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Abstract.

In this paper, we consider a new family of Rd-valued Lévy processes

that we call Lamperti stable. One of the advantages of this class is that the

law of many related functionals can be computed explicitly. In the one di-

mensional case we provide an explicit form for the characteristic exponent

and other several useful properties of the class. This family of processes

shares many tractable properties with the tempered stable and the layered

stable processes, defined by Rosiński [33] and Houdré and Kawai [16] re-

spectively. We also find a series representation which is used for sample path

simulation, illustrated in the case d = 1. Finally we provide many examples,

some of which appear in recent literature.
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1. INTRODUCTION.

In recent years the interest in having more accurate models in various do-

mains of applied probability has lead to an increasing attention paid to some spe-

cial classes of Lévy processes related to the stable law, for example: the tempered

stable and the layered stable processes introduced by Rosiński [33] and Houdré

and Kawai [16], respectively. Both families of processes have nice structural and
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analytical properties, such as combining in small times the behavior of stable pro-

cesses and in long times the behavior of a Brownian motion. They also have a

series representation which may be used for sample paths simulation.

Lamperti [25] and more recently, Caballero and Chaumont [6] studied some

type of Lévy processes which are related to the stable subordinator and to some

conditioned stable processes via the Lamperti representation of positive self-similar

Markov processes. In these papers, the authors obtain Lévy processes without

Gaussian component whose Lévy measure has the following form

π(dx) = ebxν(ex − 1)dx,

where ν is the density of the stable Lévy measure and b is a positive parameter

which depends on its characteristics. Lévy processes with this type of Lévy mea-

sure also appear in recent literature, see for instance Donati-Martin and Yor [11]

(subordinators) and Patie [29, 30, 31] (spectrally one-sided).

These previous works lead us to investigate a generalization of the Lévy pro-

cesses mentioned above and we will refer to them as Lamperti stable processes.

The importance of this new family of processes comes from the fact that they have

nice structural and analytical properties, and that in many cases, some tractable

mathematical expressions can be explicitely computed (see for instance [6, 9, 23,

29, 30, 31]).

Section 2 is devoted to Lamperti stable distributions, which are multivariate in-

finitely divisible distributions with no Gaussian component and whose Lévy mea-

sure is characterized by a triplet (α, f, σ), more precisely an index α ∈ (0, 2), a

function f with certain boundedness condition, and a finite measure σ, both defined

on the unit sphere in Rd. Then we obtain several properties of these distributions.

In section 3, we formally introduce the Lamperti stable processes and study their

properties with emphasis in the one dimensional case, where we obtain an explicit

closed form for the characteristic exponent. Motivated by the works of Rosiński
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[33] and Houdré and Kawai [16], we prove in section 4, 5 and 6 that Lamperti sta-

ble processes in small times behave like stable processes while in long times like

the Brownian motion, that they are absolutely continuous with respect to its small

time limiting stable process and that they admit a series representation that allows

simulations of their paths, respectively.

In the last section, we illustrate with several examples the presence of Lam-

perti stable distributions in recent literature.

2. LAMPERTI STABLE DISTRIBUTIONS.

Recall that the Lévy measure Π of a stable distribution with index α on Rd in

polar coordinates is of the form

Π(dr, dξ) = r−(α+1)drσ(dξ),

where α ∈ (0, 2) and σ is a finite measure on Sd−1, the unit sphere on Rd. The

measure σ is uniquely determined by Π. Conversely, for any non-zero finite mea-

sure σ on Sd−1 and for any α ∈ (0, 2) we can define a stable distribution with

Lévy measure defined as above (see Theorem 14.3 in Sato [35]).

Motivated by the form of the Lévy measure of the processes mentioned in the

introduction, we define a new family of infinitely divisible distributions that we

call Lamperti stable.

DEFINITION 2.1. Let µ be an infinitely divisible probability measure on Rd

without Gaussian component. Then, µ is called Lamperti stable if its Lévy measure

on Rd
0 := Rd \ {0} is given by

(2.1) να,fσ (B) =
∫

Sd−1

σ(dξ)
∞∫
0

1IB(rξ)erf(ξ)(er − 1)−(α+1)dr, B ∈ B(Rd
0),

where α ∈ (0, 2), σ is non-zero finite measure on Sd−1, and f : Sd−1 → R is a

measurable function such that γ := supξ∈Sd−1 f(ξ) < α+ 1.
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In the one dimensional case f as well as σ take only two values, since S0 =

{−1, 1}. In the sequel, we denote these values by f(1) := β and f(−1) := δ,

σ({1}) = c+ and σ({−1}) = c−. Then, the measure να,fσ has a density given by

c+
eβx

(ex − 1)α+1
1I{x>0} + c−

e−δx

(e−x − 1)α+1
1I{x<0}.

Note that Lamperti stable distributions satisfy the divergence condition, i.e.

∞∫
0

erf(ξ)(er − 1)−(α+1)dr =∞ for any ξ ∈ Sd−1.

Thus from Theorem 27.10 in [35], we deduce that they are absolutely continuous

with respect to the Lebesgue measure. Also note that the class of Lamperti stable

distributions and that of layered stable distributions (see [16]) are disjoint. This

follows from the following estimate

erf(ξ)

(er − 1)α+1
∼ e−(α+1−f(ξ))r as r →∞.

Lamperti stable distributions do not belong in general to the class of tempered

stable distributions. For instance, fix ξ ∈ Sd−1 and take f(ξ) ∈ ((α+1)/2, α+1).

It is not difficult to see that the first derivative of the function

q(r, ξ) =
erf(ξ)

(er − 1)α+1
r1+α,

is positive for r ∈ (0, 2− (α+ 1)/c), which implies that q(r, ξ) is not completely

monotone.

PROPOSITION 2.1. Let µ be a Lamperti stable distribution with Lévy measure

να,fσ given by (2.1). If ζ < α+ 1− γ, then∫
Rd
eζ‖x‖µ(dx) <∞,

In particular, for κ < α+ 1 and if f ≡ κ, we have∫
Rd
eζ‖x‖µ(dx) <∞ if and only if ζ < α+ 1− κ.
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P r o o f. Consider∫
{‖x‖>1}

eζ‖x‖να,fσ (dx) ¬ σ(Sd−1)(1− e−1)−(α+1)
∞∫
1

er(ζ+γ−(α+1))dr,

which is finite since ζ < α+ 1− γ. Hence by Theorem 25.3 in [35], we obtain the
desired result.
Next, we suppose that f ≡ κ. The former arguments imply that for ζ < α+ 1−κ,
the Lamperti stable distribution µ has a finite exponential moment of order ζ. In a
similar way, it is clear that∫

{‖x‖>1}
eζ‖x‖να,κσ (dx) ­ σ(Sd−1)

∞∫
1

er(ζ+κ−(α+1))dr.

This implies that
∫

{‖x‖>1}
eζ‖x‖να,κσ (dx) is finite if and only if ζ < α+ 1− κ. �

COROLLARY 2.1. Let µ be be a Lamperti stable distribution. Then∫
Rd
‖x‖pµ(dx) <∞ for all p > 0.

