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Abstract

In this paper, we propose a feedback-based control approach to execute the time

optimal motion trajectories for a differential drive robot. These trajectories are

composed of straight lines and rotations in place. We show that the evolution of

the position of a single landmark over time, in a local reference frame, makes it

possible to track a prescribed time-optimal robot’s trajectory, based on feedback

of the landmark’s position. We also show that the closed-loop system is an

exponentially stable one with a nonvanishing perturbation, and that globally

uniformly ultimately boundedness of the tracking errors can be achieved. The

two main results of this work are: 1) Our approach leverages visual servo control

type of methods with tools from optimal control for executing time-optimal

trajectories in the state space based on feedback information. 2) The approach is

able to work with the minimum number of landmarks–only one–this represents a

necessary and sufficient condition for landmark-based navigation. Experiments

in a physical robot, a nonholonomic differential drive system equipped with an

omnidirectional laser sensor, are shown, which validate the proposed theoretical

modelling.
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Control, Optimal Control.

1. Introduction

This paper addresses the problem of controlling the trajectory of a differen-

tial drive robot (DDR) based on feedback. A DDR is a nonholonomic system [1],

it has two wheels with two independent motors which allows the robot to rotate

in place. A nonholonomic system cannot move instantaneously in all directions.5

The nonholonomic property of a system can be formally determined using the

Frobenius Theorem [1]. The information used as feedback corresponds to the

position of a single landmark in a local reference frame defined by the robot.

The considered trajectories are composed by straight lines segments, and

rotations in place, which are the time optimal motion primitives for bounded10

velocity differential drive robots [2]. This paper is related to the works in [3, 4],

in which feedback control laws for a DDR are presented. As a consequence

of Brockett’s condition [5] that states that no smooth feedback control can

stabilize the complete state of the system, the authors of [3, 4] show that pure

state feedback stabilization of the vehicle around a given terminal configuration15

is not possible. However, they show that trajectory tracking is possible, more

specifically, the authors show that stabilization of the vehicle’s configuration

around a virtual vehicle used as reference is possible. Similar to the works in

[3, 4], we also propose control laws for trajectory tracking, however, differently

to the works in [3, 4], we do not use the configuration of a virtual vehicle as20

feedback information. Such a feedback scheme basically requires to know the

DDR’s position and orientation in a global reference frame, which is equivalent

to solving a robot localization problem in a global reference frame. Instead, we

directly use the location’s coordinates, (xL, yL), of a single landmark measured

in a local reference frame, and an estimation of the robot’s orientation, θ, in a25

reference frame defined by the initial robot’s pose. To estimate θ, a geometric

method is proposed, based on the evolution of the landmark’s position over the

local reference frame.
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This work is also related to the problem of robot’s localization [6, 7]. It is

well known that using a single landmark is not possible to totally determine the30

location and orientation of a robot in a two dimensional plane [7, 8]. However,

in this work we show that the evolution of the landmark position over a local

reference frame makes it possible to track a prescribed time-optimal robot’s

trajectory, based on feedback of the landmark’s position. Indeed, we show that

the accuracy of the robot’s orientation provided by the proposed geometric35

method or observer, depends on the frequency at which the landmark’s position

over the local reference frame is available.

The present work is also related to landmark-based robot navigation [9, 10,

11] and particularly to controlling a mobile robot using visual servo control

[12, 13, 14]. Indeed, in Section 7, a control law is proposed, which is similar40

to the one that one gets using visual servoing for trajectory tracking [15]; note

that, as in [15, 16], it is common to rely on an eye-to-hand setting to perform

such task. Our approach is more similar to an eye-in-hand setting, nonethe-

less, in this work we do not use a video camera and no perspective projection

is involved; instead, we determine the pose of the landmark with respect to45

the robot using a laser range finder that directly provides the distance to the

landmark and its direction with respect to the heading of the robot. Moreover,

the usage of an on-board range finder allows to avoid camera-related complicat-

ing matters such as: estimation of calibration parameters and depth of visual

features [17], computation of homographies [18, 21] or trifocal tensors [19], the50

need of supplementary signals provided by additional sensors such as inertial

measurement units [20], etc. It is also worth to mention that we are especially

interested in tracking time-optimal trajectories in the state space, which is not

usually the case in visual servoing approaches.

Regarding the proposed control laws, the main results are the following.55

Our closed-loop model corresponds to an exponentially stable system with a

nonvanishing perturbation. A main idea along this work is to use as much as

possible information directly measured with the sensor on-board the robot as

the feedback information to control the system, instead of estimating the com-
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plete robot state in a global reference frame, which can be a complex task, in60

which is hard to rapidly obtain, robust and accurate estimations. Indeed, an

important motivation of this work is not to reconstruct the whole state of the

robot in a global reference frame, which can be a complex task, in which it

is hard to rapidly obtain robust and accurate estimations, instead we propose

to use local landmark coordinates (x, y) directly measured in the robots local65

reference frame with a laser range finder. However, our method needs the abso-

lute θ orientation for the feedback controller. That orientation is estimated in

a reference frame defined by the initial robot position and orientation using the

geometric estimator presented in Section 6.1.

The ability of navigating based on feedback can be used in several practical70

applications, since it makes the approach more robust to uncertainty compared

with an open loop scheme. For instance, a mobile robot that delivers packages

or a mobile agent that carries a camera and sends video to a human user wearing

a virtual reality headset for remote telepresence. An important advantage of

the approach is that it does not require external sensors to estimate the robots75

pose, which implies to modify the environment and compromises the robot’s

autonomy. Furthermore, the capability to move traveling minimum time trajec-

tories has advantages, such as potentially reducing battery or fuel consumption,

performing the aforementioned packages delivery task quickly, or saving time

to show larger areas to a human user in the telepresence task. Additionally, to80

the authors knowledge, the problem of leveraging feedback-based control with

optimal control tools for executing time-optimal trajectories in the state space

has not received enough attention.

The remainder of this paper is organized as follows. First, we present pre-

vious related work and the main contributions of this work. In Section 2, the85

time-optimal trajectories for the DDR, and the corresponding landmark mo-

tions in a local reference frame defined attached to the robot, are presented.

The problem statement is provided in Section 3. In Section 4, the motion

model for the DDR is presented, along with the kinematics of the landmark in

the local reference frame. In Section 5, the nonlinear observability of the system90
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is discussed. In Section 6, a geometric method to estimate the robot’s orien-

tation θ is provided. In Section 7, the closed-loop control laws for the systems

are obtained. Experiments in a physical robot are presented and discussed in

Section 9. Finally, Section 10 concludes the paper and presents possible future

work.95

Related work

Our work is related to optimal control methods used in robotics, for instance

[23, 24, 2, 25, 26, 27, 28], however, those methods typically execute the motion in

open loop. Our work proposes a feedback-based method, which uses information

directly from a laser range finder.100

In [2], the time optimal trajectories for differential drive vehicles in the unob-

structed plane are provided. The wheel angular velocities are bounded, but may

be discontinuous. The authors prove the existence of optimal controls, derive

the structure of optimal trajectories, and develop an algorithm for producing a

time optimal trajectory between any two configurations. Every nontrivial opti-105

mal trajectory is composed of straight segments alternating with turns about the

robots center. In [9], the authors have shown that the shortest distance path

for a DDR, in the absence of obstacles, for landmark-based navigation with

field-of-view constraints, are composed of three motion primitives: straight-line

segments, rotations in place without translation and logarithmic spirals. In that110

same work, a characterization of the shortest paths for the system based on a

partition of the plane into disjoint regions was also provided. This synthesis at-

tempted to obtain the globally optimal paths in the absence of obstacles. Later,

in [10], the authors have shown that the synthesis presented in [9] was incom-

plete, and in [10] the complete partition of the plane and the corresponding115

globally optimal paths in the absence of obstacles were provided. In [11], the

authors have determined the necessary and sufficient conditions for the exis-

tence of a path such that the system is able to maintain one landmark visibility

in the presence of obstacles, the authors have also extended this result to the

problem of planning paths guaranteeing visibility among a set of landmarks,120
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e.g. to observe a given sequence of landmarks or to observe at each point of the

path at least one element of the landmarks set.

In [3, 4], the authors show that pure state feedback stabilization of the

vehicle around a given terminal configuration is not possible. However, feedback

stabilization of the position of any vehicle’s point remains possible. The problem125

of trajectory tracking in Cartesian space is also considered; the authors show

that stabilization of the vehicle configuration around the configuration of a

virtual reference vehicle becomes possible as long as the reference vehicle remains

moving.

In [6], an efficient method for localizing a mobile robot in an environment130

with landmarks is presented. It is assumed that the robot can identify these

landmarks and measure their bearings relative to each other. Given such a

noisy input, the algorithm estimates the robots position and orientation with

respect to the map of the environment. The algorithm makes efficient use of a

representation of the landmarks by complex numbers. The algorithm runs in135

linear time with respect to the number of landmarks. In [7], the application of

the extended Kalman filter to the problem of mobile robot navigation in a known

environment is presented. Observability analysis using nonlinear theory has

been done in [29], for the problem of mobile robot localization using landmarks.

