
MPC-based distributed formation control of multiple
quadcopters with obstacle avoidance and connectivity

maintenance

Salim Vargasa, Héctor M. Becerraa,∗, Jean-Bernard Hayeta

aCentro de Investigación en Matemáticas (CIMAT), A.C.,
Jalisco S/N, Col. Valenciana, 36023, Guanajuato, Gto., México

Abstract

In this work, a distributed model predictive control (MPC) scheme based on

consensus theory is proposed for the formation control of a group of quadcopters.

The MPC scheme provides velocities for the quadcopters, which are considered

as holonomic agents modeled at kinematic level. We propose soft and hard

constraints for the MPC problem to address collision and obstacle avoidance

as well as to maintain the connectivity of the communication topology during

the motion of the agents to reach the desired formation. The contributions of

this work are the following: First, we propose an integrated solution for the

three tasks, including connectivity maintenance, which is uncommon in existing

approaches, in addition to dynamic formation control and collision/obstacle

avoidance. Second, we show that using both soft and hard constraints in the

MPC problem gives better performance than using only one of the two. Third,

unlike most MPC-based schemes from the literature, the effectiveness of our

approach is validated through real experiments for a group of quadcopters.

Keywords: Formation control; consensus; multiple quadcopters; distributed

model predictive control; obstacle avoidance; connectivity maintenance.

∗Corresponding author
Email address: hector.becerra@cimat.mx (Héctor M. Becerra)

Preprint submitted to Journal of LATEX Templates January 20, 2022

1. Introduction

In the last few years, control of multi-agent systems (MASs) and, more par-

ticularly, formation control have raised an increasing interest in the robotics

community. One of the reasons is that swarms of cheap robotic agents typically

introduce much more flexibility and robustness in the realization of essential5

robotic tasks, such as exploration [1], mapping [2] and tracking [3], with par-

ticular applications in search and rescue [4], load transportation [5] and vehicle

guidance [6], to give a few examples.

In this work, we propose a new method for solving the problem of formation

control with quadcopters, i.e., to drive autonomously the different agents of a10

distributed swarm of quadcopters in a predefined configuration of relative posi-

tions. We assume that the perception and communication of each quadcopter is

limited to the one of its neighbors, and that the environment is populated with

static obstacles. Hence, it is important that the control laws allowing the swarm

to reach the formation objective also allow to avoid collisions, either among the15

quadcopters of the swarm or between quadcopters and static obstacles, while

connectivity is maintained.

Formation control is one of the most actively studied topics within the control

of MASs. This problem generally aims at driving multiple agents simultaneously

to achieve some prescribed constraints on their states [7]. The formation control20

of multiple unmanned aerial vehicles (MUAVs) has been addressed in two forms.

With centralized approaches [8, 9], the computation of the controllers of all

the agents takes place in the same station or all the variables are measured

with respect to a global coordinate system, sometimes relying on a broadcast

transmission of data. The other form to address the formation control is using25

a distributed approach [10, 11], where the computation of the controllers takes

place in a different station for each agent and where the approach relies on

relative information between agents.

When several agents move from arbitrary initial positions to reach a for-

mation, collisions may happen among them, and a collision avoidance strategy30

2

becomes essential for MUAVs formation control [12]. Besides, it is also impor-

tant that the agents can reach their goal even if there are static obstacles in

the environment. Hence, both collision and obstacle avoidance must be han-

dled [13, 14]. One popular approach to deal with static obstacles has been the

use of artificial potential fields (APFs). For instance in [15, 13], APFs have been35

used in centralized schemes where a map of the environment must be previously

known. The formation flight among obstacles has also been addressed using

classical approaches such as the reduced visibility graph optimizing the over-

all traveled distance [16]. The three aforementioned works describe centralized

schemes requiring global measurements. There also exist distributed approaches40

to achieve formation of UAVs while avoiding obstacles. In [17], Voronoi parti-

tions are combined with APFs to accomplish both goals. Consensus theory [18]

is a backbone for the design of distributed formation control schemes. In [19, 20]

formation of UAVs is tackled as a consensus problem and the collision/obstacle

avoidance capability is reached by using a null space behavioral approach. All45

the aforementioned works are continuous-time schemes, which have poor flexi-

bility to deal with additional constraints required in real situations.

A control technique that provides improved flexibility to consider additional

constraints is Model Predictive Control (MPC) [21]. In the problem of formation

control for quadcopters, each agent is subject to spatial constraints due to colli-50

sion/obstacle avoidance and physical constraints, as limits on the control inputs.

MPC is able to consider explicitly and simultaneously different control speci-

fications in the form of constraints while also optimizing a global performance

criterion. Thus, the constraints of the formation control of quadcopters can be

introduced as constraints in the optimization problem formulated in an MPC55

problem. Several MPC-based schemes have been proposed for the formation

control of UAVs. In [22], a centralized approach for global motion planning and

control in cluttered, GPS-denied straitened environments is presented. In [23],

a couple of centralized and decentralized control architectures are presented,

with the trajectory of each agent obtained from the one of the leader in both60

cases. In [24], a leader–follower quadcopter formation flight control is presented

3

for only one follower. An MPC controller generates a collision-free state refer-

ence and a robust feedback linearization controller is in charge of tracking that

trajectory. In [25], a decentralized algorithm is proposed for the deployment

and reconfiguration of a MAS in a convex bounded polygonal area, considering65

several outgoing agents. In [26], a distributed MPC scheme is presented for

UAVs with nonholonomic dynamics, with the formation expressed in a virtual

reference coordinate system. Avoidance of fixed obstacles and inter-vehicle colli-

sion avoidance are guaranteed by cost penalties. In [27], a decentralized scheme

based on a triangular mesh is proposed for UAVs with nonholonomic dynamics.70

In the presence of obstacles, MPC is used to form independent sub-swarms, op-

timizing the formation spreading to avoid collisions. Note that although some

of the schemes described above are decentralized, none of them exploits the ad-

vantages of the consensus theory to formulate distributed formation controllers.

One way to address MPC-based formation of UAVs is by pre-generating ref-75

erence trajectories for each agent, while a preview controller ensures that the

tracking error is minimized. For instance, in [28], the vehicles’ trajectories are

parameterized as polynomial B-splines and constraints on the relative agents

positions are enforced to yield the formation. The consensus theory has also

been used to formulate MPC-based formation controllers using pre-defined tra-80

jectories. In [29], a distributed consensus-based MPC scheme for formation of

quadcopters is formulated within a leader-follower approach. The leader tracks

the desired reference and generates the desired trajectories for the followers,

without taking into account obstacles or collisions between agents. In [30], a

cooperative formation control strategy is proposed for a group of quadcopters85

using decentralized MPC and consensus-based control. Static reference trajec-

tories are pre-generated for each quadcopter based on the theoretical motion

toward consensus and collisions are avoided using only the vertical motion.