Our next result shows that Lamperti stable distributions belong to the Jurek

class and that in some cases they are self-decomposable. We recall briefly these

definitions. The class of infinitely divisible distributions for which the Lévy mea-

sure ν takes the following form

ν(B) =
∫

Sd−1

σ(dξ)
∞∫
0

1IB(rξ)`(ξ, r)dr, for B ∈ B(Rd
0),

is called:

(1) Self-decomposable if r`(ξ, r) is non negative, measurable in ξ ∈ Sd−1

and decreasing in r ∈ (0,∞).

(2) Jurek class if `(ξ, r) is measurable in ξ ∈ Sd−1, and decreasing in r ∈

(0,∞).

PROPOSITION 2.2. Let µ be a Lamperti-stable distribution on Rd with Lévy

measure να,fσ given by (2.1), then µ belongs to the Jurek class. Moreover, µ is

selfdecomposable if f(ξ) ¬ α+ 1/2, for all ξ ∈ Sd−1 and α ∈ (0, 2).
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P r o o f. In the case of a Lamperti stable distribution, we have

`(ξ, r) =
ef(ξ)r

(er − 1)α+1
,

so the measurability of r`(ξ, r) and `(ξ, r) is clear.
In order to prove that ` is decreasing in r > 0, we fix ξ ∈ Sd−1 and consider the
derivative of `1(·) = `(ξ, ·), i.e.

`′1(r) =
ef(ξ)r

(er − 1)α+2

(
er(f(ξ)− α− 1)− f(ξ)

)
.

Hence `′1(r) < 0 for r > 0, since f(ξ) ¬ α+ 1. This implies that µ is in the Jurek
class.

For the second part of the Proposition, we take k(ξ, r) = r`(ξ, r). Note that
the derivative of k(ξ, r) with respect to r, can be written as

ef(ξ)r

(er − 1)α+2

(
er
[
(1 + f(ξ)r − (α+ 1)r

)
− f(ξ)

]
,

Elementary calculations prove that k is decreasing for r > 0, if f(ξ) ¬ α + 1/2
for all ξ ∈ Sd−1 and α ∈ (0, 2). We leave the details to the reader. �

We note that we can find α ∈ (0, 2) such that if f(ξ) > α+ 1/2, the Lamperti

stable distribution µ is not self-decomposable.

The last part of this section is devoted to some properties of Lamperti stable

distributions defined on R. The first of which says in particular that the density of

any Lamperti stable distribution belongs to C∞.

PROPOSITION 2.3. Let µ be a Lamperti stable distribution on R, then µ has

a C∞ density and all the derivatives of the density tend to 0 as |x| tends to∞.

P r o o f. Recall that the function f takes two values, β = f(1) and δ = f(−1)
as usual. According to [28] it is enough to prove that

(2.2) g(r) =
r∫
0

x2 eβx

(ex − 1)α+1
dx, verifies that lim inf

r→0

g(r)
r2−a > 0,

for some a ∈ (0, 2). But this is immediate since for r sufficiently small, we have

r∫
0

x2 eβx

(ex − 1)α+1
dx ­ K

r∫
0

x2

xα+1
dx = Kr2−α,
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where K > 0, which implies that (2.2) is satisfied for a = α. Then the statement
follows. �

We now recall the definition of a particular class of distributions which is

important in risk theory (see for instance [12] and [21]).

DEFINITION 2.2 (Class L(q)). Take a parameter q ­ 0. We shall say that a

distribution function G on [0,∞) with tail G := 1 − G belongs to class L(q) if

G(x) > 0 for each x ­ 0 and

lim
u→∞

G(u− x)
G(u)

= eqx for each x ∈ R.

The tail of any (Lévy or other) measure, finite and non-zero on (x0,∞) for some

x0 > 0, can be renormalised to be the tail of a distribution function and by exten-

sion, then is said to be in L(q), if the associated distribution function is in L(q).

PROPOSITION 2.4. Let µ be a Lamperti-stable distribution on R, then the tail

of its Lévy measure belongs to the class L(α+1−β). In particular when µ is defined

on R+, we have that µ belongs to the class L(α+1−β).

P r o o f. First, we define

ν(u) =
1
K1

u∫
1

eβr

(er − 1)α+1
dr, u ­ 1,

where K1 =
∞∫
1

eβr

(er−1)α+1 dr. Note that ν corresponds to the distribution function

associated to the tail of the Lévy measure of a Lamperti stable distribution.
We carry on the calculations and obtain,

ν(u− x)
ν(u)

=
∞∫
u−x

eβr

(er − 1)α+1
dr
(∞∫
u

eβr

(er − 1)α+1
dr
)−1

¬ e(α+1−β)x
(
1− e−(u−x)

)−α−1
.

Similarly

ν(u− x)
ν(u)

­ (1− e−u)α+1(α+ 1− β)eu(α+1−β)
∞∫
u−x

e(β−(α+1))rdr

= e(α+1−β)x(1− e−u)α+1.
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Therefore taking the limit as u tends to∞, we deduce that ν ∈ L(α+1−β). The case
when µ is defined in R+ follows from Proposition 3.4 in Kuppelberg et al. [21]. �

3. LAMPERTI STABLE LÉVY PROCESSES.

Let us define the Lévy processes associated to a Lamperti stable distribution.

DEFINITION 3.1. A Lévy process without gaussian component, and linear

term θ, is called Lamperti stable with characteristics L = (α, f, σ, θ) if its Lévy

measure is given by (2.1).

In the sequel, we denote the Lamperti stable Lévy process with characteristics

L = (α, f, σ, θ) by XL = (XL
t , t ­ 0). Its characteristic exponent Ψ defined by

E[exp(i〈y,XL
t 〉)] = exp(−tΨ(y)) for t ­ 0, y ∈ Rd, has the form

(3.1) Ψ(y) = i〈y, θ〉+
∫
Rd0

(
1− ei〈y,x〉 + i〈y, x〉1I{‖x‖<1}

)
να,fσ (dx),

where the measure να,fσ is given in (2.1) and θ ∈ Rd.

We first study the p-th variation of Lamperti stable processes.

PROPOSITION 3.1. Let XL be a Lamperti stable process with characteristics

L = (α, f, σ, θ).

i) If α ∈ (1, 2), the process XL is a.s. of finite p-variation in every finite

interval if and only if p ∈ (α, 2).

ii) The process XL is a.s. of finite variation in every finite interval if and only

if α ∈ (0, 1).

P r o o f. (i) From Theorem III in Bretagnolle [5], we have that for p ∈ (1, 2),
the process XL is a.s. of finite p-th variation on every finite interval if and only if∫

{‖x‖¬1}
‖x‖pνα,fσ (dx) <∞.