In [30], a method is proposed to localize a robot using a single landmark, the140

robot is equipped with an omnidirectional camera, and the authors assume an

orthographic projection model for the camera. Under this setting, the authors

propose a landmark model, which is designed to have a three-dimensional, mul-

ticolored structure and the projective distortion of the structure encodes the

distance and heading of the robot with respect to the landmark. Indeed, in145

that work the authors assume the landmark has orientation. For that rea-

son, together with the orthographic projection assumption, it is possible for

the authors to localize the robot using a single landmark. But this limits the

application scenarios, since this represents more required information, namely,

the landmark’s orientation. In this work, the proposed method does not require150

the landmark to have an orientation. Besides, another difference with the cur-
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rent work is that in [30] the authors do not propose controllers to execute the

robot’s trajectories based on the landmark location; in this work, we propose

such controllers.

In [31], the authors pointed out the equivalence between localizing a non-155

holonomic DDR and the system observability. Similar to the work proposed in

this paper, the authors of [31] propose a method to localize the robot based on

a single landmark. However, in that work, the linear and angular velocities of

the robot together with the robot’s orientation θ are assumed to be measurable;

indeed, the authors assume that θ is measured with a compass. In contrast, in160

this work we do not need to know or measure the robot velocity and orientation

θ. Instead, we propose a method to estimate θ, nonetheless, the method as-

sumes that the robot moves in an arc of circle of constant radius, which is a fair

assumption for a time interval sufficiently small (see Section 6.1). Furthermore,

in [31] the authors neither propose an approach to control the robot trajectories;165

in this work, we propose such an approach to move the DDR along the shortest

time trajectories.

Recent state of the art approaches about robot localization use neural net-

works as a main tool, for instance [32] and [33]. The work in [32] proposes an

approach for robot navigation and localization based on learning with variational170

neural networks. Regarding the navigation task, a variational neural network

is used, raw camera images and an image of a noisy un-routed roadmap are

the inputs. The output to be learned is a probability distribution over inverse

curvature to navigate at each time instance. Regarding the localization part,

the conditional structure of the network updates a posterior belief about the175

vehicles pose P (θp|I,M) based on the relation between the map and the road

topology seen from the vehicle, where θp is the pose in the map (position and ori-

entation), I is the visual input and M the map. In the work in [33], the authors

propose a network architecture that employs a multitask learning approach to

exploit the inter-task relationship between learning semantics, regressing 6-DoF180

global pose and odometry. The approach simultaneously embeds geometric and

semantic knowledge of the world into the pose regression network. Nonethe-
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less, as all data-driven approaches, those methods rely on the availability of a

training data-set, which is not the case for our proposed method.

In [12], a visual servo tracking controller is developed for a monocular camera185

system mounted on an underactuated wheeled mobile robot subject to nonholo-

nomic motion constraints. A prerecorded image sequence (e.g., a video) of three

target points is used to define a desired trajectory for the robot. Some works,

for instance [18], have followed a similar approach where a prerecorded image

sequence is utilized to track a predefined trajectory. In our setting, since the190

time-optimal trajectory to achieve a configuration can be precomputed [2], the

evolution of the landmark as seen by the range sensor can also be precomputed,

thus, our approach does not need to actually move the robot and prerecord a

measurements sequence for later use.

In [13], the authors present a visual servo controller that effects optimal195

paths in the sense of Euclidian distance for a nonholonomic differential drive

robot with field-of-view constraints imposed by the vision system. The control

scheme relies on the computation of homographies between current and goal

images. The method does not use the homography to compute estimates of

pose parameters, instead, the control laws are directly expressed in terms of200

individual entries in the homography matrix. Individual control laws for the

three path classes that define the language of optimal paths: rotations in place,

straight-line segments, and logarithmic spirals are developed. None of those

works address the particular problem of tracking time-optimal trajectories; their

optimality criteria is different from ours. In [14], the authors propose the use of205

dynamic pose estimation exploiting the 1-D trifocal tensor in the task of driving

a mobile robot to a desired location specified by a target image. A position-

based visual-servo control drives the robot to a desired position and orientation

through smooth velocities by tracking particular parabolic trajectories.

1.1. Main contributions210

As it was previously mentioned, this work is related to several robotics prob-

lems, such as landmarks based navigation, robot localization, and feedback-
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based control. In summary, in this broad context, the main contributions of

this work are the following ones:

1. We propose a feedback control scheme that seeks to execute time-optimal215

primitives in the state space. The proposed approach is able to work with

the minimum number of landmarks–only one, with no orientation–, which

represents a necessary and sufficient condition for feedback based optimal

navigation based on landmarks.

2. A geometric method for computing the robot’s orientation θ is proposed,220

whose accuracy depends on the frequency in which the landmark position

over the local reference frame is available.

3. We show that the control system is an exponentially stable system with a

non-vanishing perturbation, and that globally uniformly ultimately bound-

edness of the tracking errors can be achieved.225

4. Experiments in a physical robot show the validity of the theoretical anal-

ysis.

2. Time-optimal trajectories for the DDR and landmark motions in

a local reference frame

The time-optimal trajectories for a DDR in the absence of obstacles [2], are230

composed by motion primitives that are either rotations in place (clockwise ro-

tation y or counter-clockwise rotations x) or straight line motions (forward

motion ⇑ or backward motion ⇓). In [2], those time-optimal motion primitives

are concatenated and organized within nine possible symmetry classes of opti-

mal trajectories (indexed as A, B, C, . . ., H, I), yielding globally time-optimal235

trajectories between any two DDR poses in an obstacles-free environment. The

trajectories are comprised of at most five motion primitives. The authors of

[2] already provide an algorithm that determines the time-optimal trajectories

between a given start and goal position. That algorithm will be used along the

present work to resolve the trajectories to be tracked (we refer the reader to [2]240

for further details).
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(a) Global reference frame. (b) Local reference frame.

Figure 1: A local reference frame centered in the robot with the y-axis aligned with the

robot’s heading, is considered. Subfigure (a) shows a trajectory generated by a sequence of

time optimal motion primitives. In that subfigure, two landmarks are shown. Their motion

in the local reference frame is shown in Subfigure (b).

On the other hand, the sequence of time-optimal motion primitives not only

defines a trajectory for the DDR, but also defines a path for the landmark in

a local reference frame relative to the DDR, whose y-axis is aligned with the

robot’s heading. Since the time-optimal motion primitives are either rotations245

in place or motions in a straight line for the DDR, the paths generated for

the landmarks are alternated concatenations of arcs of circle and straight line

segments (see Figure 1). If the DDR rotates in place clockwise an amount of

α degrees with respect to a global reference frame, then, in the local reference

frame the landmark will move counterclockwise on an arc of circle, whose end-250

points define an angle of α degrees. If the DDR moves forward in a straight

line of length d, then, in the local reference frame, the landmark will move in a

straight line of length d parallel to the heading of the DDR, and its y-coordinate

will decrease.
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3. Problem statement255

Let R2 be the free obstacle environment with a reference frame assigned to

it, and which is further referred as the realistic space. Such reference frame

is assumed to be centered at the initial position of the robot and with the y-

axis aligned with the initial robot’s heading. The addressed robotic system is

a differential drive robot (DDR) that moves within the realistic space, in which260

there is one landmark. The DDR is equipped with a laser that measures the

relative distances from the center of the DDR to the landmark, as well as the

orientation of the landmark with respect to the current heading of the DDR.

It is also considered that using the methodology from [2], a time-optimal path

in the realistic space–comprised of rotations in place and straight line motions,265

has already been computed and given to the robot. The goal is to control the

DDR’s execution of the rotations in place, and straight line motions that form

the reference time-optimal trajectory, using as feedback information the relative

location of the landmark provided by the laser.

We stress the fact that, for our addressed problem, we neither want nor need270

to localize the robot in an absolute global reference frame.

4. Motion model

In this section we start by presenting the kinematic model of the robot, that

is, a differential drive robot. Next, we proceed by presenting the kinematic

model of the landmark with a local reference fixed to the DDR, which will be275

further referred to as the reduced space.

4.1. DDR kinematic model in the realistic space

The configuration of the DDR is denoted by (xR, yR, θ) ∈ R2 × S1, where

(xR, yR) ∈ R2 are the coordinates of the center of the DDR in the realistic space,

and θ ∈ S1 is the orientation of its heading (see Figure 2(a)). The landmark L280

has coordinates (xL, yL) ∈ R2.
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The kinematics of the DDR is given by the next system of equations

ẋR = v cos θ,

ẏR = v sin θ,

θ̇ = ω.