Consensus-based formation controllers through MPC have also been pro-

posed without relying on pre-computed trajectories. In [31], a scheme for for-90

mation control with collision avoidance for general linear systems has been de-

scribed; the minimization of a consensus error is introduced in the MPC and

4

the optimal reciprocal collision avoidance (ORCA) method is used. In [32],

an MPC-based approach for consensus in first-order MAS is presented. The

reference for the MPC is the local consensus error at each iteration. The decen-95

tralized protocol guarantees consensus for a switching communication topology

when some conditions over the connectivity graphs are held. In [33], a global

motion planning strategy using constrained optimization and consensus is shown

to solve several high level tasks, including formation control. In [14], the authors

propose a formation control scheme for multiple linear second-order agents. It100

handles collision and obstacle avoidance using distributed optimization.

Recent works have also tried to maintain the connectivity in the formation

problem in addition of considering collision/obstacle avoidance. In [34], second-

order MASs subject to both velocity and input constraints are considered, and

a topology-based connectivity maintenance strategy is introduced. A switching105

nominal controller is combined with barrier function-based constraints to for-

mulate a quadratic programming problem which modifies the nominal controller

when necessary. In [35], a formulation of MPC including binary decision vari-

ables is proposed for the problem of maneuvering multiple agents that must visit

a number of target sets, while enforcing connectivity constraints and avoiding110

obstacles as well as inter-agent collisions. Two mixed-integer linear program-

ming formulations are presented considering a trade-off between optimality and

scalability. In [36], a navigation controller for a general class of Lagrangian sec-

ond order MASs in a bounded workspace with static obstacles is presented. The

proposed scheme guarantees that the initially connected agents remain always115

connected using a decentralized MPC.

As it can be seen, a lot of theoretical work has been done for formation

control of UAVs, using control schemes in continuous time and optimization-

based techniques, in particular with MPC. Nevertheless, very few works include

realistic simulations or experiments with real quadcopters. In this work, the120

formation control of a group of quadcopters is addressed via a distributed MPC

scheme. It minimizes a position consensus error at each time step (dynamic

formation control). We introduce virtual quadcopters that are related to the

5

position of the real quadcopters by the desired displacements, such that if the

virtual agents achieve consensus, the real ones reach the desired formation, as125

proposed in [26]. We propose soft and hard constraints in the MPC problem

to address collision and obstacle avoidance as well as to maintain the same

communication topology during the motion of the quadcopters. Maintaining

the communication topology is important, for instance, in applications such as

load transportation and vehicle guidance. The MPC scheme acts at kinematic130

level for the quadcopters position and we assume that a low level controller

can execute the velocities commanded by the MPC and drive the vehicle to the

adequate position. The main contributions of our work are the following:

• We formulate a distributed MPC-based formation control algorithm that

considers the maintenance of connectivity, in addition to obstacle avoid-135

ance, as one of the objectives of the formation control task. To compute

the velocities of the quadcopters, only relative information from neighbor-

ing agents and local measurements is required. From a continuous-time

two-task scheme considering formation and obstacle avoidance, it is not

straightforward to add the connectivity maintenance task without switch-140

ing among dedicated controllers. That is why most of the existing ap-

proaches deal with two tasks [9, 13, 29, 30, 33, 20]. The MPC method

facilitates the integration of the three tasks in a single control scheme.

• For both constraints (connectivity maintenance and collision/obstacle avoid-

ance), we show that using soft and hard constraints in the MPC optimiza-145

tion problem gives better performance than using only one of the two. We

propose the use of the average distance to obstacles, reducing the num-

ber of hard constraints in the optimization problem, unlike other works

[23, 30, 14]. Together with a soft constraint in the form of a potential

field, the formation is effectively achieved while avoiding collisions. This150

is a simple method in comparison with existing approaches as the ORCA

method [31], hyperplane separation [28] or planning methods [33, 22].

• We evaluate the performance of our approach in both realistic simulations

6

and real experiments for a group of quadcopters. To our knowledge, four

works for formation control with evasion based on MPC have been pro-155

posed, but only one exploits consensus theory. Besides, [24] is limited to

one follower, [22, 23] track precomputed references derived from a prede-

fined leader trajectory, and [33] is more a motion planning technique than

a controller that uses consensus to find an agreement on the free space.

To the authors knowledge, the closest works to ours on formation control160

with collision avoidance and connectivity maintenance are [34, 35, 36]; however,

they are theoretical works, not focused on quadcopters and their approach to

preserve connectivity differs from ours. Ours is simpler, since it treats connectiv-

ity maintenance similarly as collision avoidance. The proposed control scheme

aims to maintain the same initial communication topology by using a single165

control scheme. This differs from [34], where the goal is to preserve a minimum

cost spanning tree by modifying a switching nominal controller when necessary.

The work in [35] is a task allocation and trajectory planning scheme, more than

a formation controller, since the agents reach a fixed terminal target set, but

without a predefined order. Another difference is that our algorithm uses local170

connectivity between pairs of quadcopters to preserve the initial topology, while

the aforementioned work uses global information of the topology. In contrast

with [36], we do not use predefined trajectories that must be provided by a high

level planner. Since the consensus error is introduced in the MPC objective

function, our approach adapts its global position according to the spatial con-175

straints given by obstacles in the environment and to connectivity constraints.

The paper is organized as follows: Section 2 formulates the formation con-

trol problem for UAVs. In Section 3, the proposed distributed control scheme is

detailed, including constraints for collision avoidance and connectivity mainte-

nance. Section 4 analyzes the performance of our approach through simulations180

and real experiments. Finally, concluding remarks are presented in Section 5.

7

2. Problem formulation

Given a networked MAS, reaching a consensus means evolving towards an

agreement state for all the agents, which should be achieved only by sharing

local information among connected agents [18].185

Let us consider a group of n quadcopters with position state xi ∈ R3 at

time τ ∈ R for i = 1, . . . , n. A quadcopter is a nonlinear underactuated system

in which four flat outputs (three position coordinates and yaw angle) can be

independently controlled [37]. In the literature, feedback linearization has been

used to achieve decoupled control for each position coordinate in a quadcopter

formation control scheme [24]. The feedback linearization can be formulated

in terms of velocities, accelerations or thrusts as control inputs; in the first

case, using a low-level velocity controller, the quadcopter dynamics for each

position coordinate can be modeled as a decoupled single-integrator [20]. In

this work, we consider the modeling of the quadcopters position xi = [xi, yi, zi]
T

through a single-integrator for each coordinate and velocities as control inputs

ui = [uxi
, uyi , uzi]

T as follows

ẋi(τ) = ui(τ) ∈ R3 ∀i ∈ {1, 2, . . . , n}. (1)

A consensus protocol for the quadcopters position must provide velocities

for each quadcopter i such that the agreement in the position of all quadcopters

in the network is accomplished. Since the consensus in position is not practical

for real quadcopters, we define a desired configuration for the group of quad-

copters to achieve a formation of their three dimensional position1 by giving n

displacement vectors di ∈ R3 with respect to an arbitrary origin. As shown

in [38] for generic agents, virtual quadcopters can be defined so that achieving

consensus in position between those virtual quadcopters is equivalent to reach-

ing the formation among the real quadcopters. The real quadcopters positions

1Note that the formation is defined only in terms of 3D positions, and that the final

orientation of the quadcopters is arbitrary.