Recall that γ := supξ∈Sd−1 f(ξ). From the form of the Lévy measure να,fσ we have

(3.2)
∫

{‖x‖¬1}
‖x‖pνα,fσ (dx) ¬ σ(Sd−1)eγ

1∫
0

rp−(α+1)dr.
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On the other hand, we have

∫
{‖x‖¬1}

‖x‖pνα,fσ (dx) ­ σ
(
{ξ ∈ Sd−1 : f(ξ) ­ 0}

) 1∫
0

rp

(er − 1)α+1
dr

+
∫

Sd−1

1I{f(ξ)<0}e
f(ξ)σ(dx)

1∫
0

rp

(er − 1)α+1
dr

­ K
(
σ
(
{ξ ∈ Sd−1 : f(ξ) ­ 0}

)
+
∫

Sd−1

1I{f(ξ)<0}e
f(ξ)σ(dx)

) 1∫
0

rp−(α+1)dr,

(3.3)

for some K > 0. Therefore XL is of finite p-th variation on every finite interval if
and only if p > α.
The proof of part (ii) is very similar. According to Theorem 3 of Gikhman and
Skorokhod [14], it is enough to prove that∫

{‖x‖¬1}
‖x‖να,γσ (dx) <∞,

if and only if α ∈ (0, 1). But this follows from (3.2) and (3.3) taking p = 1, which
concludes the proof. �

Recall that the characteristic exponent of a Lévy process has a simpler expres-

sion when its sample paths have a.s. finite variation in every finite interval. In this

case, ΨL takes the form

ΨL(y) = −i〈d, y〉+
∫
Rd0

(
1− ei〈y,x〉

)
να,fσ (dx),

where

d = −θ −
∫

{‖x‖¬1}
xνα,fσ (dx),

is known as the drift coefficient.

In what follows, we deal with real case. Define for each x ­ 0, the first passage

time of a Lévy process X

τ+
x = inf

{
t > 0 : Xt > x

}
,
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with the convention inf ∅ =∞. We say that X creeps upwards if for some x ­ 0,

P0(Xτ+
x

= x) > 0 . If −X creeps upwards, we say that X creeps downwards.

Recall that if creeping occurs at just one x then creeping occurs at all x.

PROPOSITION 3.2. Let XL be a Lamperti stable process with characteristics

L = (α, f, σ, θ).

i) If α ∈ (0, 1) and d > 0, the process XL creeps upwards.

ii) If α ∈ [1, 2) and c+ = 0, the process XL creeps upwards.

iii) If α ∈ [1, 2) and c+ > 0, the process XL does not creeps upwards.

P r o o f. The first part of our statement follows directly from part (i) of The-
orem 8 in [22].

From Proposition 3.1, for α ∈ [1, 2) the processXL is of unbounded variation.
In this case, a result due to Vigon [37] says that XL creeps upwards if and only if
the following integral converges,

(3.4)
1∫
0

xνα,fσ

(
[x,∞)

)
H(x)

dx, where H(x) =
0∫
−x

y∫
−1

να,fσ

(
(−∞, u]

)
dudy.

If c+ = 0, it is clear that the above integral is equal to 0 which implies part (ii). In
order to prove part (iii), we first study the case when c+ > 0 and c− > 0; in this
case we have

(3.5) |u|ανα,fσ ((−∞, u]) = c−|u|α
u∫
−∞

e−δx

(e−x − 1)α+1
dx ∼ c−

α
as u ↑ 0.

Then, it is not difficult to deduce that

xα−2H(x) ∼ c−
(2− α)(α− 1)α

as x ↓ 0.

Similar arguments as those used in (3.5) allows us to write

xανα,fσ

(
[x,∞)

)
∼ c+

α
as x ↓ 0.

Therefore,

xνα,fσ

(
[x,∞)

)
H(x)

∼ (2− α)(α− 1)c+

c−

1
x

as x ↓ 0,

which implies that the integral K in (3.4) diverges.
Finally, if c+ > 0 and c− = 0 the integral (3.4) obviously diverges. The proof

is now complete. �
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We recall that for a Lévy process X a point x ∈ R is regular for (0,∞) if

Px(τ (0,∞) = 0) = 1,

where τ (0,∞) = inf{t > 0 : Xt ∈ (0,∞}.

PROPOSITION 3.3. For a Lamperti stable process XL with characteristics

(α, f, σ, θ), the point 0 is regular for (0,∞) if one of these three conditions hold:

i) α ∈ [1, 2).

ii) α ∈ (0, 1) and d > 0.

iii) α ∈ (0, 1), d = 0 and c+ > 0.

P r o o f. (i) Recall from Proposition 3.1 that XL has unbounded variation for
α ∈ [1, 2). Hence from Theorem 11 in [22], we deduce that 0 is regular for (0,∞).

Now we prove parts (ii) and (iii). Suppose that α ∈ (0, 1). In this case XL

has bounded variation and again from Theorem 11 in [22], we know that the point
0 is regular for (0,∞) if the drift coefficient d > 0 or if d = 0 and the following
condition holds

(3.6)
1∫
0

xνα,fσ (dx)
H1(x)

=∞, where H1(x) =
x∫
0

να,fσ (−∞,−y)dy.

Then, it is enough to prove that (3.6) holds when d = 0 and c+ > 0 to conclude
our proof. The case when c+ > 0 and c− = 0 is immediate. For the second case,
i.e. when c+ > 0 and c− > 0, we first recall from (3.5) that

yανα,fσ ((−∞,−y]) ∼ c−
α

as y ↓ 0,

which implies that

xα−1H1(x) ∼ c−
α(1− α)

as x ↓ 0.

We observe then, that

x2eβx(ex − 1)−(α+1)

H(x)
∼ α(1− α)

c−
, as x ↓ 0,

which implies (3.6). �
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Our next result deals with the computation of the characteristic exponents of

Lamperti stable processes. Denote by

(z)α =
Γ(z + α)

Γ(z)
, for z ∈ C,

which is known as the Pochhammer symbol.

THEOREM 3.1. LetXL be a Lamperti stable process with characteristicsL =

(α, f, σ, θ).

i) If α ∈ (0, 1) ∪ (1, 2), the characteristic exponent of XL is given by

ΨL(λ) = iλθ̃ − c+Γ(−α) ((−iλ+ 1− β)α − (1− β)α)

− c−Γ(−α) ((iλ+ 1− δ)α − (1− δ)α) , λ ∈ R.

ii) If α = 1, the characteristic exponent of XL is given by

ΨL(λ) = iλθ̃ − c+

(
(−iλ+ 1− β)ψ(−iλ+ 2− β)− (1− β)ψ(2− β)

)
− c−

(
(iλ+ 1− δ)ψ(iλ+ 2− δ)− (1− δ)ψ(2− δ)

)
, λ ∈ R.