(1)

(a) DDR and landmark in the

realistic space.

(b) Reduced Space.

Figure 2: Model of the considered differential drive robot, the robot’s configuration and

landmark’s position in the reference frame of the realistic space, and reduced space.

4.2. Kinematic model of the landmark in the reduced space

To address the problem, we will consider a local reference frame fixed on the

DDR, with origin on the center of the DDR and with the y-axis aligned with the

current robot’s heading. This local reference frame is known as reduced space285

[34]. Working in the reduced space has the advantage that the system can be

represented as x(t) = (x, y) ∈ R2.

Given a configuration for the DDR q = (xR, yR; θ) ∈ R2 × S1, we can

associate to it a transformation Tq : R2 × {1} → R2 × {1} defined by

Tq =


sin θ − cos θ 0

cos θ sin θ 0

0 0 1




1 0 −xR
0 1 −yR
0 0 1

 , (2)

which is an isometric bijection. Note that R2 × {1} can be identified with

the plane R2. So, Tq transforms the plane R2 into the plane Tq(R2). In other

words, if xR is a point on the realistic space with coordinates xR = (xR, yR), then
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Tq(xR, yR, 1) are the coordinates of xR in the reduced space. Let L = (xL, yL) be

the landmark’s coordinates in the realistic space, then its Cartesian coordinates

in the reduced space are given by Tq(L), this is

x = (xL − xR) sin(θ)− (yL − yR) cos(θ),

y = (xL − xR) cos(θ) + (yL − yR) sin(θ).
(3)

If (ρ, φ) represents the polar coordinates of L in the reduced space, then we

will consider the angle φmeasured with respect to the heading of the DDR, in the

positive sense if it is clockwise, and in the negative sense if it is counterclockwise.

In this manner, the relation between the Cartesian coordinates and the polar

coordinates of L is given by

x = ρ sinφ

y = ρ cosφ
⇔

ρ =
√
x2 + y2,

φ = tan−1(xy ).
(4)

It is clear that, given a configuration p = (xR, yR, θ) for the DDR in the

realistic space, the transformation Tp defined as in Eq. (3) is unique, besides, this

transformation is bijective. So, if (xL, yL) are the coordinates of the landmark in290

the realistic space, then there is a unique pair of coordinates (x, y) in the reduced

space, such that Tp(xL, yL) = (x, y). However, the reciprocal is not true. Given

a point (x, y) in the reduced space, there exist an infinite set {(xR, yR, θ)α} of

configurations for the DDR, which defines a set of transformations {Tα} such

that Tα(xL, yL) = (x, y) for all α.295

Since the reduced space is a local reference frame fixed on the DDR, the

motion of the DDR in the realistic space generates a relative motion of the

landmark L in the reduced space. The kinematics of L in the reduced space

depends completely on the kinematics of the DDR in the realistic space (refer

to Eq. (1)). Substituting ẋR, ẏR and θ̇ from Eq. (1) in the time-derivatives of

x and y, we obtain the kinematic model of L in the reduced space given by the

following equations

ẋ = ωy,

ẏ = −ωx− v.
(5)

Appendix A presents in detail the derivation of Eq. (5).
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The kinematics of the landmark L can also be expressed in polar coordinates

as follows

ρ̇(t) = −v(t) cosφ(t),

φ̇(t) = ω(t) +
v(t) sinφ(t)

ρ(t)
.

(6)

Appendix B presents in detail the derivation of Eq. (6).

5. Non-linear observability

The existence of an infinite set {(xR, yR, θ)α} of configurations for the DDR

given a point (x, y) in the reduced space, suggests that the system may not be300

observable. Next, we introduce a series of concepts to present the definition of

non-linear observability given in [35].

Considering a system Σ

ẋ = f(x, u),

y = g(x),
(7)

where u ∈ Ω, a subset of Rl, x ∈ Rm, y ∈ Rp, f and g are C∞ functions, and

assume the trajectories of Σ to satisfy the initial condition x(t0) = x0. The

input-output map of the pair (Σ,x0), the indistinguishable property between305

states x0 and x1, and the observability of a system Σ, are defined as follows.

Definition 1. Let (u(t), [t0, t1]) be the admissible input that gives rise to a

solution (x(t), [t0, t1]) of ẋ = f(x, u(t)) satisfying the initial condition. This, in

turn, defines an output (y(t), [t0, t1]) by y(t) = g(x(t)). Then, the input-output

map of Σ at x0 is denoted by

Σx0 : (u(t), [t0, t1]) 7→ (y(t), [t0, t1]). (8)

Definition 2. A pair of states x0 and x1 are indistinguishable, denoted x0Ix1,

if (Σ,x0) and (Σ,x1) realize the same input-output map, i.e., for every admis-

sible input (u(t), [t0, t1])

Σx0 : (u(t), [t0, t1]) = Σx1 : (u(t), [t0, t1]). (9)
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Definition 3. Σ is said to be observable at x0 if I(x0) = {x0} and Σ is observ-

able, if I(x) = {x} for every x ∈ M . I(.) returns the set of indistinguishable

elements of the argument.

Through Theorem 1, we show that the system studied in this paper is not310

observable in the sense of Definition 3 from [35]. See Appendix C for its proof.

Theorem 1. The system Σ:

ẋR = v cos θ,

ẏR = v sin θ,

θ̇ = ω,

g(q) = Tq(L),

(10)

is not observable.

Remark 1. The system Σ from Eq. (10) is not observable, however, using the

methodology from Section 6.1, the true orientation angle θ of the robot measured

in a global reference frame can be approximated, provided that the used reference315

frame is centered at the origin of the initial robot’s position and with its y-axis

aligned with the initial DDR’s heading. Furthermore, the time optimal trajec-

tories of the DDR can be executed based on feedback information corresponding

to the landmark location in the reduced space (see Section 7).

Remark 2. Even though in the initial configuration, the reference frame is320

assumed to be centered at the origin of the initial robot’s position and with its

y-axis aligned with the initial DDR’s heading, the method proposed in Section

6.1 is able to keep estimating the correct robot’s orientation as time elapses and

the robot moves changing its pose.

Note that the fact that the system is not observable in continuous time does325

not prevent one to propose an estimator in the discrete case, see for instance

[14].

Considering the tracking task given to the DDR, the optimal trajectories

are defined in the realistic space and consist of rotations in place and straight
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line motions. Concerning rotations in place, the angle of the landmark pose330

in polar coordinates in the reduced space suffices to perform that motion. In

regard to straight line motions, recall that the motion of the robot is perceived

by the on-board laser range finder as a motion of the landmark in the reduced

space, in other words, the straight line trajectory in the realistic space maps to

a trajectory of the landmark in the reduced space. However, there are infinitely335

many trajectories in the realistic space map to the same landmark trajectory

in the reduced space, for instance, see the cyan trajectories in Figure 3. Thus,

to resolve the correct trajectory that the DDR needs to track, the orientation

of the robot in the realistic space is utilized. In that manner, by means of the

position (x, y) of the landmark in the reduced space and the robots orientation340

θ in the realistic space, the DDR is able to identify and track the correct straight

line reference. However, notice that θ is unknown, hence, in the next section,

we provide a geometric methodology to estimate it.

Figure 3: A series of straight line trajectories in the realistic space (cyan trajectories in the

left figure) map to the same landmark trajectory in the reduced space (cyan trajectory in

the right figure). Nonetheless, the trajectories in the realistic space can be uniquely identified

through the robots orientation θ that is required to track each of them. The desired trajectory

is the one labeled as θ∗.
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6. A method to estimate the robot’s orientation

Below, in Section 7, we show that it is possible to execute the optimal motion345

primitives based on the location (x, y) of the landmark in the reduced space, plus

the orientation θ of the DDR with respect to the initial robot pose, namely, in

the realistic space. The landmark coordinates in the reduced space are directly

measurable by the robot’s sensor (a laser range finder). Unfortunately, this is

not the case for the variable θ in the realistic space. As shown in Figure 3,350

there is an indistinguishable space (dotted blue circle) given a reading of the

landmark location in the reduced space. The method is based on geometric

reasoning and is capable of estimating the angle θ in the reference frame defined

by the initial robot’s position and orientation. To do that, we need to consider

some properties of the transformation defined in Eq. (2). For that, we give the355

next definition.

Definition 4. Let C be a circumference in the realistic space. We say that the

configuration q = (xR, yR, θ) is tangent to C if the straight line determined by

the point (xR, yR) and slope tan(θ) is tangent to the circumference C at the point

(xR, yR). We say that C is on the left (right) side of the configuration q, if C is360

on the left (right) side of the DDR at the configuration q.

6.1. Methodology to calculate θ

The methodology to estimate θ approximates the robot’s motion between

consecutive sensor’s measurements, making use of the robot’s movements that

are either straight lines or arcs of circles. More precisely, based on two consec-365

utive position readings of the landmark in the reduced space, the methodology

fits either a straight line motion or an arc motion of the robot, such that the fit

motion would generate the respective landmark positions in the reduced space.