8

are denoted by xi ∈ R3 and the virtual agents positions by zi ∈ R3, so that

zi = xi − di. (2)

Since the vectors di are constant, then the real and virtual quadcopters of

Eq. 2 share the same dynamics, driven by a velocity control input ui ∈ R3

żi = ẋi = ui. (3)

In order to achieve consensus with asymptotic convergence between the vir-

tual quadcopters, a consensus law is defined as follows

ui(τ) =
∑
j∈Ni

(zj(τ)− zi(τ)), (4)

where Ni is the set of neighbors of agent i. Denoting the consensus value, i.e.

the common position, reached by the virtual quadcopters as αz, the final state

of any real quadcopter i will satisfy

xi − di = αz. (5)

Since xi = di + αz, then, when consensus is achieved for the virtual quad-

copters zi, the real ones xi reach the shape defined by the vectors di, up to an

overall 3D translation given by the consensus value αz.

In the framework of formation control of quadcopters based on consensus,

we will consider the following assumptions:190

1. For each position coordinate, the dynamics of the quadcopters, expressed

in the state vector xi(τ) ∈ R3, is modeled as a single-integrator (Eq. 1)

since they are holonomic agents. The model is discretized by considering

a constant sampling period T ∈ R+ as

xi(k + 1) = xi(k) + Tui(k), (6)

where ui(k) ∈ R3 is the vector of velocity control inputs.

2. A low-level velocity controller with good performance is available. It could

be, for instance, a feedback linearizing controller as in [24].

9

3. At initialization, the communication graph for the group of quadcopters

is directed and has a spanning tree, which is accomplished by undirected195

connected topologies (see, for instance, [18, 39] for the details).

4. Obstacles are convex. They can be spherical (strongly convex) or generic

convex polygons. In the last case, a sphere can be defined around the

nearest obstacle point from the quadcopter (that point changes with the

quadcopter’s motion) and the evasion is similarly treated as a spherical200

obstacle.

We define the problem of interest as follows.

Definition 2.1 (Problem statement). Consider a set N of n quadcopters with

an associated communication graph G that satisfies Assumption 3. In the en-

vironment there exists a set L of l fixed obstacles. Given displacement vectors205

di defining the positions of the quadcopters within a desired formation, the

problem consists in computing input velocities for each quadcopter ui(k) to

achieve: 1) Consensus of the virtual quadcopters’ positions: limk→∞ ||zi(k) −

zj(k)|| = 0,∀i, j ∈ N , i 6= j and żi = 0,∀i ∈ N ; equivalently, the real quad-

copters achieve the desired formation. 2) Avoidance of inter-quadcopter col-210

lision and of collision with obstacles: ||xi(k) − xj(k)|| ≥ D,∀i, j ∈ N , i 6= j

and ||xi(k) − xlo|| ≥ D,∀l ∈ L where xlo are the obstacles positions and D

a safety distance. 3) Maintenance of connectivity between neighboring quad-

copters: ||xi(k) − xj(k)|| ≤ E,∀i ∈ N ,∀j ∈ Ni with E a maximal distance for

ensuring communication.215

Notice that only relative quadcopter-quadcopter and quadcopter-obstacle

information is required to tackle the defined problem. We will present the

formulation of the proposed solution considering that the relative information

can be computed using global coordinates; however, that information can be

measured if the quadcopters are equipped with adequate onboard sensors.220

10

Figure 1: Model Predictive Control block diagram for each quadcopter i.

3. Proposed control scheme

In Fig. 1, we depict the Model Predictive Control (MPC) scheme proposed

for each quadcopter. Each quadcopter i receives the position of its neighbors

according to the communication topology and, using its position, computes a

reference ri(k) obtained from a consensus law. This reference must be followed225

by the virtual quadcopter position zi(k) along a given horizon of size Hp. In

order to determine the control input (quadcopter translational velocities), a cost

function Φi(k) is minimized at each iteration k; this cost function is expressed

in terms of the control input ui(k) itself and of the consensus error computed

from the reference ri(k) and the predicted states ẑ(k+t) in the horizon window.230

The latter are given by a predictive model of the system along the prediction

horizon. The thicker lines in Fig. 1 correspond to information obtained over

the time horizon. Φi(k) is optimized while handling constraints that can be

spatial constraints due to obstacles, connectivity constraints, or velocity limits,

etc. The result of the optimization problem provides optimal inputs u∗i (k+ t|k)235

for all the timesteps t along a control horizon of size Hu ≤ Hp, but only the

control input of the present iteration u∗i (k|k) is applied to the system. This

process is then repeated at k + 1 and subsequent timesteps.

3.1. MPC formulation

We propose the generic MPC cost function of Eq. 7 for the quadcopter i,

which penalizes, on the one hand, the quadratic error between the predicted

11

positions of the virtual quadcopter and a reference (to be defined later) and, on

the other hand, the norm of the control inputs.

Φi(k) = λi

Hp∑
t=Hw

||ẑi(k + t|k)− ri(k + t)||2 + γi

Hu∑
t=1

||ui(k + t− 1|k)||2. (7)

The notation â(p|q) in Eq. 7 refers to the predicted value of a at timestep p,

with the last observation of a done at q < p. This prediction is obtained from

the following predictive model of the quadcopter tridimensional position:

ẑi(k + t|k) = Aẑi(k + t− 1|k) +Bu′i(k + t− 1), (8)

where u′i(k+t−1) , ui(k+t−1) for 1 ≤ t ≤ Hu and u′i(k+t−1) , ui(k+Hu−1)240

for Hu ≤ t ≤ Hp. The dynamic system is defined by A = I3 and B = TI3,

where I3 is the identity matrix of size 3 and T is the sampling control period.

The value Hp is the prediction horizon, i.e., the length of the window of

predicted values for the quadcopter’s position. The value Hu ≤ Hp is the control

horizon, i.e., the number of future steps of control inputs to be optimized.245

Finally, 1 ≤ Hw ≤ Hp is the first timestep in the prediction horizon to be

penalized. This is used because we may not want to start penalizing the error

coming from the reference right since the current state.

At each iteration, we compute an optimal sequence of future velocity vectors

U∗i ,
[
u∗i (k|k)T ,u∗i (k + 1|k)T , · · · ,u∗i (k +Hu − 1|k)T

]T ∈ R3Hu , (9)

by solving the following optimization problem

U∗i = arg min
U i

Φi(k). (10)

The velocity vector actually applied to quadcopter i, at each k, is the first

term of the sequence in Eq. 9, i.e., u∗i (k|k), discarding the rest of the sequence.250

3.2. Distributed control

To build a distributed architecture, the control laws are computed in different

processors for each quadcopter. We propose that the quadcopters share not only

12

their current positions xj(k) but also their (first) optimal velocity vector u∗j (k|k)

computed with neighboring quadcopters. This way, each quadcopter knows the255

movements to be performed by its neighbors in the near future. We consider

virtual quadcopters as in Eq. 2 and aim at controlling them to achieve consensus,

and consequently the real quadcopters will reach the desired formation.

In order to formulate the MPC problem, we propose a dynamic reference

ri(k+ t) that considers the predicted consensus values computed from the cur-260

rent positions of the virtual quadcopters and from their predicted positions.

Other approaches, as for instance in [30], use a static reference trajectory by

applying a consensus law beforehand at the starting configuration. Using a pre-

defined reference reduces slightly the computation time because ri(k + t) does

not have to be updated but it also reduces the flexibility of the control scheme.265

Our dynamic reference approach has the advantage to be able to continuously

adapt the control inputs to the current situation and allows temporary varia-

tions, e.g. due to unforeseen obstacles.