Where ψ is the Digamma function, θ̃ is given by

(3.7) θ̃ =


−d if α ∈ (0, 1),

θ −
(
c+ãβ − c−b̃δ + (c+ − c−)(1− C)

)
if α = 1,

θ −
(
c+ãβ − c−b̃δ + c+−c−

α−1

)
if α ∈ (1, 2),

where C is the Euler constant and ãβ, b̃δ are given by:

ãβ =
1∫
0

xe−x(1− e−(α−β)x)
(1− e−x)α+1

dx+
1∫
0

e−x
1− x− e−x

(1− e−x)α+1
dx+

∞∫
1

e−x

(1− e−x)α
dx,

b̃δ =
1∫
0

xe−x(1− e−(α−δ)x)
(1− e−x)α+1

dx+
1∫
0

e−x
1− x− e−x

(1− e−x)α+1
dx+

∞∫
1

e−x

(1− e−x)α
dx,

for all β, δ < α+ 1.
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P r o o f. We first consider the case where α ∈ (0, 1) and without loss of gen-
erality, we will assume that d = 0. In this case XL has finite variation (see Propo-
sition 3.1), so it can be seen as the difference of two independent Lamperti stable
subordinators with characteristics (α, β, c+) and (α, δ, c−) respectively. Then in
order to obtain ΨL(λ), it is enough to compute the characteristic exponent of the
former, i.e.

Ψβ(λ) = −

(
c+

∞∫
0

(eiλx − 1)
eβx

(ex − 1)α+1
dx

)
.

Since all the computations involved are valid for all λ ∈ R, we center our
attention in the variable β and define in the set U = {z ∈ C : <(z) < α+ 1}, the
following function F : U → C, given by

F (z) :=
∞∫
0

(eiλx − 1)
ezx

(ex − 1)α+1
dx =

1∫
0

(u−iλ − 1)uz1−1(1− u)−(α+1)du,

where z1 = α + 1− z. Integration by parts and the integral representation for the
Beta function allows us to write for <(z1) > 1

1∫
0

(u−iλ − 1)uz1−1(1− u)−(α+1)du =
−(iλ+ z1 − 1)

α

Γ(−iλ+ z1 − 1)Γ(1− α)
Γ(−iλ+ z1 − α)

+
(z1 − 1)

α

Γ(z1 − 1)Γ(1− α)
Γ(z1 − α)

.

Now, from the recurrence relation for the Gamma function Γ(x+ 1) = xΓ(x), we
obtain

F (z) = Γ(−α)
(

Γ(−iλ+ α+ 1− z)
Γ(−iλ+ 1− z)

− Γ(α+ 1− z)
Γ(1− z)

)
,

for <(z) < α, which implies our result for β < α. In order to obtain the above
identity for β ∈ [α, α+ 1) we use analytic extension arguments.

Using a series expansion, it is not difficult to see that F (z) is analytic on the
disk Dα+1 = {z ∈ C : ‖z‖ < α + 1}. On the other hand, we note that for
‖z‖ < α+ 1, we have <(−iλ+α+ 1− z) > 0 and <(α+ 1− z) > 0. Therefore
the function G : U → C, defined by

G(z) := Γ(−α)
(

Γ(−iλ+ α+ 1− z)
Γ(−iλ+ 1− z)

− Γ(α+ 1− z)
Γ(1− z)

)
,

is also analytic in Dα+1. Since the functions F and G coincide in Dα = {z ∈ C :
‖z‖ < α} and they are both analytic in Dα+1, we conclude that F ≡ G in Dα+1.
In particular, we have that F (β) = G(β) for β ¬ α+ 1, and our result follows.
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Next, we will compute the characteristic exponent for α = 1. In the following
we assume that θ = 0 and that c+ = c− = 1. Similarly as the previous case, we
can see from the form of the Lévy measure of XL, that the latter can be written
as the sum of two independent one-sided Lamperti stable processes, one spectrally
positive and with characteristics (1, β, 1) and the second one spectrally negative
and with characteristics (1, δ, 1). Hence, in order to get our result it is enough to
compute

Ψβ(λ) = −
∞∫
0

(
eiλx − 1− iλx1I{x<1}

) eβx

(ex − 1)2
dx.

In this case, let U := {z ∈ C : <(z) < 2} and define the function G1 : U → C by

G1(z) :=
∞∫
0

(
eiλx − 1− iλx1I{x<1}

) ezx

(ex − 1)2
dx = iλã+ iλI(z) + J(z)

where

ã :=
1∫
0

e−x
1− x− e−x

(1− e−x)2
dx+

∞∫
1

e−x

1− e−x
dx, I(z) :=

1∫
0

xe−x(1− e−(1−z)x)
(1− e−x)2

dx,

J(z) :=
1∫
0

(u−iλ − 1)uz1−1 + iλ(u− 1)
(1− u)2

du

and z1 = 2− z. Note that ã is finite and that I(z) is well-defined in U and analytic
in D2 = {z ∈ C : ‖z‖ < 2}. Then the main issue is to compute J(z). Making an
integration by parts in the region <(z1) > 1 we obtain,

J(z) =iλ− (z1 − 1)
1∫
0

(u−iλ − 1)uz1−2

(1− u)
du+ iλ

1∫
0

(u−iλ+z1−2 − 1)
(1− u)

du.

= iλ− (z1 − 1)A(z1) + iλB(z1).

The integrals A(z1), B(z1) can be written in terms of the Digamma function ψ,
using the following integral representation of the Digamma function

ψ(z) =
1∫
0

tz−1 − 1
z − 1

dt− C, for z ∈ C,

(where C is the Euler constant), and the recurrence relation ψ(z+1) = ψ(z)+z−1

(see for instance [15]). So for <(z1) > 1, we have

A(z1) = ψ(z1)− 1
z1 − 1

− ψ(−iλ+ z1) +
1

−iλ+ z1 − 1
,
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and for B(z1), we get

B(z1) = −ψ(−iλ+ z1 − 1)− C =
1

−iλ+ z1 − 1
− ψ(−iλ+ z1)− C.

Recalling that z1 = 2− z, we deduce

J(z) = iλ(1− C) + (−iλ+ 1− z)ψ(−iλ+ 2− z)− (1− z)ψ(2− z),(3.8)

for <(z) < 1. This proves our result for β < 1. Again, in order to extend the above
formula to the case β ∈ [1, 2) we will use analytic extension arguments.

Using a series expansion, we may prove that G1(z) is analytic in D2. More-
over, it is not difficult to see that the right-hand side of (3.8) is analytic in the same
region. This implies that G1 ≡ iλã+ iλI + J in D2. In particular, we have

ΨL(λ) = G(β) = iλ(ãβ+1−C)+(−iλ+1−β)ψ(−iλ+2−β)−(1−β)ψ(2−β),

where

ãβ =
1∫
0

xe−x(1− e−(1−β)x)
(1− e−x)2

dx+
1∫
0

e−x
1− x− e−x

(1− e−x)2
dx+

∞∫
1

e−x

(1− e−x)
dx,

for all β < 2.
Finally, we study the case α ∈ (1, 2). Similarly as in the previous cases, it is

enough to compute

Ψβ(λ) = −c+

∞∫
0

(
eiλx − 1− iλx1I{x<1}

) eβx

(ex − 1)α+1
dx.

