
CHAPTER 1

Excursion theory for Markov processes.

The aim of this chapter is to describe the evolution of a strong Markov process in terms
of its behaviour between visits to a particular point in the state space. We first study the
right-continuous inverse of the local time, which is a subordinator (possibly killed) whose
jumps corresponds to the lengths of the excursion intervals. The study culminates with the
description of the process in terms of a Poisson point process.

1. The inverse local time.

The local time L of a Markov processes, introduced in the previous chapter, is described
most conveniently in terms of its right-continuous inverse:

L−1(t) = inf
{

s ≥ 0 : L(s) > t
}

, t ≥ 0.

The following notation will be also useful,

L−1(t−) = inf
{

s ≥ 0 : L(s) ≥ t
}

= lim
s→t−

L(s), t ≥ 0.

We start the study of L−1 with the following elementary properties.

PROPOSITION 1. i) For every t ≥ 0, L−1(t) and L−1(t−) are stopping times.
ii) The process L−1 is increasing, right-continuous and adapted to the filtration (FL−1(t)).
iii) We have a.s. for all t > 0,

L−1(L(t)) = inf
{

L−1(u) ≥ 0 : L−1(u) > t
}

= inf
{

s > t : Xs = 0
}

,

and

L−1(L(t)−) = sup
{

L−1(u) ≥ 0 : L−1(u) < t
}

= sup
{

s < t : Xs = 0
}

.

In particular L−1(t) ∈ L on {L−1(t) < ∞}.

Proof: (i) For every, s, t > 0, we have{
L−1(t) < s

}
=

{
L(s) > t

}
,

since L is continuous. Hence L−1(t) is a stopping time because L is adapted to the right-
continuous filtration (Ft). Since L−1(t−) is a limit of stopping times and (Ft) is right-
continuous, we deduce that it is also a stopping time.
(ii) From the definition of L−1, it is increasing and right-continuous. The fact that it is
adapted to the filtration (FL−1(t)) follows from (i).
(iii) From the definition of L−1, it is clear that

L−1(L(t)) = inf
{

s ≥ 0 : L(s) > L(t)
}

= inf
{

L−1(u) ≥ 0 : u > L(t)
}

= inf
{

L−1(u) ≥ 0 : L−1(u) > t
}

.
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Now, we define Dt = inf{s > t : Xs = 0} and suppose that Dt > t. By Theorem ??,
L is constant in the interval [t,Dt), hence Dt ≤ L−1(L(t)). We may now assume that
Dt < ∞, since otherwise there is nothing to prove. Then, Dt belongs to the support of the
measure dL and is isolated on the left. On the other hand, since L is continuous, Dt cannot
be isolated on the right, that is to say that L(s) > L(Dt) = L(t) for all s > Dt; and hence
Dt ≥ L−1(L(t)).
Next, we suppose that Dt = t, so that t belongs to the support of dL and is not isolated on
the right. Therefore L(s) > L(t), for all s > t, and hence t ≥ L−1(L(t)). The converse
inequality is obvious.
The second identity in (iii) follows from similar arguments. Finally, on {L−1(t) < ∞},
there exist s such that L(s) = t and the first identity shows that L−1(t) is a zero of X .

Before we characterize the law of L−1, we note that our previous result shows that
cl(L) has no isolated points as we remarked in Proposition ??. This is because L is con-
tinuous and the support of the measure dL coincides with cl(L). Another remarkable con-
sequence of Proposition 1 is that the excursion intervals are the open intervals of the type
(L−1(t−), L−1(t)) whenever L−1(t−) < L−1(t).

THEOREM 1. The inverse local time L−1 is a subordinator with Lévy measure Π, drift
coefficient d ≥ 0 and killed at rate Π(∞). One has for all t, λ > 0

E
(

exp
{
− λL−1(t)

})
= exp

{
−tλ

(
d +

∫ ∞

0

e−λrΠ(r)dr

)}
.

Proof: We first suppose that Π(∞) = 0, in this case we know that there is no infinite
excursion a.s. (see Lemma 5). In particular d1(c) < ∞ and by iteration of the strong
Markov property, we deduce that dn(c) < ∞ a.s. for every n ≥ 1. From Proposition ??,
the strong Markov property and the additivity of the local time, L(dn(c)) can be expressed
as the sum of n independent exponential random variables with parameter 1. In particular,
L(∞) = limn L(dn(c)) = ∞, a.s.
From Proposition 1 part (i), we may apply the strong Markov property at L−1(t) and then
the process X ◦ θL−1(t) has the same law as X and is independent of FL−1(t). From the
additivity of L, we have that the local time L̃ of X◦θL−1(t) is defined by L̃(s) = L(L−1(t)+
s)− t, and the inverse local time of X ◦ θL−1(t) is