Then, the fit motion is then used to estimate the resulting robot’s orientation.

Below, the detailed methodology to compute θ is presented.370

First of all, for t = 0, we have q0 = (xR0, yR0, θ0), the initial configuration

of the DDR, which is assumed to coincide with the origin of the used reference
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(a) Line segment bisec-

tor

(b) Circumference C0

Figure 4: Line segment bisector and circumference C0

frame and with the DDR’s heading aligned with the positive y-axis, namely,

q0 = (0, 0, π2 ). Its transformation is given as Tq0 , and L0 = (x0, y0) := Tq0(L)

as the landmark’s pose in the reduced space. Analogously, for t = t1, we have375

L1 = (x1, y1) as the landmark’s pose in the reduced space. As it was mentioned

before, there are infinitely many configurations {qα}α∈A such that their associ-

ated transformations, {Tq}α∈A, satisfy L1 = Tqα(L) = Tqβ (L) ∀ α, β ∈ A, with

α 6= β. Therefore, the correct configuration needs to be determined. To do that,

we proceed to study the following two cases:380

Case I: The DDR has moved on a straight line.

In this case, at t1 the configuration of the DDR is q1 = (xR1, yR1, θ1), where

θ1 = θ0.

Case II: The DDR has moved on an arc of circle.385

To determine θ1 for the DDR, we present the next methodology.

1. Determine the circumference in the realistic space on which the

DDR moved.

Since the DDR is assumed to have moved on a circle arc, then the DDR

is on a circumference C0 in the realistic space. Tq0(C0) is a circumference390

in the reduced space with center on the x-axis. Thus, L0 and L1 are on a

circumference concentric to the circumference Tq0(C0). Let s be the line

18



segment in the reduced space whose end points are L0 and L1, and let `

be the line segment bisector of s, then L0 and L1 are on the circumference

with center c0 = ` ∩ x-axis (see Figure 4(a)). Since Tq0 is an isometric395

bijection, then the circumference C0 has its center on the point T−1q0 (c0)

and radius r0 = ‖c0‖. Therefore, the circumference C0 is determined (see

Figure 4(b)).

2. Determine all possible poses for the DDR in the realistic space.400

As previously mentioned, L1 = (x1, y1) is the landmark in the reduced

space at the time t = t1, or in polar coordinates, L1 = (ρ1, φ1). Con-

sequently, in the realistic space the distance between the center of the

DDR and the landmark L is ρ1. Therefore, the pose of the DDR is on the

circumference C̄1 in the realistic space, which has center L and radius ρ1405

(see Figure 5). Since the DDR is on C0 but also on C̄1, then C0 ∩ C̄1 6= ∅.

Notice that C0 ∩ C̄1 has one or two points. All the possible poses for the

DDR are the points in the set C0 ∩ C̄1.

3. Determine the current configuration of the DDR in the realistic410

space.

Recall that the DDR is assumed to have moved tangentially on the cir-

cumference C0. Let {pa, pb} = C0∩C̄1 in the realistic space. The Cartesian

and Polar coordinates of pa are denoted as (xa, ya) and (ρa, θa), respec-

tively. Also, let ua be the unit vector tangent to C0 at the point pa, and

let va the vector from the point pa to the landmark L. Then, the angle

αa between ua and va can be calculated by

αa =
arccos(ua · va)

‖va‖
.

Equivalent definitions are considered for pb, αb, ub and vb. Once angles

αa and αb have been computed, they need to be compared with the angle

φ1 from landmark L1 = (ρ1, φ1) in the reduced space, see Figure 5. If

αa = φ1, then θ1 = θa + π
2 and q1 = (xa, ya, θ1), and if αb = φ1, then415
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θ1 = θb + π
2 and q1 = (xb, yb, θ1). Finally, compute Tq1 accordingly.

4. Repeat the process.

These steps are repeated to compute θ2, θ3, etc., in which the computation

of θi makes use of the consecutive position readings of the landmark in

the reduced space, Li and Li−1, and the estimation of Tqi−1
.420
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Figure 5: Circumference C0 shown in red and circumference C̄1 is shown in blue.

Remark 3. This procedure can be interpreted as determining a relative orienta-

tion with respect to the initial robot’s configuration. This is enough to solve the

stated problem. That is, the goal is to control the execution of rotations in place

and straight line motions using as feedback information the location of a single

landmark, such that the resulting trajectories track the time-optimal reference425

trajectories.

Recall that it is assumed that the sensor that returns the landmark position

in the reduced space, gets a measurement each ∆t units of time. Let n be the
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sampling rate of the sensor, and let N be an upper bound to it. Theorem 2

presents a result determining the accuracy of the methodology to calculate θ.430

To obtain such result, it is assumed that for a sufficiently small ∆t, the DDR

motion from a configuration qi−1 to a configuration qi, can be described by an

arc of a circle, which is a reasonable assumption as proved in Proposition 1.

Proposition 1. Assume that the DDR executes a trajectory during the time

interval [0, τ ], and that the angular speed of the DDR is a Lipschitz function.435

Let ∆t = τ
n and ti = ti−1 + ∆t for i = 1, ..., n. If n→∞, then the DDR motion

tends to be an arc of circle in the interval [ti, ti + ∆t] for i = 1, ..., n.

Proof. Since ω is a Lipschitz function, there exists Lω > 0 such that

|ω(t+ ∆t)− ω(t)| ≤ Lω|(t+ ∆t)− t| = Lω∆t.

If n→∞, then ∆t → 0. Thus, |ω(t+ ∆t)− ω(t)| → 0, namely, the angular

speed tends to remain constant. Therefore, the DDR will move on an arc of a

circle during the time interval [ti, ti + ∆t] for i = 1, ..., n.440

Theorem 2. Let the robot’s linear and angular velocities, v and ω, be Lips-

chitz functions. There exists an N such that if n ≥ N , then the error of the

methodology to estimate the robot’s orientation θ in the realistic space, is equal

to zero.

Proof. Let q = (xR, yR, θ) be an initial configuration for the DDR, and let

(u(t), [σ, τ ]) be an admissible input. Since v and ω are Lipschitz functions, the

admissible input (u(t), [σ, τ ]) generates a smooth trajectory T = {(xR(t), yR(t))}t∈[σ,τ ]
in the plane where the robot is moving. For each t ∈ [σ, τ ] we can get the oscu-

lating circle Ct at the point (xR(t), yR(t)). The circle Ct has the property that

it matches the curve in a neighborhood Vt of the point (xR(t), yR(t)). Since

xR and yR are continuous, there exist tr such that (xR(s), yR(s)) ∈ Vt for all

s ∈ [t − tr, t + tr]. Since the robot trajectory T is compact, we can define

tmin = min{tr : t ∈ [σ, τ ]}. For the Archimedean property1, there exist N ∈ N

1In general, the Archimedean property applies to a given quantity if for any two values A
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such that |τ−σ|N < tmin. Let ∆t = |τ−σ|
N . Thus, we have the partition of the

interval

[σ, τ ] = [t0 = σ, t1] ∪ [t1, t2] ∪ · · · ∪ [tN , tN+1 = τ ].

In this way, the trajectory T can be built with N arcs of circle, one for each445

subinterval [ti, ti+1]. Since, by construction the geometric estimator method-

ology presented in Section 6.1 used to estimate θ, moves the DDR on arcs of

circle, hence it is possible to adjust the robot trajectory using a concatenation

of arcs of circle. Therefore, if n ≥ N , then each element that constitutes the

robot trajectory is exactly on a sector of an arc of circle and consequently the450

error of the methodology is equal to zero.

If n < N , or in the case that the robot’s trajectory is not comprised of

arcs of circle and line segments, then an error will result in the estimation of

θ. Nonetheless, according to Proposition 1, the latter case can be alleviated by

increasing n, yielding a decrease on the error of the estimation of θ. Section 8.1455

presents simulations that provide insight on how the accuracy of the estimation

of θ is affected when n < N , thus, the DDR has not moved following an arc

between samples of the geometric estimator.

In the next section, we propose control laws for both cases when there is no

error on the estimation of the robot orientation θ, and when this error exists.460

7. Control laws

In this section, the proposed control laws are presented. We start by elab-

orating on the case of executing straight line motions. Subsequently, the case

corresponding to the execution of rotations in place is presented.

7.1. Straight line motion primitive465

In this case, the angle θ is needed to correct the robot motion. Let us assume

that we want the DDR to move forward in a straight line to travel a distance d in

and B of this quantity such that A < B it is always possible to find an integer m such that

Am > B.
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the time interval Iτ = [0, τ ]. First, we assume that the condition of Theorem 2

is fulfilled, namely, that the error of the estimation of θ is zero; in this case our

result regarding the proposed controller is Theorem 3. Later, we assume that470

there is a remaining error in the estimation of θ; in this second case our result

regarding the proposed controller is Theorem 4.