We omit the calculations of this integral since the main ideas are similar as those
used in the case α = 1 and the case α ∈ (0, 1). We leave the details to the reader. �

It is important to note that the computation of the characteristic exponent for

the case α ∈ (1, 2) can also be obtained from the paper [31] where the author

gets the Laplace exponent of a spectrallly negative Lamperti stable process with

characteristics (α, δ, c−). These computations deal with hypergeometric functions.

Now we turn our attention to another group of properties. LetH = (Ht, t ­ 0)

be the increasing ladder height process of XL (see chapter VI in [2]) and Ĥ =

(Ĥt, t ­ 0), its decreasing ladder height process. We denote by k and k̂ the char-

acteristic exponents of H and Ĥ , which are subordinators, and we assume that XL
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drifts to −∞ and να,fσ (0,∞) > 0. Under these hypotheses, the process H is a

killed subordinator and we denote by ΠH its Lévy measure. With these notations

we get the following relation between να,fσ and ΠH .

PROPOSITION 3.4. Let XL be a Lamperti stable process with positive jumps

and characteristics (α, f) such that it drifts to −∞. Then, the tail of the Lévy

measure of H belongs to L(α+1−β) and

να,fσ (u,∞) ∼ k̂(−i(α+ 1− β))ΠH(u,∞) as u→∞.

P r o o f. The proof follows directly from Proposition 5.3 in [21] and 2.4. �

We finish this section with some properties of Lamperti stable processes with

no positive jumps.

PROPOSITION 3.5. Let XL be a Lamperti stable process with no positive

jumps and characteristics (α, δ, σ, θ), such that θ̃ = 0 in (3.7). Then,

i) there exist δ0 ∈ (1, 2) such that XL drifts to∞, oscillates or drifts to −∞

according as δ ∈ (−∞, δ0), δ = δ0 or δ ∈ (δ0, α+ 1).

ii) for δ ∈ (δ0, α+ 1), we have that there exist λ > 0 such that

(3.9) P0

(
SL∞ > x

)
∼ c

λk
e−λx, as x→∞,

where SL∞ = supt­0X
L
t , c = − log P0(H1 < ∞), k = E0(H1e

λH1 ;H1 < ∞)

and H is the increasing ladder height process.

iii) for δ ∈ (δ0, α+ 1), we have that there exist λ > 0 such that

(3.10) P0

(
I(XL) > x

)
∼ K2x

−λ, as x→∞,

where K2 is a positive constant and

I(XL) =
∞∫
0

exp
{
XL
t

}
dt.
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iv) the probability that the process XL has increase times is 1. 1

v) the process XL satisfies the Spitzer’s condition at∞, i.e.

lim
t→∞

1
t

t∫
0

P(XL
s ­ 0)ds = 1/α as x→∞.

vi) the process XL satisfies the following law of the iterated logarithm

(3.11) lim sup
x→0

XL
t Φ−1

L (t−1 log | log t|)
log | log t|

= α−α(1− α)α−1 a.s.,

where Φ−1
L denotes the right-continuous inverse of Φ−1

L .

P r o o f. (i) We know that in this case α ∈ (1, 2), so from Corollary VII.2 in
[2], the process XL drifts to +∞, oscillates or drifts to −∞ according as Φ′L(0+)
is positive, zero or negative. Hence, from the Laplace exponent of XL we have,
using the recursion formula for the Gamma and Digamma functions, the following

Φ′L(0+) = c−Γ(−α)(1 + α− δ)α(ψ(1− δ + α)− ψ(1− δ)),

= c−Γ(−α)
Γ(1 + α− δ)

Γ(3− δ)

·
(

(2− δ)(1− δ)((ψ(1− δ + α)− ψ(1− δ)) + 3− 2δ
)
,

= g(δ).(3.12)

We have from (3.12) that g(1) < 0, and g(2) > 0. On the other hand, in the interval
(1, 2), the function g is continuous and decreasing which implies that there exist
δ0 ∈ (1, 2) such that g(δ0) = 0. Thus, we deduce that XL drifts to∞, oscillates
or drifts to −∞ according as δ ∈ (−∞, δ0), δ = δ0 or δ ∈ (δ0, α+ 1).
(ii) Any Lévy process with no positive jumps which drifts to−∞ has the property
that its Laplace exponent has a strictly positive root. Hence for a Lamperti stable
process with no positive jumps and with δ ∈ (δ0, α + 1), there exists λ > 0 such
that

E0

(
exp{λXL

1 }
)

= 1,

i.e. that XL satisfies the Cramér condition. Thus, the main result in [3] gives us the
sharp estimate in (3.9).

1Recall that an instant t > 0 is an increase time for a path ω if for some ε > 0,

ω(t′) ¬ ω(t) ¬ ω(t′′) for all t ∈ [t− ε, t] and t′′ ∈ [t, t+ ε].
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(iii) First note thatXL is not arithmetic and that under our assumptions the Cramér
condition is satisfied for some λ > 0. Hence from Lemma 4 in [32], we get the
sharp estimate (3.10) for the exponential functional I(XL).
(iv) Here, we need the following estimate of the Pochhammer symbol (see for
instance [26]),

(3.13) (λ+ 1− δ)α ∼ λα as λ→∞.

From Corollary VII.9 and Proposition VII.10 in [2] we know that XL has increase
times if

∞∫
λ−3ΦL(λ)dλ <∞,

which in our case is satisfied since from (3.13), we have

(3.14) ΦL(λ) ∼ c−Γ(−α)λα as λ→∞.

(v) From (3.14), we see that ΦL is regularly varying at ∞ with index α. Hence,
the statement follows from Proposition VII.6 in [2].
(vi) Since ΦL is regularly varying at ∞ with index α, we have that its right-
continuous inverse Φ−1

L is regularly varying at ∞ with index 1/α which corre-
sponds to the Laplace exponent of the first passage time of XL (which is a subor-
dinator). Therefore, from Theorem III.11 in [2] we deduce the law of the iterated
logarithm (3.11). �

4. SMALL AND LONG TIME BEHAVIOUR.

Motivated by the works of Rosiński [33] and Houdré and Kawai [16], we study

the small and long time behaviour of Lamperti stable processes. In particular, we

will show that this class of processes share with the tempered and layered stable

processes, the peculiarity that in small time they behave like stable processes. The

convergence in distribution of processes, considered in this section, is in the func-

tional sense, i.e. in the sense of the weak convergence of the laws of the processes

in the Skorokhod space and will be denoted by “ d→ ”.

PROPOSITION 4.1. Let XL be a Lamperti stable process with characteristics
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(α, f, σ, 0) and

ηα =



0 if α = 1,∫
Sd−1

ξσ(dξ)
1∫
0

ref(ξ)r(er − 1)−(α+1)dr if α ∈ (0, 1),∫
Sd−1

ξσ(dξ)
∞∫
1

ref(ξ)r(er − 1)−(α+1)dr if α ∈ (1, 2).

