fn >,

which implies (1.2).
Now, we deal with the case µ(E) = ∞. Let (Bn, n ≥ 1) a sequence of disjoint sets in E
such that µ(Bn) < ∞ for every n ≥ 1. Next for every n ≥ 1, we define En = ∪k≤nBn and
take the restriction Mn = M |En . Let f ≥ 0 be measurable, then by definition

< Mn, f >=

∫
E

f(x)1IEn(x)M(dx),

which satisfies Campbell’s formula. Since En increases towards E as n goes to ∞, it is
clear that f1IEn and (1 − e−f )1IEn increase towards f and (1 − e−f ), respectively. Again
applying the monotone convergence theorem, we get

< M, f >= lim
n→∞

< Mn, f > and
∫

E

(
1− e−f(x)

)
µ(dx) = lim

n→∞

∫
En

(
1− e−f(x)

)
µ(dx)

which implies (1.2) in the general case.

Now, we introduce M a Poisson random measure on [0,∞)×E with intensity measure
λ⊗ µ, where λ is the Lebesgue measure on [0,∞) and µ is a σ-finite measure on E.

LEMMA 2. Almost surely, for all t ≥ 0

M
(
{t} × E

)
= 0 or 1.

Proof: First, we suppose that µ(E) < ∞. For n ≥ 1, by the stationary and independence
property of M

P
(
∃k ≤ 2n : M

([
(k − 1)2−n, k2−n

)
× E

)
≥ 2

)
≤ 2nP

(
M
(
[0, 2−n)× E

)
≥ 2
)
.

On the other hand

P
(
M
(
[0, 2−n)× E

)
≥ 2
)

= 1− e−2−nµ(E) − 2−nµ(E)e−2−nµ(E) ≤ 2
(
2−nµ(E)

)2
,
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which implies that

P
(
∃k ≤ 2n : M

([
(k − 1)2−n, k2−n

)
× E

)
≥ 2

)
≤ 2−(n−1)µ2(E).

The result follows taking n goes towards ∞.
In order to prove this result when µ(E) = ∞, we will use a similar argument as in Propo-
sition 4. Let (En, n ≥ 1) as in the proof of Proposition 4 and define, for each n ≥ 1, the
function fn(x) = 1I{{t}×En}(x) and note that almost surely, for all t ≥ 0

< M, fn >= M
(
{t} × En

)
≤ 1,

since µ(En) < ∞. On the other hand, the sequence (fn, n ≥ 1) is increasing and it
converges towards f = 1I{{t}×E}. Then applying the monotone convergence theorem, we
have that

M
(
{t} × E

)
=< M, f >= lim

n→∞
< M, fn >= lim

n→∞
M
(
{t} × En

)
≤ 1,

which is satisfied almost surely for every t ≥ 0, since

A =
{

ω ∈ Ω : for all t ≥ 0, < M, f >≤ 1
}

,

satisfies that
A =

⋂
n≥1

{
ω ∈ Ω : for all t ≥ 0, < M, fn >≤ 1

}
,

and each of this set has probability equal 1.

If M({t} × E) = 1, there exists one and only one point ∆t ∈ E such that

M |{t}×E = δ(t,∆t).

If M({t} × E) = 0, then we do not define ∆t in E.

DEFINITION 3. The process defined by ∆ = (∆t, t ≥ 0) is Poisson point process with
characteristic measure µ.

LEMMA 3. Let B ∈ E such that 0 < µ(B) < ∞ and define

TB = inf{t ≥ 0 : ∆t ∈ B}.
Then, TB and ∆TB

are independent random variables. The distribution of TB is an expo-
nential r.v. with parameter µ(B) and that of ∆TB

is given by µ(· ∩B)/µ(B).

Proof: Take A ⊂ B. A straightforward calculation give us that

P(TB ≤ t, ∆TB
∈ A) = P(TA < TB\A, TA ∧ TB\A ≤ t).

On the other hand, it is clear that TA is the first jump of the Poisson process NA defined by

NA
t = card{s ≤ t : ∆s ∈ A},

hence TA has an exponential distribution with parameter µ(A). Since A and B \ A are
disjoint, then TA and TB\A are independent exponential random variables with parameters
µ(A) and µ(B)− µ(A), respectively. Therefore,

P(TB ≤ t, ∆TB
∈ A) =

µ(A)

µ(B)

(
1− e−tµ(B)

)
,

and we get the desired result.
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2. Subordinators

Subordinators is an extension of the notion of Poisson point processes and generally,
they are defined as follows.

DEFINITION 4. A subordinator is a stochastic process taking values in [0,∞) with
càdlàg paths (i.e. right-continuous and with left limits) and such that it has independent
and homogeneous increments.

This class of processes play an important role in the study of Local times and excursion
theory of Markov processes. Their connection will be studied in the next two chapters.
It is important to note that subordinators have increasing sample paths. We are also inter-
ested in killed subordinators which are a slightly more general than subordinators. More
precisely, let σ = (σt, t ≥ 0) be a subordinator and e = eq an independent exponential time
with parameter q ≥ 0, the process σ(q) taking values in [0,∞] and defined by

σ
(q)
t =

{
σt if t ∈ [0, e)
∞ if t ∈ [e,∞)

is called a subordinator killed at rate q. In fact any right-continuous non-decreasing process
X = (Xt, t ≥ 0) taking values in [0,∞] is a subordinator killed at rate q > 0 if and only if
P(Xt < ∞) = e−qt and conditionally on Xt < ∞, the increment Xt+s−Xt is independent
of (Xu, 0 ≤ u ≤ t) and has the same law as Xs.
Note that a Poisson process is a subordinator whose jumps are equal to one. Another
important example of a subordinator is the first passage time of the Brownian motion, i.e.