Let x(0) := x0, y(0) := y0 and y(τ) := yτ . Then, we must keep x(t) = x0

for all t ∈ I, while y changes from y0 to yτ := y0 − d.

In this way, the desired values for x, y and θ are

x∗(t) = x0,

y∗(t) =


d
2 [1 + cos(πtτ )] + yτ t ≤ τ,

yτ t > τ,

θ∗(t) = θ0.

(11)

Therefore, the tracking errors in each coordinate are given by

ex(t) = x(t)− x0,

ey(t) = y(t)− y∗(t),

eθ(t) = θ(t)− θ0.

(12)

and in vector form e = [ex, ey, eθ]
T .475

Substituting ẋ and ẏ from Eq. (5), the time-derivatives of the errors ex-

pressed in vector form are


ėx(t)

ėy(t)

ėθ(t)

 =


0 y(t)

−1 −x(t)

0 1


 v(t)

ω(t)

+


0

−ẏ∗(t)

0

 . (13)

with

ẏ∗(t)=

−
dπ
2τ sin(πtτ ) t ≤ τ,

0 t > τ.

(14)

Or in its simplified form

ė = LV + R, (15)
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then, we can solve for

V = L+ [ė−R] . (16)

In Eqs. (15) and (16), the matrix L is analogous to the so called interaction

matrix commonly present in visual servo controllers [36], R is a known pertur-

bation depending on the trajectory to track, e is the error that one wants to

drive to 0, and L+ is the pseudo-inverse matrix of the matrix L defined as

L+ =
1

y2(t) + 1

 −x(t)y(t) −y2(t)− 1 −x(t)

y(t) 0 1

 . (17)

Since we want to have closed-loop error dynamics with the form

ė = −Ke, (18)

where K = diag(k1, k2, k3). Substituting Eq. (18) into Eq. (16) yields

V = L+ [−Ke−R] . (19)

Expanding Eq, (19) results in

V =

 v(t)

ω(t)

 =
1

y2(t) + 1


k1ex(t)x(t)y(t)

+ [k2ey(t)− ẏ∗(t)]
[
y2(t) + 1

]
+k3eθ(t)x(t)

−k1ex(t)y(t)− k3eθ(t)

 , (20)

for all t ∈ [0, τ ]. Next, we proceed to prove the stability of controller (20) by

means of Proposition 2 (with its Corollary 1) and Lemma 1, whose proofs are480

presented in Appendix D.

Proposition 2. Given matrix LL+, xTLL+x > 0 for all x = (a, b, c)T ∈ R3

with b 6= 0.

Corollary 1. Let x be the error vector e = (x−x0, y−y∗, θ− θ0)T . Condition

eTLL+e ≥ 0 holds for all e. Additionally, eTLL+e > 0 for all e with y−y∗ 6= 0.485

24



Due to disturbances of diverse nature affecting the whole system (noise in

actuation, noise in measurements, varying environmental conditions, etc.), the

tuple (x, y, θ) can be modeled as a random variable. Therefore, consider the

sample space Ω of outcomes that map to tuples (x, y, θ).

Lemma 1. Consider the experiment in which the DDR is controlled to follow490

a straight line motion using controller (20). Let Ai ⊂ Ω denote the event of

getting a tuple (x, y, θ) in which y − y∗ = 0, and let Āi be the complement of

Ai, i.e., Āi = {y− y∗ 6= 0}. Then, if the experiment keeps running indefinitely,

P [Āi i.o.] = 1.

Theorem 3. There exists a matrix of control gains for the controller (20) that495

guarantees that the tracking error vector e, as defined in (12), converge globally

asymptotically to the origin.

Proof. Consider the following candidate Lyapunov function

V =
1

2
||e||2 =

1

2
eTe, (21)

which accomplishes V(0) = 0 and is positive definite. Substituting the control

law V in its simplified form from (19) into Eq. (15), yields the closed-loop system

dynamics

ė = LL+(−Ke) + [−LL+ + I]R. (22)

Then, the time-derivative of the candidate Lyapunov function is given by:

V̇ = −eTKLL+e + eT [−LL+ + I]R. (23)

The second term can be seen as a vanishing perturbation, since by (14)

limt→∞R = 0 and the only concern is to verify the negative definiteness of the

first term. The product of matrices LL+ is not an identity matrix; however, from500

Corollary 1, eTLL+e ≥ 0 for all e, and eTLL+e > 0 for all e with y − y∗ 6= 0.

Furthermore, from Lemma 1, condition y − y∗ 6= 0 happens infinitely often.

Therefore, there exists a matrix of control gains K > 0 sufficiently large, which

allows the controller to manage the couplings between errors introduced by the
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product LL+, such that global asymptotic convergence of the tracking errors505

toward 0 can be ensured.

Remark 4. The fact that coming across a tuple (x, y, θ) with y − y∗ = 0 has

zero probability, does not mean that such a scenario is impossible. Nonetheless,

it suggests that it occurs so infrequently that we are unlikely to find it in practice.

Indeed, during testing, that scenario has not been encountered.510

It is important to mention that it is necessary to consider the error induced

by the inaccuracy of the method used to estimate the value of the robot orien-

tation θ in the realistic space. Indeed, such a method acts as an observer over

the robot orientation θ (Section 6.1). Thus, the estimation error over θ, refer

to it as εθ, will be modelled through the error vector ê given by

ê =


x(t)− x0
y(t)− y∗(t)

θ(t)− θ0 + εθ

 , (24)

or in its simplified form,

ê = e + ε, (25)

with

ε = (0 0 εθ)
T , where εθ = θ̂(t)− θ(t), (26)

being θ̂(t) the estimation done by the proposed geometric method and θ(t) the

real robot orientation. Obtaining the derivative of Eq. (25) with respect to time,

results in the next error dynamics

˙̂e = LV + R + ε̇. (27)

Since ê is measured instead of e, the aforementioned controller acquires the

form

V = L+ [−Kê−R] . (28)

Theorem 4. There exist a matrix of control gains for the controller (28) that

guarantees that the tracking error vector ê, as defined in Eq. (24), is globally

uniformly ultimately bounded (GUUB).
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Proof. Consider the following candidate Lyapunov function:

V(ê) =
1

2
||ê||2 =

1

2
êT ê (29)

which accomplishes V(0) = 0 and is positive definite. Substituting V from

Eq. (28) into Eq. (27), yields the closed-loop system dynamics

˙̂e = LL+(−Kê) + [−LL+ + I]R + ε̇. (30)

The second term can be seen as a vanishing perturbation, since by Eq. (14)

limt→∞R = 0. Therefore, the closed-loop dynamics can be simplified as

˙̂e = −KLL+ê + ε̇. (31)

This results in a system with a nonvanishing perturbation ε̇. Given the definition

of ε in Eq. (26), ε̇ depends on the robot trajectory, the velocities at which it

is traveling, and the estimated orientation θ̂. Since the method that computes

θ̂ assumes that the robot moves in arcs of circles and the ending orientation

of an arc is the starting orientation of the next arc, then, the time derivative

of the orientation of a DDR that moves on a circle is bounded in a bounded

domain. Besides, regarding the robot trajectory, it is assumed that the robot

linear velocity v and the robot angular velocity ω are Lipschitz functions, hence,

the robot angular velocity θ̇ = ω is also bounded in a bounded domain as well as

the variation of the estimation error ε. Therefore, we have that the perturbation

is bounded, i.e ‖ε̇‖ ≤ ε. Then, the time-derivative of the candidate Lyapunov

function is given by

V̇(ê) = −êTKLL+ê + êT ε̇

≤ −êTKLL+ê + ε‖ê‖
(32)

Although that matrix LL+ is positive definite almost everywhere according

to Corollary 1, the right-hand side of the inequality in (32) is not negative515

definite because, near the origin, the positive linear term ε‖ê‖ dominates the

negative quadratic term. However, there exists a sufficiently large matrix gain

K which shall yield globally uniformly ultimately boundedness of the tracking

error vector ê [22].
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Remark 5. It is plausible that if the system gets close to a state that produces520

an error ê such that êTLL+ê = 0, which requires y − y∗ = 0, the disturbances

could dominate no matter how large the gain is. However, in practice, it has

been observed that this does not appear to be an issue. This could be due the

fact that y∗ varies as a function of time, thereby helping to keep the state of the

system outside of the neighbourhood where the disturbances dominate.525

7.2. Rotation in place

In this case, the feedback information needed to control the robot is re-

trievable in the reduced space. For this case, we will use the kinematics of the

landmark given in polar coordinates (refer to Eq. (6)). The steps to get the con-

troller for a rotation in place are completely analogous to those of the previous530

case of a straight line motion. Let us assume that we want the DDR to rotate

in place an angle α clockwise (counterclockwise), in a time interval I = [0, τ ].