Thus, our reference for the MPC cost function of quadcopter i is given by

ri(k + t) =
1

|Ni(k)|+ 1

∑
j∈Ni(k)∪{i}

ẑj(k + t|k), (11)

and it should be clear that the errors to the reference are proportional to the

consensus error

ẑi(k + t|k)− ri(k + t) =
1

|Ni(k)|+ 1

∑
j∈Ni(k)∪{i}

ẑi(k + t|k)− ẑj(k + t|k). (12)

Hence, the objective function from Eq. 7 applied on the virtual quadcopters

stands as a sum of predicted consensus errors and of control inputs. Quadcopter

i considers that its neighbor j ∈ Ni will apply the same control input as the

one that it has computed through its own MPC and that it has communicated

to him along all the prediction horizon, that is
ẑj(k + 1|k)

ẑj(k + 2|k)
...

ẑj(k +Hp|k)

 = PXzj(k) + PU


u∗j (k|k)

u∗j (k|k)
...

u∗j (k|k)

 , (13)

13

where u∗j (k|k) ∈ R3 is the communicated control input from j to i and PX ∈

R3Hp×3, PU ∈ R3Hp×3Hu are defined in Appendix A as Eq. A.4 according to270

the dynamics in Eq. 8.

The reference ri(k + t) depends not only on the predicted states ẑj(k +

t|k) of the neighbors of quadcopter i, but also on the predicted positions of

the quadcopter i itself. To solve the MPC problem of quadcopter i and take

into account information along the prediction horizon, the reference must be

introduced as an extended vector containing predicted positions from the current

timestep to timestep Hp, as follows

Ri(k+ 1) ,
1

|Ni(k)|+ 1



∑
j∈Ni(k)

ẑj(k + 1|k)∑
j∈Ni(k)

ẑj(k + 2|k)

...∑
j∈Ni(k)

ẑj(k +Hp|k)


+

1

|Ni(k)|+ 1


ẑi(k + 1|k)

ẑi(k + 2|k)
...

ẑi(k +Hp|k)

 .

(14)

Note that the second term of Eq. 14 depends on the future positions of

the controlled quadcopter i, hence on the control inputs that are going to be

optimized locally; when introducing Ri(k + 1) in the optimization problem,

this linear dependency is made explicit. Thus, the extended reference vector

Ri(k+ 1) can be written in terms of the input vector along the control horizon

U i(k) ,
[
ui(k|k)T ,ui(k + 1|k)T , . . . ,ui(k +Hu − 1|k)T

]T
. (15)

By using the dynamics of the predicted position given in Eq. 8, the extended

reference vector is written as a linear function of the input vector U i(k)

Ri(k + 1) = Qi(k) + Si(k)U i(k), (16)

14

where

Qi(k) ,
1

|Ni(k)|+ 1



∑
j∈Ni(k)

ẑj(k + 1|k)∑
j∈Ni(k)

ẑj(k + 2|k)

...∑
j∈Ni(k)

ẑj(k +Hp|k)


+

1

|Ni(k)|+ 1
PXzi(k) ∈ R3Hp ,

Si(k) ,
1

|Ni(k)|+ 1
PU ∈ R3Hp×3Hu . (17)

This formulation allows each quadcopter to solve the optimization problem

as a quadratic programming problem. Note that by writing the cost function

of Eq. 7 in a standard quadratic form, we can find the analytical solution for

the optimal control inputs as detailed in Appendix A. Besides, based on the275

results in [32], we can guarantee the stability of the closed-loop system to achieve

consensus of the virtual quadcopters and therefore, the real quadcopters achieve

the desired formation. The solution of the MPC problem, formulated up to now,

solves the first point of the problem Definition 2.1; however, the tasks related

to collision/obstacle avoidance and connectivity maintenance will be addressed280

in the next sections by including constraints to the optimization problem.

3.3. Collision and obstacle avoidance

Minimizing Eq. 7 with Eq. 11 as a reference along a prediction horizon will

achieve a formation of the group of quadcopters with the shape defined by

the vectors di, but without guarantee about the absence of collisions between285

quadcopters or with obstacles in the environment. Thus, we add constraints

in the optimization problem to ensure that the quadcopters do not collide and

that they do not get close one to another less than a security distance D > 0.

We consider two types of constraints: hard constraints, which are constraints

in the mathematical sense, i.e. they must by satisfied by a solution of the290

optimization problem for this solution to be considered as feasible, and soft

constraints, which are a relaxed version of hard constraints, and can be vio-

lated. Soft constraints are implemented as a penalty in the objective function,

15

where, typically, the greater the amount by which the constraint is violated, the

greater is the penalty. This penalty makes the solver prefer solutions satisfying295

the constraint. In our formulation, the hard constraints are introduced in the

optimization problem as linear inequalities that the quadcopters positions must

satisfy (and, because they are linear, they can be coped with by QP methods),

while the soft constraints are implemented as potential fields, added to the cost

function of Eq. 7. Both types of constraints complement each other, both acting300

in favor of avoiding collisions between quadcopters and fixed obstacles as well as

keeping connectivity. However, their range of impact on the solver is different:

hard constraints are activated when the currently explored solutions are close

to be non-feasible; soft constraints influence the search for a solution at a wider

range.305

We apply the following evasion strategies to other quadcopters from the

group and to fixed obstacles located in the environment. In the latter case, we

consider Assumption 4 of Section 2 and also assume that each quadcopter knows

the position of the obstacles by measuring its relative distance to them, such

that inter-quadcopter and quadcopter-obstacle evasions are handled similarly.310

3.3.1. Hard constraints

For a quadcopter i, hard constraints for collision avoidance with another

quadcopter j ∈ Ni along the prediction horizon are expressed in the form

||x̂i(k + t|k)− yj(k + t|k)||2 ≥ D2, (18)

where yj(k+t|k) , x̂j(k+t|k), with x̂j(k+t|k) the predicted state of quadcopter

j by quadcopter i along the prediction horizon, as given by Eq. 8 for the real

quadcopters (using Eq. 2). For the case of a fixed obstacle in the environment

whose position is xlo, yj(k + t|k) , xlo.315

To handle a reduced number of constraints in the optimization problem, we

consider the average distance between the quadcopter i and a neighbor j along

the prediction horizon. This value is given by

δ2
ij =

1

Hp
||X̂i(k + 1)− Y j(k + 1)||2, (19)

16

where X̂i(k + 1) stacks the predicted states for quadcopter i on the horizon

X̂i(k + 1) ,
[
x̂i(k + 1|k)T , x̂i(k + 2|k)T , · · · , x̂i(k +Hp|k)T

]T
, (20)

and Y j(k + 1) is defined as

Y j(k + 1) ,


x̂j(k + 1|k)

x̂j(k + 2|k)
...

x̂j(k +Hp|k)

 =


ẑj(k + 1|k)

ẑj(k + 2|k)
...

ẑj(k +Hp|k)

+


dj

dj
...

dj

 , (21)

with x̂j the state of the quadcopter j predicted by quadcopter i.