L̃−1(s) = inf
{

u ≥ 0 : L̃(u) > s
}

= inf
{

u ≥ 0 : L(L−1(t) + u) > s + t
}

= inf
{

u ≥ L−1(t) : L(u) > s + t
}

= L−1(s + t)− L−1(t),

which proves that L−1 has homogeneous independent increments, and since its simple paths
are increasing and right-continuous, L−1 is a subordinator.
The Lévy measure Π of L−1 is the characteristic measure of the Poisson point process of its
jumps, ∆L−1. For each a > 0, we define Ta = inf{t ≥ 0 : ∆L−1

t > a}, the instant of the
first jump with length ` > a. From Proposition 1 part (iii), we see that Ta coincides with
the local time evaluated on the right-end point of the first excursion interval with ` > a.
Then from Proposition ??, Ta has an exponential distribution with parameter Π(a). Now,
from Lemma 3, we deduce that Π(a) = Π(a,∞).
Recall that the excursion intervals are the open intervals which appear in the canonical
decomposition of the open set cl(L)c. Using again the correspondence between the jumps
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of L−1 and the length of the excursion intervals of X , we have

L−1(t) =

∫ L−1(t)

0

1Icl(L)(s)ds +
∑
s≤t

∆L−1(s).

By Corollary 2, dL(L−1(t)) = dt, which coincides with the integral of the right. That is

L−1(t) = dt +
∑
s≤t

∆L−1(s),

which shows that the drift coefficient of L−1 is d.
Now, we suppose that Π(∞) > 0. Using similar arguments as above, we see that for every
0 < t < t′, the law of the inverse local time up to time t, (L−1(s), 0 ≤ s ≤ t), is the same
conditionally on {L−1(t) < ∞} as conditionally on {L−1(t′) < ∞} and coincides with the
law of a subordinator σ restricted to the time interval [0, t]. Since the events {L−1(t) < ∞}
and {L(∞) < t} are the same, we may rephrase the preceding assertion by claiming that
(L−1(s), 0 ≤ s < L(∞)) has the same law as the killed subrodinator (σt, t < τ), where τ
is independent of σ and has an exponential distribution with parameter Π(∞).
We denote the Lévy measure of σ by Π. Let Ta be as before and note that Ta = L(d1(a)).
Therefore we have for every a > 0,

1− exp{−tΠ(a,∞)} = P(∃s < t : ∆σs > a) = P(Ta < t|L(∞) > t)

= exp{tΠ(∞)}P(L(d1(a)) < t, L(∞) > t).

On the one hand, by Proposition ??, the law of L(d1(a)) conditionally on {d1(a) < ∞}
is the exponential distribution with parameter Π(a). On the other hand, Lemma 7 implies
that

P(d1(a) < ∞) = P(`1(a) < ∞) = 1− Π(∞)

Π(a)
.

Now applying the Markov property at d1(a) and Proposition ??, we see

P(L(d1(a)) < t,L(∞) > t) = P(L(d1(a)) < t, L(∞) > t, d1(a) < ∞)

= P
(
P
(
L(∞) ◦ θd1(a) > t− L(d1(a))

)
; L(d1(a)) < t, d1(a) < ∞

)
= P

(
exp{−(t− L(d1(a)))Π(∞)}; L(d1(a)) < t, d1(a) < ∞

)
=

(
1− Π(∞)

Π(a)

) ∫ t

0

Π(a) exp{−sΠ(a)} exp{−(t− s)Π(∞)}ds

=
(
Π(a)− Π(∞)

)
exp{−tΠ(∞)}

∫ t

0

exp{−s(Π(a)− Π(∞))}ds

= exp{−tΠ(∞)}
(
1− exp{−t(Π(a)− Π(∞))}

)
.

Hence Π(a,∞) = Π(a) − Π(∞), finally we check as in the case Π(∞) = 0 that the drift
of σ is d.
The identity for the Laplace exponent follows from the Lévy-Kintchine formula (Theorem
3) by integration by parts.



4 englishCHAPTER 1. EXCURSION THEORY FOR MARKOV PROCESSES

2. Excursion processes.

In what follows, we will deal with the Skorokhod space of càdlàg paths. Specifically,
take an isolated point ∂ which will serve as cemetery point. Consider

Ω′ = D
(
[0,∞), S ∪ {∂}

)
,

the set of paths ω : [0,∞) → S ∪ {∂} with lifetime

ζ = inf
{
t ≥ 0 : ω(t) = ∂

}
which are right-continuous on [0,∞), have a left limit on (0,∞) and stay at the cemetery
point ∂ after the lifetime ζ . This space is endowed with the Skorokhod’s topology under
which the space Ω′ is a Pollish space.