Then, (
h−1/α

(
XL
ht − htηα

)
, t > 0

) d→ (Xt, t > 0) as h→ 0,

where (Xt, t > 0) is a stable process of index α.

P r o o f. The proof is similar to that of the small time behaviour of layered
stable process (see Theorem 3.1 in [16]), since for each ξ ∈ Sd−1

ef(ξ)r(er − 1)−(α+1) ∼ r−(α+1) as r → 0.

We leave the details to the reader. �

THEOREM 4.1. Let XL
t be a Lamperti stable process with characteristics

(α, f, σ, 0) and

ηα = −
∫

Sd−1

ξσ(dξ)
∞∫
1

ref(ξ)r(er − 1)−(α+1)dr.

Then,

(4.1)
(
h−1/2

(
XL
ht − htηα

)
, t > 0

) d→ (Wt, t > 0) as h→∞,

where (Wt, t > 0) is a Brownian motion with covariance matrix
∫
Rd0

xx′να,fσ (dx).

P r o o f. According to a standard result on the convergence of processes with
independent increments due to Skorokhod (see for instance Theorem 15.17 of
Kallenberg [19]), the functional convergence (4.1) holds if and only if

h−1/2
(
XL
h − hηα

) d→W1 as h→∞.

Now, we introduce the following transform for positive measures, for any r > 0

(Trν)(B) = ν(r−1B) for B ∈ B(Rd).
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Note that the random variable h−1/2XL
h is infinitely divisible and since it has finite

first moment, we may rewrite its characteristic exponent as follows;

ih
∫
Rd0

〈y, x〉1I{‖x‖­1}(Th−1/2να,fσ )(dx)

− h
∫
Rd0

(
ei〈y,x〉 − 1− i〈y, x〉1I{‖x‖¬1}

)
(Th−1/2να,fσ )(dx).(4.2)

Hence, from Theorem 15.14 of Kallenberg [19] we only need to verify the follow-
ing convergences as h increases:

(a) h(Th−1/2ν
α,f
σ ) converges vaguely towards 0 on Rd

0,

(b) for each k > 0, h
∫

‖x‖¬κ
xx′(Th−1/2ν

α,f
σ )(dx)→

∫
Rd0

xx′να,fσ (dx),

(c) for each k > 0, h
∫

‖x‖­k
x(Th−1/2ν

α,f
σ )(dx)→ 0.

We first prove (a) or equivalently

(4.3) lim
h→∞

∫
Rd0

g(x)h(Th−1/2να,fσ )(dx) = 0,

for all bounded continuous functions g : Rd
0 → R vanishing in a neighborhood

of the origin. Let g be such a function satisfying that |g| ¬ C, and that for some
δ > 0, g(x) ≡ 0 on {x ∈ Rd

0 : ‖x‖ < δ}. Let γ := supξ∈Sd−1 f(ξ), then we have∣∣∣h ∫
Rd0

g(x) (Th−1/2να,fσ )(dx)
∣∣∣

¬ h1+1/2
∫

Sd−1

σ(dξ)
∞∫
0

|g(rξ)|erf(ξ)h1/2
(erh

1/2 − 1)−(α+1)dr

¬
∫

Sd−1

σ(dξ)
∞∫
δ

|g(rξ)|(rh
1/2)3

r3
erh

1/2γ(erh
1/2 − 1)−(α+1)dr.(4.4)

On the other hand, since γ < α+ 1 it follows

lim
r→∞

r3 erγ

(er − 1)α+1
= 0,

then for ε > 0 sufficiently small, there exist M > 0 such that for all r ­M

r3erf(ξ)(er − 1)−(α+1) < ε.
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Since r > δ, we may take h >
(
M
δ

)2
in (4.4) and obtain∣∣∣h ∫

Rd0

g(x) (Th−1/2να,fσ )(dx)
∣∣∣ < ε

∫
Sd−1

σ(dξ)
∞∫
δ

|g(rξ)| 1
r3

dr

¬ εC
∫

Sd−1

σ(dξ)
∞∫
δ

1
r3

dr.

Note that the last integral in the right-hand side of the above inequality is finite and
therefore the convergence (4.3) follows.

Next, we prove part (b). First note that
∫
Rd0

‖x‖2να,fσ (dx) is finite. This implies

that the integral
∫
Rd0

xx′να,fσ (dx) is well defined. Now take k > 0 fixed, and note

that

h
∫

{‖x‖¬k}
xx′(Th−1/2να,fσ )(dx) =

∫
{‖x‖¬h1/2k}

xx′να,fσ (dx)→
∫
Rd0

xx′να,fσ (dx),

as h goes to∞, which proves part (b).
Finally we prove (c), we consider k > 0 and recall that γ = supξ∈Sd−1 f(ξ),

then∥∥∥h ∫
{‖x‖­k}

z(Th−1/2να,fσ )(dz)
∥∥∥

=

∥∥∥∥∥h1+1/2
∫

Sd−1

ξσ(dξ)
∞∫
k

rerf(ξ)h1/2
(erh

1/2 − 1)−(α+1)dr

∥∥∥∥∥
¬ (1− e−kh1/2

)−(α+1)

∥∥∥∥∥h1+1/2
∫

Sd−1

ξσ(dξ)
∞∫
k

rerh
1/2(γ−(α+1))dr

∥∥∥∥∥
=

e−kh
1/2(α+1−γ)

(1− e−kh1/2)α+1

(
hk

α+ 1− γ
− h1/2

(α+ 1− γ)2

)∥∥∥∥∥ ∫
Sd−1

ξσ(dξ)

∥∥∥∥∥ ,
which goes to 0 as h→∞ since γ < α+ 1. This completes the proof. �

5. ABSOLUTE CONTINUITY WITH RESPECT TO STABLE PROCESSES

We showed that for small times a Lamperti-stable process behaves like a stable

process, now following Rosiński [33] we will relate the law of both processes.

THEOREM 5.1. Let P and Q be two probability measures on (Ω,F) and

such that under P the canonical process (Xt, t ­ 0) is a Lamperti stable pro-
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cess with characteristics (α, f, σ, a), while under Q it is a stable process with

index α with linear term b. Let (Ft) be the canonical filtration, and assume that

f ∈ L2(Sd−1,B(Sd−1), σ). Then

i) P |Ft and Q|Ft are mutually absolutely continuous for every t > 0 if and

only if

a− b =



∫
Sd−1

ξσ(dξ)
1∫
0

rerf(ξ)(er − 1)−(α+1)dr, if α ∈ (0, 1),∫
Sd−1

ξσ(dξ)
1∫
0

r(erf(ξ)(er − 1)−(α+1) − r−(α+1))dr, if α = 1,∫
Sd−1

ξσ(dξ)
1∫
0

r(erf(ξ)(er − 1)−(α+1) − r−(α+1))dr

−
∫

Sd−1

ξσ(dξ)
∞∫
1

r−(α+1)dr, if α ∈ (1, 2).

ii) For each t > 0,
dQ
dP

∣∣∣
Ft

= eUt ,

where (Ut, t ­ 0) is a Lévy process defined on (Ω,F , P ) by

Ut = lim
ε↓0

∑
{s∈(0,t]:‖∆Xs‖>ε}

[(
e‖∆Xs‖f(∆Xs)(e‖∆Xs‖ − 1)−(α+1)‖∆Xs‖α+1

)
− t(να,fσ −Π)

(
{z ∈ Rd

0 : ‖z‖ > ε}
)]
.