Then, we consider just one hard constraint for each neighbor j, given by

δ2
ij ≥ D2. (22)

There may be up to |Ni| constraints of the type of inequality of Eq. 22 added

to the optimization problem solved by the quadcopter i. This option to manage

the collision avoidance is computationally cheaper than handling one constraint

per timestep (Hp|Ni| constraints would be needed in that case); however, it

does not ensure that all the predicted positions are away from the neighbors by

more than D, as only the average is. We can rewrite the average distance of

Eq. 19 explicitly in terms of the current state xi(k) and of the control vector

U i(k), that stacks the future controls, as defined in Eq. A.1, and using Eq. A.3

δ2
ij(U i(k)) =

1

Hp
||PXxi(k) + PUU i(k)− Y j(k + 1)||2

=
1

Hp

[
U i(k)TP T

UPUU i(k) + 2 (PXxi(k)− Y j(k + 1))
T
PUU i(k)

+ ||PXxi(k)− Y j(k + 1)||2
]
. (23)

Eq. 10 is optimized as a quadratic programming problem for U i(k), and

constraints in this type of formulation should be linear in U i(k). As seen in

Eq. 23, δ2
ij(U i(k)) is nonlinear in U i(k) (it is quadratic). Hence, we linearize

δ2
ij(U i) around U i = 0. Let δ̄2

ij be this linear approximation defined as

δ̄2
ij(U i(k)) = δ2

ij(0) +∇U i
δ2
ij(0) · (U i(k)− 0) (24)

=
||PXxi(k)− Y j(k + 1)||2

Hp
+

2

Hp
(PXxi(k)− Y j(k + 1))

T
PUU i(k).

17

Then, the constraint of Eq. 22 is substituted by

δ̄2
ij ≥ D2. (25)

3.3.2. Soft constraints

Hard constraints for collision avoidance have the advantage of providing

guarantees about whether the solution will exhibit collisions or not. However,

they tend to be active (and, hence, modify the course of the quadcopter) only

close to the obstacle (when the distance is potentially violating the constraint in

the prediction horizon). That is why we add a penalty term to the cost function

to be optimized in order to consider these potential collisions even at farther

distances. This penalty term takes the form of a potential field and is given by

ρij =
kd

(δij −D)
2 , (26)

where kd > 0 is a constant associated with the smoothness of evasion and δij

is the average distance defined in Eq. 19. This penalty term in Eq. 26 becomes

smaller as the quadcopters are farther, and increases as they approach one to the

other or to the fixed obstacle. It is clearly not quadratic in U i(k), hence, as we

did above, we quadratize ρij for keeping a quadratic programming formulation.

By removing the 0th-order term that does not affect the optimum U∗i (k), we

can show that we only need to add the following linear penalty term to the cost

−kρ (PXxi(k)− Y j(k + 1))
T
PUU i(k), (27)

where kρ =
2kd

Hpδij(0) (δij(0)−D)
3 , and to add to the Hessian matrix of the

quadratic form, the following matrix

kρ

[
1

Hpδij(0)

(
1

δij(0)
+

3

δij(0)−D

)

P T
U (PXxi(k)− Y j(k + 1)) (PXxi(k)− Y j(k + 1))

T
PU − P T

UPU

]
.

(28)

18

3.4. Connectivity maintenance

The connectivity between quadcopters, that is defined through the commu-

nication graph G, usually depends on the distance between them. Hence, in320

order to preserve the initial connectivity between neighboring quadcopters, the

distance between them should be top-limited by a constant E, which corre-

sponds to the maximum distance for communication to operate satisfactorily.

We rewrite the hard and soft constraints that we have used for obstacle avoid-

ance in order to satisfy connectivity maintenance.325

With the average distance between a quadcopter i and its neighbor j ∈ Ni
along the prediction horizon δij , given by Eq. 19, we write connectivity hard

constraints as linear constraints in terms of U i(k), as in Eq. 25. Considering

the linear approximation of the average distance δ̄2
ij from Eq. 24, we use

δ̄2
ij ≤ E2. (29)

Besides, a soft constraint is added as a penalty

σij =
kc

(δij − E)
2 , (30)

where kc > 0 and δij is the average distance defined in Eq. 19. This penalty

term becomes larger as the quadcopters are farther and close to the maximum

distance E. For being used in the quadratic programming optimization, this

term is quadratized, so that we add a linear penalty term to the cost function

−kσ (PXxi(k)− Y j(k + 1))
T
PUU i(k), (31)

where kσ =
2kc

Hpδij(0) (δij(0)− E)
3 , and a quadratic term with a contribution

of the following matrix to the Hessian

kσ

[
1

Hpδij(0)

(
1

δij(0)
+

3

δij(0)− E

)

P T
U (PXxi(k)− Y j(k + 1)) (PXxi(k)− Y j(k + 1))

T
PU − P T

UPU

]
.

(32)

19

Using both types of soft constraints, for obstacle avoidance (Eq. 26) and

connectivity maintenance (Eq. 30), results for any pair (i, j) of neighboring

quadcopters in summing both penalty terms, giving a potential field with two

asymptotes for the average distance δij . Avoidance of fixed obstacles is treated

similarly once the relative position between quadcopters and obstacles is com-330

puted or measured. The Fig. 2 illustrates the individual and summed penalty

terms. Note that, for the optimization problem designed with the proposed

hard constraints (Eq. 25 for obstacle avoidance and Eq. 29 for connectivity

maintenance) to find a solution, a necessary condition is the feasible set to be

non-empty. Also note that the feasible set induced by our relaxed constraints335

on averaged distances includes the feasible set induced by the point-wise con-

straints. Moreover, using the corresponding penalty functions based on the

averaged distances has a softening effect on the constraints that increases the

feasibility of solution for the optimization problem, as analyzed in [40].

As mentioned in Section 3.2 and in Appendix A, stability of the formation340

control task alone is guaranteed; however, the introduction of hard and soft

constraints requires a more extensive theoretical analysis to demonstrate the

stability of the proposed MPC. Moreover, the linearization of the constraints

might introduce some stability issues. In this work, the main goal was to present

an effective implementation of an MPC-based formation control with obstacle345

avoidance and connectivity maintenance for a group of real quadcopters, and

our achievements are detailed in the next section, first showing a preliminary

evaluation in simulations. We left as future work a theoretical stability analysis

that could be based on results of the literature on constrained MPC [41].

4. Simulation results and real experiments350

This section presents an evaluation of the proposed approach in simulations

and experiments with real quadcopters. To prove the concept, we consider

strongly convex obstacles; however, as mentioned in the last assumption of

Section 2, the obstacle avoidance strategy is also valid for unknown polygonal

20

0.5 1.0 1.5 2.0 2.5

δij

10−1

100

101

102

103

104

D

(a)

0.5 1.0 1.5 2.0 2.5

δij

10−1

100

101

102

103

104

E

(b)

0.5 1.0 1.5 2.0 2.5

δij

10−1

100

101

102

103

104

D

E

(c)

Figure 2: Shape of the soft constraints. (a) Obstacle avoidance (ρij). (b) Connectivity

maintenance (σij). (c) Sum of both (ρij + σij).

obstacles, similarly as in [20]. We made a practical consideration for all the355

results that will be presented. The evasion between quadcopters is handled

in the x − y plane, considering the other quadcopters as obstacles modeled as

infinite vertical cylinders. This is to exclude avoidance of two quadcopters in the

z-axis, which may cause in practice important disturbances for the quadcopter

who is at the bottom, due to air turbulence [42].360

4.1. Comparison of control options

In this section, we present initial simulations in Python to evaluate three

aspects of the proposed control scheme: control architecture, type of constraints

(hard vs. soft) and reference trajectory (dynamic vs. fixed). In all the cases,

some Gaussian noise is added to the position of each neighbor quadcopter, which365

gives certain randomness to the chosen evasion path.