Then, the landmark must move counterclockwise (clockwise) on an arc of circle

in the reduced space. The final points of this arc in conjunction with the origin,

form an angle whose value is α.535

Let φ(0) := φ0 and φ(τ) := φτ = φ0 − α. Then, we want φ to change from

φ0 to φτ . The desired value for φ is

φ∗(t) =
α

2
[1 + cos(

πt

τ
)] + φτ . (33)

The error for φ is given by

eφ(t) = φ(t)− φ∗(t), (34)

then, the time-derivative for the error is

ėφ(t) = φ̇(t)− φ̇∗(t), (35)

with

φ̇∗(t) = −απ
2τ

sin

(
πt

τ

)
. (36)

Since the objective is to execute a pure rotation in place without any trans-

lation, the linear velocity v(t) is fixed to 0. Considering the expression for φ̇(t)
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given by Eq. (6) with v(t) = 0, the derivative of angle φ(t) simplifies to

φ̇(t) = ω(t). (37)

Substituting φ̇∗(t) and φ̇(t) from Eqs. (36) and (37) into Eq. (35), we get

ėφ(t) = ω(t) +
απ

2τ
sin

(
πt

τ

)
. (38)

Equating ėφ(t) = −k3eφ(t), yields

ω(t) = −k3eφ(t)− απ

2τ
sin

(
πt

τ

)
, (39)

therefore, our controller for executing rotations in place is

V =

 v(t)

ω(t)

 =

 0

−k3eφ(t)− απ
2τ sin

(
πt
τ

)
 . (40)

Theorem 5. The controller (40) with k3 > 0 guarantees that the error eφ(t)

dynamics is exponentially stable.

Proof. Substituting ω(t) from Eq. (39) into Eq. (38), results in the closed-loop

system dynamics

ėφ(t) = −k3eφ(t). (41)

Eq. (41) corresponds to a first-order and exponentially stable system, whose

solution is eφ(t) = eφ(0) e−k3t. The result follows.

8. Simulations540

In this section, simulations are presented in which we evaluate the perfor-

mance of the geometric method to estimate the robot’s orientation and the per-

formance of the proposed control law to perform straight lines motion primitives.

Additionally, simulations are provided to illustrate the benefits of performing

time-optimal trajectories.545
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8.1. Evaluation of the methodology to estimate θ

To evaluate the estimation of θ of our geometric method, a disturbed straight

line trajectory of the DDR was simulated for 5 secs. The simulation was com-

puted at 20 Hz in which noise was added to the DDR inputs. At each iteration

of the simulation loop, the DDR inputs were kept constant, hence, the DDR550

performed an arc of circle at each iteration. Considering the simulation dura-

tion of 5 secs running at 20 Hz results into N = 100 (see Section 6.1). Figure 6

presents some results about the error on the estimation θ, εθ, which is defined

as the difference between the estimated value and the real θ. Figure 6 presents

three estimations in which the geometric method is executed at different fre-555

quencies: One at 20 Hz, corresponding to n = N . Another at 4 Hz, thus, n < N

as n = 20. And a third one at 1 Hz, again with n < N since n = 5. The respec-

tive mean squared errors (MSE) are 3.85e-07, 7.3e-4, and 7.8e-3 respectively;

hence, from the MSE and Figure 6, it can be observed that accuracy of the

proposed geometric method increases as its sampling frequency increases. Even560

more, in all cases, εθ was kept within ±0.2 radians (±11.5 degs), see Figure 6.

8.2. Straight line controller evaluation

The present section provides a performance analysis of our straight line con-

troller in the presence of disturbances. Table 1 shows that analysis. The results

are organized in two main groups: open loop and closed loop. The open loop565

results refer to the DDR behaviour when input with the proper velocities to

produce a straight line motion, more precisely, the velocities are set as v = 1ms

and w = 0. Such results provide a baseline on the deviations from the reference

trajectory, induced by the considered disturbances. The closed loop results cor-

respond to the application of our feedback control law, which is fundamentally570

described by Eq. (20). In both cases, the task given to the DDR is to track a

3m straight line, thus, in the reference y∗(t), a value d = 3 is set with τ = 3.

The shown statistics correspond to the mean squared error (MSE) – along

the executed trajectory – for the landmark coordinates (x, y) in the reduced

space and the DDR heading θ in the realistic space, each of which are the575

30



t (sec)

(r
a
d
)

Figure 6: Errors on the estimation of θ performed by the geometric method from Section 6.1.

The method is run at different sampling frequencies to depict how the estimation improves as

the frequency increases. (The estimated θ remains the same as the previous estimated value

until a new landmark reading is available for the geometric estimator to be executed.)

errors that our controller seeks to drive towards 0. In a similar vein, equivalent

statistics are presented for the DDR position in the realistic space (xR, yR),

that is, considering the error between the robot’s position and the straight line

reference, which evaluates the actual tracking task that the robot must fulfil.

Additionally, errors for the terminal positions (TE) are also reported. The580

latter is defined as the Euclidean distance at time t = 3 between the reference

position and the actual robot position.

The considered disturbances are as follows. First, equal disturbances on the

DDR’s input velocities, v and w, are contemplated. The analyzed disturbances

are: zero mean Gaussian noise (G) with a standard deviation of 0.5, a periodic585

disturbance (P) defined as 0.5 sin(2πt), and a constant bias (C) of 1 unit. Sec-

ond, disturbances on the measured variables are also added to emulate noise in

the system sensors (NM). More specifically, Gaussian noise with mean of 0.1

(to emulate a bias) and a standard deviation of 0.1 is added to (x, y) and θ;

subsequently, such perturbed signals are used to compute the controller inputs.590
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Open loop Closed loop

G P C ND G P C G + NM P + NM C + NM

MSE ex 0.345 0.820 2.100 0 0.021 0.172 0.027 0.031 0.181 0.035

MSE ey 0.064 0.176 0.380 2.7e-05 0.001 0.022 0.004 0.013 0.032 0.015

TE (x, y) 0.680 0.273 2.640 0.008 0.086 0.474 0.158 0.175 0.473 0.180

MSE exR 0.006 0.019 0.0461 0 1.6e-4 1.1e-4 0.001 6.2e-4 3.6e-4 1.6e-4

MSE eyR 0.054 0.061 0.047 2.7e-5 3e-4 0.002 7.9e-4 0.015 0.020 0.022

TE (xR, yR) 0.160 0.243 0.514 0.008 0.027 0.042 0.067 0.137 0.085 0.165

MSE eθ 0.004 0.009 0.029 0 2.8e-4 0.002 2.6e-4 0.018 0.021 0.020

Table 1: Straight line controller performance.

As a note, the Gaussian statistics correspond to the average on 30 trials.

From the open loop columns, it can be observed that the constant bias

was the disturbance that alter the most the system’s behaviour, followed by

the periodic disturbance and the Gaussian noise, with the exception of the

terminal position error where the Gaussian noise was worse than the periodic595

disturbance. In the No Disturbances (ND) column of the closed loop statistics,

it can be observed that the proposed straight line controller is able to track the

reference in the absence of disturbances, achieving errors on the order of 10−3

or bellow – a gain K = I was employed. The next three columns also show that

despite the presence of disturbances, the controller was able to diminish the600

MSE and TE significantly compared to the open loop results; this was achieved

with K = 5 ·I. The only statistic that has greater magnitude than its open loop

counterpart is the TE (x, y) for the periodic disturbance; however, notice that

the TE (xR, yR) in the realistic space also diminished, which is more relevant

for the actual task. The same tendency, of reducing the MSE and the TE while605

applying the controller compared with the open loop statistics, is still observed

in the case where noise in the measurements (+NM) is also added on top of

the motion disturbances. As conclusion, the proposed straight line controller is

capable of handling a considerable level of disturbances, both in the movement

of the system and in its sensors.610
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8.3. Benefits of performing time-optimal trajectories

In the present section, we present series of simulations to assess the execution

of optimal versus non-optimal trajectories. Since the time-optimal trajectories

for the DDR are composed of rotations in place and straight line motions, we

propose to make the DDR to travel two types of curves: a straight line and an615

arc of circle. The former is part of time-optimal trajectories, while the latter

is not. Both the straight line and the arc of circle trajectories have the same

start and end positions (start point (0,0) and end point (0,2), where the arc

is half circle connecting those points). During the execution of both types of

trajectories, uniform noise is added to the DDR inputs to simulate disturbances620

in the robots motion.

A first set of 30 trials were executed. The results show that, since the arc

of circle is longer, the noise acts during a longer period of time, which in turn

leaves the DDR in a farther position from the desired goal than the straight

line. (In average, the perturbed straight line motion ended 0.055 m away from625

the end point (0,2), while the perturbed arc of circle ended 0.078 m from the

same point.) Such phenomenon of the disturbances deviating longer trajectories

could spread to other processes such as estimations of the state, as shown below.