σx = inf{t : Bt ≥ x}, x ≥ 0,

where B = (Bs, s ≥ 0) is the standard Brownian motion.
Using the decomposition

σn = σ1 + (σ2 − σ1) + · · ·+ (σn − σn−1),

and the independence and homogeneity of the increments of σ, we observe that the Laplace
transform of σn satisfies

E(e−qσn) =
(
E(e−qσ1)

)n

q ≥ 0.

Moreover if t is a rational number, we have

E(e−qσt) =
(
E(e−qσ1)

)t

q ≥ 0.

By right-continuity of the paths, this last equality holds for an arbitrary t ≥ 0. Now, if

E(e−qσ1) = e−Φ(q) for all q ≥ 0,

for a function Φ : IR+ → IR+ called the Laplace exponent, then

E(e−qσt) = e−tΦ(q) for all t, q ≥ 0.

A natural quesiton is: Which are the functions Φ that appear as the Laplace exponent of a
subordinator?

THEOREM 1 (De Finetti, Lévy, Khintchine). (i) If Φ is the Laplace exponent of a sub-
ordinator σ = (σt, t ≥ 0), then there exist a unique pair (k, d) of nonnegative real numbers
and a unique measure Π on (0,∞) with

∫
(1 ∧ x)Π(dx) < ∞, such that for every λ ≥ 0

(1.3) Φ(λ) = k + dλ +

∫
(0,∞)

(
1− e−λx

)
Π(dx).
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(ii) Conversely, any function Φ than can be expressed in the form (1.3) is the Laplace
exponent of a subordinator.

Equation (1.3) will be referred to as the Lévy-Khintchine formula; one calls k the killing
rate, d the drift and Π the Lévy measure of σ.

Proof: (i) For any t > 0, we have that

E
(
e−qσt

)
= exp{−tΦ(q)}.

Note that Φ can be expressed as follows

Φ(q) = lim
n→∞

n
(
1− e−Φ(q)/n

)
and 1− e−Φ(q)/n = E

(
1− e−qσ1/n

)
.

Now, define F̄n(x) = nP(σ1/n > x), x ≥ 0 and note that

Φ(q)

q
= lim

n→∞

∫
(0,∞)

e−qxF̄n(x)dx.

Hence (F̄n(x)dx, n ≥ 1) converge vaguely as n goes to ∞ towards a given measure on
[0,∞[. Since each function F̄n decreases, the limit has necessarily the form

dδ0(dx) + Λ̄(x)dx,

where d ≥ 0, Λ̄ is a non-increasing function. Thus

Φ(q)

q
= d +

∫
(0,∞)

e−qxΛ̄(x)dx

which after integrating by parts proves (1.3) with k = Λ̄(∞) and Π(dx) = −dΛ̄(x) on
(0,∞). In order to finish the proof, let us verify the condition of the measure Π established
before (1.3), but this is clear since∫

(0,∞)

(1 ∧ x)Π(dx) =

∫ 1

0

Λ̄(x)dx < ∞.

(ii) Take a measure Π satisfying that
∫

(0,∞)
(1 ∧ x)Π(dx) < ∞ and construct a Poisson

point process (∆t, t ≥ 0) with characteristic measure Π + kδ∞.
Now, let us define T∞ = inf{t : ∆t = ∞} and for all t ≤ T∞, Σt =

∑
0≤s≤t ∆s. From

Campbell’s formula, we get

E
(
exp

{
− qΣt

})
= exp

{
−tk − t

∫
(0,∞)

(1− e−qy)Π(dy)

}
, q, t ≥ 0.

From our hypothesis, we have∫
(0,∞)

(1− e−qy)Π(dy) < ∞.

Since

lim
q→0

∫
(0,∞)

(1− e−qy)Π(dy) = 0,

we deduce that Σt < ∞, whenever t < T∞ a.s. and

E
(

exp{−qΣt}
)

= exp{−tΦ(q)}, with d = 0.
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Therefore, since ∆ is a Poisson point process Σ is a càdàg process with lifetime T∞ and
that its increments are independent and stationary on [0, T∞). Now, if we take d > 0 and
we define Σ

(d)
t = dt + Σt, it is easy to see that it is still a killed subordinator and that

Φ(q) = k + dq +

∫
(0,∞)

(
1− e−qx

)
Π(dx).

The proof is now completed.

The proof of the Lévy-Khintchine formula gives us also a probabilistic interpretation.

COROLLARY 1 (Lévy-Itô decomposition). One has a.s., for every t ≥ 0:

σt = dt +
∑

0≤s≤t

∆s,

where ∆ = (∆s, s ≥ 0) is a Poisson point process with values in (0,∞] and characteristic
measure Π + kδ∞. The lifetime of σ is the given by ζ = inf{t : ∆t = ∞}.