4.1.1. Control architecture

We consider a variant of the proposed distributed architecture that we call

decentralized control architecture. Actually, both architectures are decentral-

ized, but the distributed one takes into account the knowledge of control inputs

from other quadcopters. In the decentralized case, the control inputs for each

quadcopter are computed separately but they are not sent to the other quad-

21

copters, only the current state is shared. Thus, the reference value ri is the

same for all the prediction horizon at each iteration, because each robot does

not have more information about what will occur to the neighbors. Then, to

compute Eq. 11, the following is taken instead of Eq. 13:[
ẑj(k + 1|k)T , ẑj(k + 2|k)T , · · · , ẑj(k +Hp|k)T

]T
= PXzj(k).

Besides, for collision avoidance between quadcopters in the decentralized

architecture, yj(k + t|k) = xj(k) in Eq. 18. Thus, since quadcopter i only

knows the position of its neighbors at iteration k and does not know in what

direction they are going to move, the neighboring quadcopters are considered

as static obstacles along the prediction horizon, i.e.

Y j(k + 1) ,
[
xj(k)T ,xj(k)T , · · · ,xj(k)T

]T
,

in all the expressions of Section 3.3 and 3.4.

We evaluated both distributed and decentralized methods, in order to high-

light the benefits of the distributed case. For that purpose, we present results of370

an experiment where two quadcopters start on two opposite corners of a square,

at the same height. Then, each quadcopter tries to reach the opposite corner,

making them going one towards the other.

Fig. 3 shows a comparison between the distributed and decentralized control

architectures. In both cases, we use hard constraints on the average distance375

according to Eq. 25 and soft constraints as in Eq. 27. The use of both types of

constraints simultaneously is discussed in the next section. In the distributed

architecture, the evasion maneuver occurs earlier than in the decentralized case

because it can anticipate the motion of the other quadcopter by knowing its

control inputs. Besides, the trajectories of the quadcopters in the distributed380

architecture are smoother in comparison to the ones generated in the decentral-

ized case. For the latter, the distance between quadcopters shows oscillations

during the evasion maneuvers and they endure for a large range of iterations.

Regarding the computed control inputs, Fig. 4 presents, in the top, the

computed controls for the distributed architecture, and, in the bottom, the385

22

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0 25 50 75 100 125 150 175
iterations

0.0

0.5

1.0

1.5

2.0

2.5

m

Distance between agents

D

(a) Distributed architecture.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0 25 50 75 100 125 150 175
iterations

0.0

0.5

1.0

1.5

2.0

2.5

m

Distance between agents

D

(b) Decentralized architecture.

Figure 3: Comparison of the proposed distributed control architecture versus a decentralized

architecture. In both cases, hard and soft constraints are used for collision avoidance.

controls for the decentralized one. In both cases, the range of allowed control

inputs is set as [−3, 3]. It can be seen that the computed controls oscillate

drastically less in the distributed architecture. Also, it can be verified that

the evasion effect in the controls starts earlier for the distributed case. This is

caused by the information that each quadcopter has in advance regarding the390

actions to be taken by its neighbors.

4.1.2. Type of constraints

In this section, we evaluate the different options to define the constraints

in the MPC, in particular hard constraints on the average distance according

Eq. 25, soft constraints in the linear form of Eq. 27 and both types of constraints395

23

−2.5

0.0

2.5

u
x

0 25 50 75 100 125 150 175
iterations

−2.5

0.0

2.5
u
y

(a) Distributed architecture.

−2.5

0.0

2.5

u
x

0 25 50 75 100 125 150 175
iterations

−2.5

0.0

2.5

u
y

(b) Decentralized architecture.

Figure 4: Computed controls for the evasion experiments of Fig. 3.

acting simultaneously. We use the same experiment as in the previous section,

with only two quadcopters.

Fig. 5 shows a top view of an experiment. On the left is the evasion using

only average hard constraints of the form of Eq. 25; the evasion maneuver is

performed around (0.62, 0.62) for the green agent and around (1.37, 1.37) for the400

blue one. The evolution of the distance between quadcopters shows a smooth

evolution and has a minimum value of 0.54 around iteration 75, without violating

the security distance D = 0.5. On the right, we present the result using only

soft constraints of the form of Eq. 27, showing that the task is not completed

in this case. Both quadcopters reach a symmetric position where they start405

oscillating permanently forwards and backwards. This issue is alleviated by

combining both types of constraints in the proposed control scheme.

The case of using both types of constraints has been presented in Fig. 3,

where the task is effectively finished; the evolution of the distance between

24

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(a)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(b)

0 25 50 75 100 125 150 175
iterations

0.0

0.5

1.0

1.5

2.0

2.5

m

Distance between agents

D

0 25 50 75 100 125 150 175
iterations

0.0

0.5

1.0

1.5

2.0

2.5

m

Distance between agents

D

(c)

0 25 50 75 100 125 150 175
iterations

0.0

0.5

1.0

1.5

2.0

2.5

m

Distance between agents

D

(d)

Figure 5: Decentralized evasion between two quadcopters. (a) and (c): using only the average

hard constraints of the form (25). (b) and (d): using only the linear soft constraints of the

form (27). The graphs (a) and (b) give the trajectories in the x− y plane; the graphs (c) and

(d) give the evolution of the distance between agents during the experiment.

quadcopters is smooth and has a minimum value of 0.65 around iteration 45,410

which is a better behavior than using only hard constraints. Even with the

decentralized architecture, using both types of constraints solves the task effec-

tively, although with a poorer performance in terms of trajectory smoothness.

To extend the analysis of the use of the constraints options, we evaluate the

ratio of success of each evasion strategy for more quadcopters. We performed415

1000 evasion experiments for two, three and four quadcopters; each agent is

initially positioned at the corner of a square and attempts to reach the op-

posite corner. Each experiment was performed using either only average hard

constraints, only soft constraints or both, for the distributed and decentralized

architectures. The results are shown in Table 1. Note that a case is considered420

as successful when the quadcopters reach their reference and collision between

them was never detected, i.e., the distance between the quadcopters was never

25

lower than the security distance D.

N. quadcopters
Distributed Decentralized

Avg. hard Soft Both Avg. hard Soft Both

2 100% 0% 100% 100% 0.6% 100%

3 90.6% 71.4% 100% 0% 100% 100%

4 25.6% 12.9% 99.2% 0% 99.8% 100%

Table 1: Percentage of success for evasion maneuvers between different number of quadcopters

using the three options of evasion strategies, in distributed and decentralized architectures.