In the above right hand side, the convergence holds P -a.s. uniformly in t on every

interval of positive length.

P r o o f. From Theorem 33.2 in Sato [35], we only need to verify that∫
Rd0

(eϕ(x)/2 − 1)2Π(dx) <∞,

where ϕ : Rd
0 → R is defined by dνα,fσ

dΠ (x) = eϕ(x). In particular, we have that
ϕ(rξ) = log

(
erf(ξ)(er − 1)−(α+1)rα+1

)
. Thus, we need to check

(5.1)
∫

Sd−1

σ(dξ)
∞∫
0

( erf(ξ)r(1+α)

(er − 1)(α+1)

)1/2

− 1

2

1
r1+α

dr <∞.
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By Taylor expansion and the Lagrange form for the remainder, we have (er−1) =
rerθr , where θr ∈ (0, 1). This implies

(5.2)
erf(ξ)r(1+α)

(er − 1)(α+1)
= er(f(ξ)−θr(α+1)).

Now, noting that f(ξ)− (α+ 1) ¬ f(ξ)− θr(α+ 1) ¬ f(ξ), it follows

er(f(ξ)−(α+1))/2 − 1 ¬ er(f(ξ)−θr(α+1))/2 − 1 ¬ erf(ξ)/2 − 1,

and since f(ξ) ¬ γ = supξ∈Sd−1 f(ξ), we have(
er(f(ξ)−θr(α+1))/2 − 1

)2 ¬ (er(f(ξ)−(α+1))/2 − 1
)2 ∨ (erf(ξ)/2 − 1

)2
(5.3)

Using a Taylor expansion again and (5.3), it is clear that there exists a constant
R > 0 such that if r < R, then

(5.4)
(
er(f(ξ)−θr(α+1))/2 − 1

)2 ¬ K3(f2(ξ) + 1)r2,

where K3 is a positive constant. Hence from (5.2) and (5.4), it follows that

∫
Sd−1

σ(dξ)
R∫
0

( erf(ξ)r(1+α)

(er − 1)(α+1)

)1/2

− 1

2

1
r1+α

dr

¬ K3

(
σ(Sd−1) +

∫
Sd−1

f2(ξ)dξ

)
R∫
0

r2

r1+α
dr,

which is finite because α ∈ (0, 2) and f ∈ L2(Sd−1,B(Sd−1), σ). In the case
when r > R, we have

∫
Sd−1

σ(dξ)
∞∫
R

( erf(ξ)r(1+α)

(er − 1)(α+1)

)1/2

− 1

2

1
r1+α

dr

¬ 4

(
(1− e−R)−(α+1)

∫
Sd−1

σ(dξ)
∞∫
R

er(f(ξ)−(α+1))dr + σ(Sd−1)
∞∫
R

1
r1+α

dr

)

¬ 4σ(Sd−1)

(
(1− e−R)−(α+1)

∞∫
R

er(γ−(α+1))dr +
∞∫
R

1
r1+α

dr

)
,

which is also finite because γ < α+ 1. Therefore (5.1) follows.
The proof of the second statement of the Theorem follows directly from The-

orem 33.2 of Sato [35]. �
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Note that under the conditions of Theorem 4.1 in [16], if R is another proba-

bility measure on (Ω,F) under which the canonical process X = (Xt, t ­ 0) is a

layered stable process, we have thatR|Ft andQ|Ft are mutually absolutely contin-

uous for every t > 0. From our previous result, we obtain the corresponding result

for Lamperti stable processes, i.e. that R|Ft and P |Ft are mutually absolutely con-

tinuous for every t > 0. Similar result holds for the tempered stable processes, see

Theorem 4.1 in [33].

6. SERIES REPRESENTATIONS OF LAMPERTI STABLE PROCESS

In this section, we establish a series representation for Lamperti stable pro-

cesses which allow us to generate some of their sample paths. To this end, we will

use the LePage’s method found in [27]. We first introduce the following sequences

of mutually independent random variables defined in [0, T ]. Let {Γi}i­1 be a se-

quence of of partial sums of iid standard exponential random variables, {Ui}i­1

be a sequence of uniform random variables on [0, T ], and let {Vi}i­1 be a se-

quence of iid random variables in Sd−1 with common distribution σ(dξ)/σ(Sd−1).

In order to use the LePage’s method, we consider the following function δ−1 :

(0,∞)× Sd−1 → R+ given by

δ−1(u, ξ) := inf
{
x > 0 : δ([x,∞), ξ) < u

}
,

where

δ([x,∞), ξ) =
∞∫
x

ef(ξ)r(er − 1)−(α+1)dr.

Now, let {ci}i­1 be a sequence of constants defined as follows,

ci =
i∫
i−1

E
(
δ−1(s/T, V1)V11I{δ−1(s/T,V1)¬1}

)
ds.

Then from Theorem 5.1 in [34], the process( ∞∑
i=1

(
δ−1(Γi/T, Vi)Vi1I{Ui¬t} − ci

t

T

)
, t ∈ [0, T ]

)
,
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converges uniformly a.s. towards a Lamperti stable process with characteristics

(α, f, σ) and linear term θ = 0 (in the Lévy-Khintchine formula). In particular

when f(ξ) = 1, we have that

δ−1(u, ξ) = ln(1 + (αu)−1/α),

hence the series representation for a Lamperti stable process XL with characteris-

tics (α, 1), is

XL
t

d=
∞∑
i=1

(
ln
(

1 +
(αΓi
T

)−1/α)
Vi1I{Ui¬t} − ci

t

T

)
,

where

ci = E
(
V1

) i∫
i−1

ln
(

1 +
(αs
T

)−1/α)
1I{ln(1+(αsT−1)−1/α)¬1}ds.

The figures 1,2,3,4 and 5 illustrate some cases of the sample paths generated

via the series representation.
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Figure 1. α = 0.5, f = 1, σ(1) = σ(−1) = 1.
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Figure 2. α = 1.5, f = 1, σ(1) = σ(−1) = 1.

7. EXAMPLES.

Examples of Lamperti stable processes appear in the literature at least in the

papers mentioned in the introduction ([6, 9, 11, 23, 25, 29, 30, 31]) but they also

appear (in a hidden way) in many other recent works. We will give a quick overview

of some of them, not pretending to be exhaustive in this list.

7.1.- As we mentioned in the introduction the starting point of our work are

the processes studied in [25] and [6]. Here we make the link between these proceses

and our definition of Lamperti stable processes.