In a second set of 30 trials, two estimators for the orientation of the final

pose in the trajectories are tested: the proposed geometric estimator and ori-630

entation estimation through numerical simulation of odometry. The obtained

results are presented in Table 2, which show the mean absolute error (MAE)

between the real final orientation and the angle estimations performed with the

two aforementioned methods. As expected, the estimation errors are smaller

when the motion corresponds to a straight line, that is, to a time-optimal mo-635

tion primitive. To summarize, the execution of time-optimal trajectories allows

disturbances to occur during shorter periods of time, improving the performance

of other processes that might be applied during the execution of the trajectories.
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Straight line Arc of circle

MAE Odometry 2.691 ◦ 3.251 ◦

MAE Geometric estimator 0.032 ◦ 2.897 ◦

Table 2: Average errors between the real final orientation and the estimated through odometry,

and between the real final orientation and the estimated through the geometric method. Errors

are presented for both the straight line and the arc or circle trajectories.

9. Experiments

In the experiments, we have used a Pioneer P3-DX robot, which is a differ-640

ential drive system. In our implementation, all the algorithms run directly on

the robot’s computer, which is a Pentium M at 1.8 Ghz with 1 GB of RAM. The

operating system is Linux using ROS. The control cycle runs at 12.5 Hz. The

software is programmed in C++. An omnidirectional sensor was implemented

using two laser range finders Hokuyo model URG-04LX, which were mounted on645

the robot in opposite directions, see Figure 7(a). The landmark is the cylinder

shown at the left of Figure 7(b).

Our implementation of the landmark’s detector is simple; it uses the raw

data obtained with the lasers to detect two consecutive angular measurements

with a difference in distance larger than a given threshold. If this jump in the650

measurements occurs, then a gap is detected. If two gaps occur separated by a

distance close to the landmark diameter, then the landmark is detected. This

simple landmark detector was coded to test the whole method: the estimator

of the robot orientation θ (see Section 6), and controllers (see Section 7) in the

real robot.655

In the present experiments, the DDR is commanded to execute a time-

optimal trajectory-previously computed using the algorithm provided in [2]-,

which corresponds to a rotation in place, followed by a straight line motion,

and ends with a second rotation in place. We compare the resulting trajectories

based on whether the estimation of the robot orientation θ, is obtained with660

the robot’s odometry, or is obtained using the method presented in Section 6.
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(a) The robot and

the omnidirectional

sensor.

(b) The robot and the landmark, a white cylinder

Figure 7: The robot is a Pioneer P3-DX. The used omnidirectional sensor is two Hokuyo

URG-04LX LIDARs mounted in opposite directions. The landmark is the white cylinder

shown at the left part of Figure 7(b).

In both cases, the controllers presented in Section 7 are used to execute the

trajectory, based on the single landmark location on the local reference frame

and the robot orientation on a reference frame defined by the initial robot pose.

Figure 8(a) shows the control signals, v (linear velocity) and ω (angular665

velocity), in the case when the odometry is used to obtain the robot’s orientation

θ. In that figure, we label as SL the portion of the chart that corresponds to

the execution of the controller that performs the straight line motion. Similarly,

RP corresponds to the chart’s portion when the rotations in place controller is

active. Figure 8(b) shows the same control signals in the case when the method670

presented in Section 6 is used to estimate the robot’s orientation θ. Again, we

label as RP the chart’s portion related to the rotations in place controller, and

as SL the portion related to the straight line motion controller. Figure 8(a) and

8(b) show that in both cases, the resulting control signals generated with the

controllers presented in Section 7 are continuous.675

For the case when the odometry is used to obtain the robot’s orientation

θ, Figure 9(a) shows the errors in the x, y coordinates in the reduced space,
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(b) Geometric estimator from Section 6.

Figure 8: Linear v (m/sec) and angular ω (rad/sec) velocities, when the odometry or the

method presented in Section 6 are used to estimate θ.

and orientation θ in the realistic space, resulting from tracking the desired ref-

erence in the straight line motion scenario. The errors in the coordinates are

shown in meters and the error in the orientation θ is given in radians. Simi-680

larly, Figure 9(b) also shows the errors in the x, y coordinates, and the robot’s

orientation θ, while executing the straight line motion, but for the case when

the method presented in Section 6 is used to estimate θ. Again, the errors in

the x, y coordinates are in meters and the error in θ is given in radians. The

errors in the x, y coordinates are smaller (in the order of few centimeters) when685

the geometric estimator from Section 6 is used, particularly for the x coordi-

nate. The error in θ is also smaller (about one order of magnitude less) for the

geometric estimator. In addition, the error in θ obtained with the odometry is

more noisy. Finally, keep in mind that the design of the controller (28), from
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a theoretical point of view, only guarantees bounded remaining errors but not690

zero-error. This explains the remaining errors observed in Figure 9.
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(b) Geometric estimator from Section 6.

Figure 9: Errors resulting from tracking the desired reference in the straight line motion

scenario, in terms of the x, y coordinates in the reduced space, and the robot orientation θ in

the realistic space. Errors are presented when either the odometry or the geometric estimator

from Section 6 are used to estimate θ.

In the case of a rotation in place, the feedback information needed to control

the robot is directly measurable in the reduced space. Figure 10 shows the

tracking errors for the rotation in place scenario, in terms of the distance to

the landmark ρ and the landmark orientation φ relative to the robot’s heading.695

The errors are in the order of a few centimeters for ρ and some centesimal of

radians for φ.

Figure 11 shows, for an executed straight line, the value of θ (in radians) in
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Figure 10: Errors resulting from tracking the desired reference in the rotation in place case,

in terms of ρ and φ

the realistic space, when that orientation is obtained with odometry and when it

is estimated using the method from Section 6. The red curve corresponds to the700

value obtained with the odomety and the blue curve to the geometric estimator.

Both values are similar, but the orientation θ obtained with the odomety is a

bit more noisy.
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Figure 11: Comparison of the value of the robot orientation θ in the realistic space when the

odometry is used (red curve) and when the geometric estimator proposed in Section 6 is used

(blue curve).

In the experiments over the robot, we do not know exactly how fast the
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dynamics of the robot is, furthermore, since a real-time implementation is not705

used, there might be arbitrary operating system interruptions. Therefore, we

cannot determine whether or not there exist the condition to have zero error for

the geometric estimator. However, we have a control method able to deal with

errors in the estimation. As we can see, in the results of the experiments, the

measured errors are small.710

In the paper’s multimedia material, we have included a video (“video1.mp4”)

showing the execution of a trajectory, for the case when the odometry is used

to obtain θ, and for the case when the geometric estimator is used instead.

Qualitatively speaking, both trajectories are comparable, but quantitatively,

they present the differences that were just depicted along the whole present715

section.

As a final note, the utility of the proposed geometric estimator is that all the

required sensing is onboard of the robot, it does not require external sensors,

such as a motion capture device, to estimate the robot pose, which requires

to modify the environment and compromises the robot’s autonomy. Another720

possibility is to use the odometry as feedback information, but as we have seen,

the results are better with the proposed method to estimate θ. Furthermore,

depending on the robot and the type of environment (for example, on slippery

ground), odometry might provide even worse results; the proposed method is

independent of such factors.725

10. Conclusions and future work

In this paper, we have proposed a feedback based control approach to exe-

cute the time-optimal motion trajectories for a differential drive robot. These

trajectories are composed of straight lines and rotations in place. The location

of a single landmark in a local reference frame defined by the robot is used as730

feedback information. We have shown that the evolution of a single landmark

position over such a local reference frame makes it possible to track a prescribed

time-optimal robot’s trajectory. We have proposed a geometric method for com-
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puting the robot’s orientation θ, whose accuracy depends on the frequency in

which the landmark position over the local reference frame is available. It has735

been shown that if the sampling rate n of the sensor is equal or larger than a

bound N over that sampling rate, then the error of the methodology to estimate

the robot’s orientation θ is zero. We have designed a controller to track a refer-

ence trajectory using as feedback the location coordinates of a single landmark

over a local reference frame. It has been shown that the control system is an740

exponentially stable system with a nonvanishing perturbation, and we can guar-

antee that globally uniformly ultimately boundedness of the tracking errors can

be achieved. The proposed control scheme for execution of the motion primitives

is similar to the one obtained using position-based visual servo control. However,

note that it is straight forward to leverage visual servo control with methods745

from optimal control for yielding optimal trajectories; our approach is able to

do that and execute time-optimal primitives in the state space. Furthermore,

the approach is able to work with the minimum number of landmarks–only one–

this represents a necessary and sufficient condition for feedback-based optimal

navigation based on landmarks. It is also important to mention that the use750

of an omnidirectional laser range finder simplifies the implementation, avoiding

further complicating matters resulting from using a camera. The direct use

case of the proposed method is landmark-based navigation, which is a relevant

problem in robotics. An important technical contribution is that the approach

does not require to reconstruct the whole state of the robot in a global refer-755

ence frame, which can be a complex task, in which it is hard to rapidly obtain

robust and accurate estimations. A drawback of the method is that it requires

an accurate sensor to measure the distance from the robot to the landmark and

the direction of the landmark with respect to the robot. However, in practice

laser range finders enjoy a large accuracy.760

Finally, experiments in a physical robot, a nonholonomic differential drive

system equipped with an omnidirectional laser sensor, have been presented,

which validate the proposed theoretical modelling.