It is interesting to notice that neither the average hard constraints alone,

nor the soft constraints alone have a good performance for all the evasion cases.425

However, the use of both types of constraints is effective for the tested evasion

cases, in both distributed and decentralized control architectures. We conclude

that the best avoidance strategy consists on using both types of constraints, soft

and average hard. They allow to reach the reference and to reduce oscillations

when the distance between the quadcopters is near the security distance D.430

4.1.3. Reference trajectory

In this section, we compare two options to generate the reference ri required

in the cost function in Eq. 7. The reference can be generated in advance by

using the theoretical value of consensus or can be dynamically specified by

Eq. 11. Discrete reference trajectories ri(k) for each virtual quadcopter zi can

be generated and predefined by using Euler integration with sampling period

Tr = 0.01s and the consensus protocol in Eq. 4. Knowing the initial conditions

of the quadcopters, we define ri(0) = zi(0) = xi(0) − di for i = 1, . . . , n, and

the reference trajectory for each virtual quadcopter is described recursively by

ri(k + 1) = ri(k) + Tr
∑
j∈Ni

(rj(k)− ri(k)). (33)

Fig. 6 shows a comparison between using the dynamic reference or the pre-

defined consensus trajectories of Eq. 33 in a decentralized architecture for 4

quadcopters. The experiment is designed in such a way that two quadcopters

26

must avoid each other. The predefined trajectories consist on straight lines from435

the initial configuration to the target formation. However, when evasion con-

straints are added, the final trajectories differ from the reference ones, but the

evasion between the blue and green quadcopters does not affect the trajectories

of the other two. In the case of using the dynamic reference, the trajectories

are longer and curvy, even for the quadcopters that do not need to evade.440

X

−0.5
0.0

0.5
1.0

1.5

Y

−0.5

0.0

0.5

1.0

1.5

Z

0.0

0.5

1.0

1.5

2.0

Initial formation

Final formation

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
X

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Y

Initial formation

Final formation

(a) Dynamic reference.

X

−0.5
0.0

0.5
1.0

1.5

Y

−0.5

0.0

0.5

1.0

1.5

Z

0.0

0.5

1.0

1.5

2.0

Initial formation

Final formation

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
X

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Y

Initial formation

Final formation

(b) Predefined reference (dotted lines).

Figure 6: Decentralized formation experiment comparing the use of a dynamic or predefined

reference in the MPC.

Although straighter trajectories are generated using the predefined refer-

ence, its main disadvantage arises with the presence of fixed obstacles in the

environment. In this case, the achievement of the formation cannot be guar-

27

anteed because, if the final position of the predefined trajectories is obstructed

by an obstacle, then the quadcopters will not be able to reach the desired con-445

figuration. The dynamic reference for the MPC has the advantage to adapt to

different environments, even in the presence of fixed obstacles and even when the

evasion maneuvers of one quadcopter change the dynamic consensus reference.

Given these observations, our proposed formation control strategy is sum-

marized as an MPC using a dynamic reference given by the local consensus450

error between virtual quadcopters, both average hard constraints of the form of

Eq. 25 and soft constraints of the form of Eq. 27 adapted for horizontal evasion,

and both average hard constraints of the form of Eq. 29 and soft constraints of

the form of Eq. 31 for connectivity maintenance, all of this using a distributed

control architecture. Connectivity maintenance is evaluated in the next section.455

4.2. Experiments in a dynamic simulator

The proposed control strategy has been implemented in the Gazebo simula-

tor [43] using the rotorS package [44] for the formation of 4 quadcopters in 3D

and with a fixed obstacle as a column located at (0.5, 0.5). A fully connected

undirected communication graph is considered and the proposed MPC scheme460

aims for maintaining this connectivity all the time. At each iteration k, our

scheme computes the linear velocities vx(k), vy(k) and vz(k), that are then in-

tegrated into positions by using the Euler forward formulation with sampling

period Tr = 0.01s. Then, the estimated position is passed as a reference to the

position controller of the rotorS package. The sampling control period was set465

T = 0.1s, the weight kd = 10.0 and the limits of control inputs [−5.0, 5.0].

Important parameters in a MPC formulation are the prediction horizon Hp

and the control horizon Hu. A large prediction horizon results in better per-

formance; however, a larger prediction horizon also increases the computational

load. In our case, we found experimentally a good compromise between per-470

formance and computational load by setting Hp = 15 and Hu = 10. These

relatively large values are adequate for the possibly fast motion of the quad-

copters; lower values generate jittering movements and larger values do not

28

improve the performance significantly, hence it is not worth the increment in

computational burden. This is shown at the end of the section.475

Figure 7: Evolution of the quadcopters for a formation experiment in Gazebo with connectivity

constraints.

Some snapshots of the evolution of the quadcopters during the formation

experiment can be seen in Fig. 7 and a video of the whole experiment can be

found at https://youtu.be/X8HgnmrU3e4. The details of the quadcopters tra-

jectories are presented in Fig. 8, in 3D and in the x − y plane. Also, the same

figure shows how the virtual quadcopters reach consensus. In this experiment480

one can observe that two quadcopters have to wait for the others two to move,

and then they complete the formation. During their motion, the purple and

orange quadcopters are in risk of separating more than the connectivity limit

E from the others and the connectivity constraints make that these two agents

wait for the others to move. Due to the connectivity constraints and given the485

waiting effect for some quadcopters to prevent disconnection, the desired for-

mation is achieved in more iterations than an experiment without connectivity

maintenance, but the task is effectively completed.

Fig. 9 shows the distance between the quadcopters and to the fixed obstacle.

We observe that the distance between the more distant quadcopters, the orange490

and purple ones, gets close to but do not reach the connectivity limit E. Never-

theless, at some point, the distance between the green and purple quadcopters

violates the evasion limit D. This can be avoided by increasing the gain kd of

29

https://youtu.be/X8HgnmrU3e4

X

−0.5
0.0

0.5
1.0

1.5

Y

−0.5

0.0

0.5

1.0

1.5

Z

0.0

0.5

1.0

1.5

2.0

Initial formation

Final formation

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
X

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Y

Initial formation

Final formation

(a) 3D view (left) and upper view (right).

X

−2.0
−1.5

−1.0
−0.5

0.0
0.5

1.0

Y

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Z

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

(b) Trajectories of the virtual quadcopters

reaching consensus.

Figure 8: Trajectories generated by Gazebo for the formation experiment of Fig. 7 with con-

nectivity maintenance.

the penalty evasion term. However, this may jeopardize the guarantee of no

traversing the connectivity limit. Hence, a good trade-off must be found.495

Fig. 10 presents the computed controls for this formation experiment with

connectivity constraints. Due to these constraints, some oscillations are ob-

served but the controls stay within the predefined limits.

To conclude this section, a parameter validation for the prediction horizon

30

0 100 200 300 400 500 600 700
iterations

0.0

0.5

1.0

1.5

2.0

2.5
m

Distance between agents

E

D

0 100 200 300 400 500 600 700
iterations

0.0

0.5

1.0

1.5

2.0

2.5

m

Distance to obstacle

D

Figure 9: Distance between quadcopters and to the obstacle for the distributed formation

control of Fig. 7.

−5

0

5

u
x

−5

0

5

u
y

0 100 200 300 400 500 600 700
iterations

−5

0

5

u
z

Figure 10: Computed controls for the formation experiment of Fig. 7.