In order to start with the description of the excursion process, we first introduce the
space of excursions. Let δ > 0 and denote by U δ the set of excursion with lifetime (or
length) ζ > δ, that is

U δ =
{

ω ∈ Ω′ : ζ > δ and ω(t) 6= 0 for all 0 < t < ζ
}

,

and by U = ∪δ>0U
δ the space of excursions. These sets are endowed with the topology

induced by the Skorokhod’s topology.
For each a > 0 with Π(a) > 0, denote by n(·|ζ > a) the probability measure on Ua

corresponding to the law of the process (Xg1(a)+t, 0 ≤ t ≤ `1(a)) under P. This probability
is called the law of the excursions of X with lifetime bigger than a.

PROPOSITION 2. Let a > 0 such that Π(a) > 0. For any b ∈ (0, a) and measurable
event Λ ∈ Ua, we have

Π(a)n(Λ|ζ > a) = Π(b)n(Λ|ζ > b).

Proof: From Proposition ??, we know

Π(a)

Π(b)
= P

(
Nb(g1(a)) = 0

)
,

which is in fact the probability that the first excursion with ` > b has ` > a. Hence, the law
of the first excursion with ` > a conditioned on {Nb(g1(a)) = 0} is

Π(b)

Π(a)
n(·, ζ > a|ζ > b).

According to Proposition ??, the first excursion with ` > a is independent of Nb(g1(a))
which implies that the previous probability is equal to n(·|ζ > a), which proves the result.

A natural consequence of the above result is the existence of a unique measure n on U ,
called the excursion measure of X , such that

n(Λ) = Π(a)n(Λ|ζ > a) for every measurable Λ ⊂ Ua.

In particular, n(ζ > a) = Π(a). Another important consequence is that the excursion
measure n has the simple Markov property. More precisely, take a > 0 and note that

g1(a) + a = inf{t ≥ a : Xs 6= 0 for all s ∈ [t− a, t]}
is a stopping time. The strong Markov property of X and the definition of the excursion
measure imply that under n, conditionally on {ε(a) = x, a < ζ} (where ε denotes the
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generic excursion and ζ its lifetime), the shifted process (ε(t + a), 0 ≤ t < ζ − a) is
independent of (ε(t), 0 ≤ t ≤ a) and is distributed as (Xt, 0 ≤ t < R0) under Px.
Again our definition of the excursion measure depends on the constant c > 0 but changing
such a constant would only affect the excursion measure by a constant multiplicative factor.
Now, we introduce the excursion process of X denoted by e = (et, t ≥ 0). The excursion
process e take values in U ∪ {δ} and is given by

(1.1) et =
(
Xs+L−1(t−), 0 ≤ s < L−1(t)− L−1(t−)

)
if L−1(t−) < L−1(t),

and et = δ otherwise.
Before we establish our next result, we recall the definition of a stopped Poisson point
process. Let ∆ = (∆t, t ≥ 0) be a Poisson point process and define the random time
TB = inf{t ≥ 0 : ∆t ∈ B} for B measurable. The process (∆t, 0 ≤ t ≤ TB) is called the
Poisson point process stopped at the first point in B.

THEOREM 2. (Itô, 1970) i) If 0 is recurrent, then e is a Poisson point process with
characteristic measure n.
ii) If 0 is transient, then e = (et, 0 ≤ t ≤ L(∞)) is a Poisson point process with charac-
teristic measure n, stopped at the first point in U∞, the space of excursions with infinite
lifetime.

Proof: We first prove the case when 0 is recurrent. From Proposition 1, we have that for
every t ≥ 0, L−1(t) is a stopping time and hence (Ht, t ≥ 0), where Ht = FL−1(t), is a
filtration. We may verify that for every ε > 0 and measurable B ⊂ U ε the counting process

NB
t = card{0 < s ≤ t; es ∈ B} t ≥ 0,

is an (Ht)-Poisson process with intensity n(B). Indeed, let B1, . . . , Bk be pairwise disjoint
measurable sets, then their respective counting processes never jump simultaneously and
therefore will be independent. One then deduce that the associated random measure defined
by M =

∑
t≥0 δ(t,et) is a Poisson measure with intensity λ ⊗ n, where λ is the Lebesgue

measure on [0,∞).
For every s, t ≥ 0, NB

t+s−NB
t is the number of excursions of X in B which were completed

during the time interval (L−1(t), L−1(t + s)]. Now, we consider the process X ◦ θL−1(t)

and note that it is independent of Ht and has the same law as X (from the strong Markov
property and the fact that L−1(t) is a zero of X). Denote by L̃ and L̃−1 for the local time
and the inverse local time, respectively. The additivity of L implies that for every u ≥ 0,