As a future work, we would like to determine some quantitative bounds on
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the error of the estimation of the robot’s orientation θ when a robot trajectory765

cannot be decomposed into arcs of circles, according to some bounds on the

motion error.

Appendix A. Kinematics of the landmark in Cartesian coordinates

In this section, we deduce the landmark velocities in Cartesian coordinates.

d

dt
x(t) =

d

dt
[(xL − xR(t)) sin(θ(t))− (yL − yR(t)) cos(θ(t))]

+(yL − yR(t)) sin(θ(t))θ̇(t) + cos(θ(t))ẏR(t)

= (xL − xR(t)) cos(θ(t))ω(t)− v(t) sin(θ(t)) cos(θ(t))

+(yL − yR(t)) sin(θ(t))ω(t) + v(t) cos(θ(t)) sin(θ(t))

= ω(t)((xL − xR(t)) cos(θ(t)) + (yL − yR(t)) sin(θ(t)))

= ω(t)y(t).

d

dt
y(t) =

d

dt
[(xL − xR(t)) cos(θ(t)) + (yL − yR(t)) sin(θ(t))]

+(yL − yR(t)) cos(θ(t))θ̇(t)− sin(θ(t))ẏR(t)

= −(xL − xR(t)) sin(θ(t))ω(t)− cos(θ(t))v(t) cos(θ(t))

+(yL − yR(t)) cos(θ(t))ω(t)− sin(θ(t))v(t) sin(θ(t))

= −ω(t)[(xL − xR(t)) sin(θ(t))− (yL − yR(t)) cos(θ(t))]

−v(t)[cos2(θ(t)) + sin2(θ(t)]

= −ω(t)x(t)− v(t).

Appendix B. Kinematics of the landmark in polar coordinates770

Now, we present the landmark velocities in polar coordinates. We start by

obtaining an expression for ρ̇.

d

dt
ρ(t) =

d

dt
[
√
x2 + y2]

=
ω(t)x(t)y(t) + y(t)(−ω(t)x(t)− v(t))

ρ(t)

=
−v(t)y(t)

ρ(t)
.

Substituting y from Eq. (4) in the equation above, we get

d

dt
ρ(t) = −v(t) cosφ(t).
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We proceed to obtain an expression for φ̇ as

d

dt
φ(t) =

d

dt

[
tan−1

(
x
y

)]
=

y(t)ẋ(t)− x(t)ẏ(t)

y2(t) + x2(t)
.

Substituting Eq. (5) in the equation above, we get

d

dt
φ(t) =

ω(t)
[
x2(t) + y2(t)

]
+ v(t)x(t)

x2(t) + y2(t)
.

Substituting x and y from Eq. (4) in the equation above, we get

d

dt
φ(t) = ω(t) +

v sinφ(t)

ρ(t)
.

Appendix C. Non-observability

Definition 5. Given a configuration q = (xR, yR, θ) ∈ R2 × S1, we define the

transversal reflection of q as the configuration

q̃ = (2xL − xR, 2yL − yR, θ + π). (C.1)

Figure C.12: DDR Transversal Reflection.

Notice that the poses (xR, yR) and (2xL−xR, 2yL−yR) are antipodal points

on the circumference in the realistic space with center on the landmark L =

(xL, yL) and radius ‖(xR − xL, yR − yL)‖. See Fig C.12.

Lemma 2. Let q = (xR, yR, θ) be a robot configuration and q̃ = (x′R, y
′
R, θ

′) its775

transversal reflection. Considering the observation function g(q) = Tq(L), then

g(q) = g(q̃).
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Proof. Let g(q) = (x, y) and g(q̃) = (x′, y′). The coordinates of the landmark

in the reduced space with respect to the configuration q are

x = (xL − xR) sin(θ)− (yL − yR) cos(θ),

y = (xL − xR) cos(θ) + (yL − yR) sin(θ),
(C.2)

while for the configuration q̃ we have

x′ = (xL − x′R) sin(θ′)− (yL − y′R) cos(θ′),

y′ = (xL − x′R) cos(θ′) + (yL − y′R) sin(θ′).
(C.3)

Since q̃ is the transversal reflection of q, substituting x′R = 2xL − xR, y′R =

2yL − yR and θ′ = θ + π in Eq. (C.3), yields

x′ = (xR − xL) sin(θ + π)− (yR − yL) cos(θ + π),

y′ = (xR − xL) cos(θ + π) + (yR − yL) sin(θ + π).
(C.4)

Moreover

sin(θ + π) = sin(−θ) = − sin(θ), − cos(θ + π) = cos(−θ) = cos(θ),

then

x′ = (xL − xR) sin(θ)− (yL − yR) cos(θ),

y′ = (xL − xR) cos(θ) + (yL − yR) sin(θ).
(C.5)

Thus, from Eqs. (C.2) and (C.5), (x, y) = (x′, y′). Therefore, g(q) = g(q̃).780

Proof of Theorem 1.

Proof. Let q = (xR, yR, θ) be a configuration for the DDR and let q̃ = (x′R, y
′
R, θ

′)

be its transversal reflection. Let (u(t), [σ, τ ]) be an admissible control, hence,

Σq(u(t), [σ, τ ]) and Σq̃(u(t), [σ, τ ]) are the input-output maps given (u(t), [σ, τ ]),

starting from the configurations q and q̃, respectively. Assume that 0 ≤ ∆t ≤

|τ − σ| and let t = σ + ∆t. The evolution of the system starting from the

configuration q(σ) is dictated by

ẋR = v cos θ,

ẏR = v sin θ,

θ̇ = ω,

(C.6)
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while for configuration q̃(σ) we have

ẋ′R = v cos θ′,

ẏ′R = v sin θ′,

θ̇′ = ω.

(C.7)

By substituting θ′ = θ + π in Eq. (C.7) and simplifying, we have

ẋ′R = −ẋR,

ẏ′R = −ẏR,

θ̇′ = θ̇.

(C.8)

In this way, using a forward Euler approximation to solve the differential

equations for the configuration q̃(t), starting from q̃(σ) = (2xL − xR(σ), 2yL −

yR(σ), θ(σ) + π), and considering Eqs. (C.8) and (C.6), we have

x′R(t) = (2xL − xR(σ))− v(σ) cos(θ(σ))∆t,

y′R(t) = (2yL − yR(σ))− v(σ) sin(θ(σ))∆t,

θ′(t) = (θ(σ) + π) + ω(σ)∆t.

(C.9)

By simplifying the system in Eq. (C.9) we get

x′R(t) = 2xL − xR(t),

y′R(t) = 2yL − yR(t)),

θ′(t) = θ(t) + π.

(C.10)

Thus, q̃(t) is the transversal reflection of q(t) for all t ∈ [σ, τ ]. From Lemma 2,

g(q) = g(q̃), then, Σq(u(t), [σ, τ ]) = Σq̃(u(t), [σ, τ ]) for all admissible control

(u(t), [σ, τ ]). This means that the configurations q and q̃ are indistinguishable,

therefore, the system Σ is not observable.785

Appendix D. Closed loop stability

Proposition 2. Given matrix LL+, xTLL+x > 0 for all x = (a, b, c)T ∈ R3

with b 6= 0.
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Proof. First, we have

LL+ =
1

y2 + 1


y2 0 y

0 y2 + 1 0

y 0 1

 . (D.1)

Then

xTLL+x =
(
a b c

)


y2

y2 + 1
0

y

y2 + 1

0 1 0
y

y2 + 1
0

1

y2 + 1




a

b

c



=
(ay + c)2

y2 + 1
+ b2.

(D.2)

Both adders in the last equation are non negative, therefore, xTLL+x ≥ 0 for

all x ∈ R3. Moreover, b 6= 0 suffices for xTLL+x > 0. The result follows.790

Proof of Lemma 1.

Proof. The condition y−y∗ = 0 implies the specific requirement of y = y∗; thus,

Ai is related to a zero-measure set (see Figure D.13). Consequently, P [Ai] = 0,

which in turn implies P [Āi] = 1. Additionally, as the experiment keeps running

indefinitely, contemplate the sequence of events {Āi}∞i=1. Since P [Āi] = 1,795 ∑∞
i=1 P [Āi] =∞, then, by the Borel-Cantelli lemma, P [Āi i.o.] = 1.
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