In [6, 25], the Lévy processes are introduced via the Lamperti transformation of

positive self-simliar Markov processes (PSSMP). The example treated in [25] is

the case when the PSSMP is a stable subordinator of index α ∈ (0, 1) starting

from a positive position. According to our definition, its associated Lévy process

is a Lamperti stable subordinator with characteristics α, β = 1 and c− = 0.

In [6], the first PSSM to be considered is the stable Lévy processes killed when it

first exits from the positive half-line, here denoted by (X∗,Px). The second class
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Figure 3. α = 1, f = 1, σ(1) = σ(−1) = 1.

corresponds to that of stable processes conditioned to stay positive (see [8, 10]),

that we denote by (X↑,Px). Finally, the third class of PSSMP is that of stable pro-

cesses conditioned to hit 0 continuously (see [8]), here denoted by (X↓,Px). Their

corresponding Lévy processes under the Lamperti transformation are denoted by

ξ∗, ξ↑ and ξ↓, respectively. These three classes of Lévy processes are Lamperti

stable processes and the characteristics of their Lévy measure are as follows:

i) for ξ∗, we have that β = 1 and δ = α,

ii) for ξ↑, we have that β = αρ+ 1 and δ = α(1− ρ),

iii) for ξ↓, we have that β = αρ and δ = α(1− ρ) + 1,

where ρ is the negativity parameter defined by ρ = P(X1 < 0).

Let us apply the results if section 4 to these examples ξ∗, ξ↑ and ξ↓.We start with a

stable process (X,Px), x > 0, of index α and we obtain,

X
kill−→ X∗

LT−→ XL norm−→ XL
h

d→ X as h→ 0

X
kill−→ X∗

DT−→ XC LT−→ XL norm−→ XL
h

d→ X as h→ 0



28 M.E. Cabal lero et al.

0 1 2 3 4 5 6

0
50

10
0

15
0

20
0

t

X
(t

)

Figure 4. α = 0.5, f = 1, σ(1) = 1, σ(−1) = 0.

where kill, LT , DT and norm means killing , the Lamperti representation of

pssMp, Doob-transform or conditioning, and normalization of a given process,

respectively. Moreover XC is the conditioned process (to be positive or to hit 0

continuously), XL stands for any of the Lamperti stable processes ξ↑, ξ↓ and ξ∗,

and XL
h is the normalization of each of them given in Proposition 4.1. In the same

spirit we could also write, using Theorem 4.1,

X
kill−→ X∗

LT−→ XL norm−→ XL
h

d→W as h→∞,

X
kill−→ X∗

DT−→ XC LT−→ XL norm−→ XL
h

d→W as h→∞,

where W is a centered brownian motion.

7.2.- In [29, 30, 31], the author deals with the class of Lévy processes with no

positive jumps which turn out to be Lamperti stable processes with characteristics

δ = 1− ϑ and c+ = 0.

7.3.- In [4], there are two examples related to the factorization

e law= eατ−αα .
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Figure 5. α = 1.5, f = 1, σ(1) = 0, σ(−1) = 1.

where e is an exponential variable independent of the α-stable variable τα. The

first of which is related with the exponential functional of a killed subordinator Z1

whose Laplace exponent is given by

φ1(λ) =
Γ(αλ+ 1)

Γ(α(λ− 1) + 1)
.

It is easy to see that Z1 is a Lamperti stable subordinator with characteristics

(α, α, σ, θ), σ({1}) = α/Γ(1− α), with no drift and killing rate 1/Γ(1− α).

The Laplace exponent of the second subordinator, here denoted by Z2, is given

φ2(λ) = λ
Γ(α(λ− 1) + 1)

Γ(αλ+ 1)
,

and can be expressed in terms of the Laplace exponent ΦL of a Lamperti stable

subordinator XL with characteristics (1 − α, 1, σ, θ), σ({1}) = α/Γ(1 − α) and

with no drift. The relation between them is φ2(λ) = αΦL,2(αλ).

7.4.- There is another example in [4] which is related to the factorization

e law= γαs J
(γ)
s ,
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where s ­ α, γs is a Gamma r.v. with parameter s and J (γ)
s denotes a certain

r.v which is independent of γs. In this case, the killed subordinator related to the

exponential functional which has the same moments as the γs, can be expressed as

the sum of two independent Lamperti stable procesess.

7.5.- In the paper [36] in section 5.3, the authors found the Lévy measure of

the inverse of the local time at 0 of an Ornstein Uhlenbeck process driven by a

standard Brownian motion and parameter γ > 0. This measure is given by

ν(t) =
γ3/2eγt/2√

2π(sinh(γt))3/2
=

(2γ)3/2e2γt

√
2π(e2γt − 1)3/2

.

Its corresponding Laplace exponent is computed in [36] and it turns out to be a

Lamperti stable distribution with characteristics (1/2, 1,
√
γ/π).

This computation as well as the three former examples can be carried out by rec-

ognizing that behind those measures there is a related Lamperti stable distribution

and applying our Theorem 3.1 to calculate the corresponding Laplace exponent.

7.6.- Kyprianou and Rivero [24] constructed Lévy processes with no positive

jumps around a given possibly killed subordinator which plays the role of the de-

scending ladder height process. The Example 2 in [24] is related to the Lamperti

stable subordinator XL with characteristics (α, β, σ, θ) with zero drift and killing

rate given by K = c+Γ(−α)Γ(1− β + α)/Γ(1− β).

They prove that there is a subordinator, here denoted by Y , with no drift and no

killing rate. The Laplace exponent of Y satisfies

φY (λ) =
λ

φL(λ)
, for λ ­ 0,

where φL is the Laplace exponent of XL. Thus, its parent process Y P has Laplace

exponent

ψY P (λ) =
λ2Γ(1− β + λ)

Γ(1− β + λ+ α)
.
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According to Kyprianou and Rivero and the following identity

∞∫
x

eβx

(ex − 1)α+1
dx = e−x(α+1−β) ∑

n­0

(α+ 1)n(α− β)n
(n!α+ 1− β)n

e−n,

its associated scale function is given by

WY P (x) = −Kx+ c+

∑
n­0

(α+ 1)n(α− β)n
n!(α+ 2− β)n

(
1− e−(α+2−β+n)x

)
, x ­ 0.

Now Y ∗,P , the parent process of the Lamperti subordinator XL with killing rate

K, is a spectrally negative Levy process which drifts to ∞ and whose Laplace

exponent is given

ψY P,∗(λ) =
c+Γ(−α)λΓ(λ+ 1− β + α)

Γ(λ+ 1− β)
.

It is important to note that the processes Y P and Y P,∗ are the sum of two indepen-

dent Lamperti stable processes and that they have been recently used for the risk

neutral stock price model by Eberlein and Madan [13].

7.7.- In the papers [9] , [23], [31] the main processes in study are Lamperti

stable processes. All these papers share the property that many useful explicit cal-

culations are be carried out.
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Springer, Berlin, 2006.

[21] A.E. Kyprianou, C. Klüppelberg and R. Maller, Ruin probabilities and overshoots
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