L−1(t + u) = L−1(t) + inf{s ≥ 0 : L̃(s) ≥ u} = L−1(t) + L̃−1(t),

and therefore NB
t+s − NB

t = ÑB
s is the number of excursions of X̃ in B which were

completed during the time interval (0, L̃−1(s)]. As a consequence NB
t+s−NB

t has the same
law as NB

s and is independent ofHt. This shows that NB
t is a subordinator adapted to (Ht)

which increases only by jumps a.s. equal to 1, hence a (Ht)-Poisson process and hence e
is a Poisson point process.
Let ν be the characteristic measure of e. We see from Lemma 3 that for every u > 0, the
conditional law ν(·|Ua) is the law of the excursions with lifetime ζ > a, that is

ν(·, ζ > a)/ν(ζ > a) = n(·|ζ > a) = n(·, ζ > a)/n(ζ > a).

On the other hand, the local time evaluated on the right-end point of the first excursion
interval with length ` > a, L(d1(a)), is the instant of the first point of e in Ua, and we
know from Proposition ?? that L(d1(a)) has an exponential distribution with parameter
Π(a). Hence again from Lemma 3, we deduce that ν(ζ > a) = Π(a) and the measures ν
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and n coincide on Ua. Since U = ∪a>0U
a, the proof of part (i) is complete.

Part (ii) follows from similar arguments as those used above. Actually, we just need to
prove that the point process defined by

e′t =

{
δ if et ∈ U∞,
et otherwise,

is a Poisson point process with characteristic measure n(·, (U∞)c) and independent of
(TU∞ , eTU∞ ), where TU∞ is the intant of the first point in U∞. We leave the details to
the reader.

We finish this chapter with some comments on the cases of holding points and of irreg-
ular points. Assume that 0 is a holding point and consider the sequence of successive exits
from 0 and returns to 0, R0 < F1 < R1, . . . , where R0 = 0, Rn = inf{t > Fn : Xt = 0},
Fn+1 = inf{t > Rn : Xt 6= 0}. Note that the Markov property implies that XF1 6= 0 and
that F1 has an exponential distribution and is independent of the first excursion (XF1+t, 0 ≤
t < R1 − S1). Also note that on the event {R1 < ∞}, we have XR1 = 0 so iterating the
strong Markov property we see that

L =
⋃
n≥1

[Rn−1, Fn),

and there exist an obvious continuous additive functional which increases exactly on cl(L),

At =

∫ t

0

1I{Xs=0}uds, t ≥ 0.

We may define the local time at 0 as any process L = (L(t), t ≥ 0) such that dL(t) = At,
for all t ≥ 0. It is not difficult to check that the right-continuous inverse L−1 is continous
except at L(Fi), i ≥ 1 and also that it is a subordinator possibly killed with drift coefficient
d. Moreover, the excursion process is a Poisson point process possibly stopped at the instant
of the first point in U∞ which characteristic measure is proportional to the law of the first
excursion (XF1+t, 0 ≤ t < R1 − S1).
The case when 0 is irregular is more simple to describe. Consider the sequence (Rn, n ≥ 0)
of successive returns times to 0, defined by R0 = 0, Rn+1 = inf{t > Rn : Xt = 0}. We
know that R1 > 0 a.s. and on the event {R1 < ∞} the strong Markov property give us
that X ◦ θR1 is independent of (Xt, 0 ≤ t ≤ R1) and has law P. Note that (Rn, n ≥ 0) is
in fact an increasing random walk possible killed at some independent geometric random
variable in the transient case. In order to define a local time whose right-continuous inverse
is a subordinator, we introduce the sequence of independent exponentially random variable
with the same parameter and also independent of X . We define the local time of X at 0 by

L(t) =

m(t)∑
i=0

τi, m(t) = max{i : Ri < t}.

Clearly L increases exactly on L but is not adapted to the filtration (Ft) and is only right-
continuous. Discontinuity is not a problem and to circumvent the first problem, we simply
replace (Ft) by (F ′

t), with F ′
t = Ft

∨
σ(L(s), 0 ≤ s ≤ t). Then, now we have that

the right-continuous inverse is a subordinator possibly killed in the transient caseand the
excursion process is a Poisson point process possibly stopped at the first point in the set U∞.
Finally, the excursion mesure is again simply proportional to the law of the first excursion
(Xt, 0 ≤ t ≤ R1).