Hp is presented. Fig. 11 shows the trajectories followed by the quadcopters for500

prediction horizons 5, 15 and 25. The behavior with Hp = 5 is very reactive

and the quadcopters present jittering movements. This undesired effect is re-

duced with Hp = 15 and the trajectories are almost smooth with Hp = 25,

however, the cost to pay is an important increment in the time to solve the

optimization problem, as shown in Fig. 12. Moreover, as Hp is larger, the opti-505

mization problem is more complex and the probability of not finding a feasible

solution increases. Similar experiments to the one shown here with Hp = 15

were performed 100 times and in all the cases convergence to the desired forma-

tion was achieved, not so for Hp = 25, where only 35 executions were successful.

Therefore, the intermediate value Hp = 15 was selected.510

31

−0.5 0.0 0.5 1.0 1.5

X

−0.5

0.0

0.5

1.0

1.5
Y

Initial formation

Final formation

(a) Hp = 5.

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
X

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Y

Initial formation

Final formation

(b) Hp = 15, selected.

−0.5 0.0 0.5 1.0 1.5

X

−0.5

0.0

0.5

1.0

1.5

Y

Initial formation

Final formation

(c) Hp = 25.

Figure 11: Trajectories of the quadcopters for different prediction horizons.

0 20 40 60 80 100 120 140 160

Iterations

101

102

M
il

li
se

co
n

d
s

Hp = 5

Hp = 15

Hp = 25

(a) Mean value between the 4 quadcopters.

0 20 40 60 80 100 120 140 160

Iterations

101

102

M
il

li
se

co
n

d
s
Hp = 5

Hp = 15

Hp = 25

(b) Maximum value between the 4 quadcopters.

Figure 12: Times to solve the optimization problem for the cases of Fig. 11.

4.3. Experiments with real quadcopters

We ran a few formation experiments with Bebop 2.0 quadcopters from Par-

rot®. We used an Optitrack motion capture with a dedicated computer running

the Motive software so that the position of every quadcopter is known all along

the experiment. Each quadcopter has reflecting markers that are tracked by the515

set of cameras of the motion capture system. These positions are read by each

quadcopter, at each iteration, in order to know where its neighbors are.

The control velocities are calculated in a different computer for each quad-

copter and then communicated to the aircraft via WiFi using the bebop autonomy

driver [45], so the computations are not performed on board. Each computer520

32

for control used a virtual reality peripheral network (VRPN) client for ROS to

get the data at 100 Hz. The bebop autonomy driver allows us to directly pub-

lish velocity commands to the Bebop 2.0 quadcopter that uses its own low level

control to transform the velocity commands into velocities for each rotor, and

also to read the computed controls published by its neighbors.525

Formation experiments with three quadcopters have been performed. In this

case, one of the quadcopters stays at hovering along the experiment, acting as

a leader, resulting on a communication graph given by the adjacency matrix

A =


0 1 0

1 0 0

1 1 0

 ,
where the static quadcopter sends its states to the other two but does not receive

any information.

The computers used to compute the velocities of the two active quadcop-

ers had the following features: CPU Intel Core i7-4790 @3.6GHz×8 and CPU

Intel Core i7-3632QM @2.2GHz×8, both with 16 GB of RAM and running530

Ubuntu 16.04 and ROS Kinetic. Each computer solved independently the opti-

mization problem using the Operator Splitting for Quadratic Programs (OSQP)

solver [46], taking as input the data from neighbors. In each computer and each

iteration, the time to solve the optimization problem varied due to the changes

in the constraints, but the time for each iteration was always inferior to 70ms535

for Hp = 15. Therefore, in order to make the sampling period uniform for all

the quadcopters, the parameter T was set to 0.1 seconds.

In the experiments with real quadcopters, the limits of the control inputs

were set as [−0.03m/s, 0.03m/s]. These low values were used in order to avoid

an undesirable inertia effect that we observed when the quadcopters must change540

their direction or must stop according to the MPC. This is due to a poor per-

formance of the low-level controller of the quadcopters. Besides, the parameter

γi of the cost function in Eq. 7 that penalizes the size of the control inputs was

set large between [750, 1000] in order to reduce the occurrence of control inputs

33

X

0.0
0.5

1.0
1.5

2.0

Y

−1.0

−0.5

0.0

0.5

1.0

Z

−0.5

0.0

0.5

1.0

1.5

O

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
X

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Y

Figure 13: Target formation for experiments with three Bebop 2.0 quadcopters.

saturation, resulting on less problems associated with the quadcopter inertia.545

In addition, we use an adaptive value for λi, depending on the consensus

error ei for each coordinate at the current iteration, given by

λi(ei) =


λmax −

λmax − λmin

er
ei ei < er,

λmin ei ≥ er,
(34)

where λmin and λmax are bounds for λi and er is a predefined level of error. This

function λi(ei) produces low values when the consensus error is high, i.e., when

the quadcopters are far from the target formation. In this case, the computed

controls focus in a slower and controlled movement. When the error starts

to decrease and the computed controls decrease, the value of λi increases and550

penalizes more the consensus error, resulting in higher computed inputs that

can lead the quadcopters to achieve the target formation more accurately.

Here we present the results for two experiments: a formation control experi-

ment for three quadcopters without obstacle, and the same experiment but with

a single column obstacle. The dimensions of the space where the quadcopters555

could navigate were of 4.75m× 3m and the limits of this space were introduced

as hard constraints for the optimization problem. Due to the lack of physical

space, we did not perform experiments with connectivity constraints. Also, to

ensure that the formation was achieved within the available space, one of the

three quadcopters remains in hovering state along all the experiments, i.e., it560

34

is not controlled and is static, acting as an anchor for the formation. Fig. 13

shows the target formation used along the experiments.

Both experiments used the same parameters: The prediction horizon Hp

is 15 and the control horizon Hu is 10. The evasion penalty gain is kd = 1.

The control penalty parameter is γi = 1000 and the consensus error penalty565

parameter was between λmin = 20 and λmax = 100, with a threshold er = 3.

4.3.1. Formation experiment without obstacles

Fig. 14 shows some snapshots of the evolution of a formation experiment

with 3 Bebop 2.0 quadcopters as seen from the top. Two quadcopters start at

the right and the third one at the lower left. At the end of the experiment the570

three quadcopters reach the desired configuration presented in Fig. 13. A video

of this experiment can be consulted at https://youtu.be/5-GtJJBk8Zo.

Figure 14: Evolution of a formation experiment with 3 real Bebop 2.0 quadcopters.

The generated paths for the three quadcopters, along with the initial and

final formation, can be seen in Fig. 15. The green quadcopter moves practically

in straight line until it reaches the vicinity of its target position. The blue575

quadcopter tries to minimize its error with respect to the green one and that

is why its path approaches to (0,−1); but when the green quadcopter is closer,

the blue one gets also closer to its target position.

Oscillations can be observed near the target position as the quadcopters try

to converge to the desired formation. These oscillations might be reduced by580

35

https://youtu.be/5-GtJJBk8Zo

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
X

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Y

Initial formation

Final formation

Figure 15: Paths generated by the formation experiment of Figure 14.

improving the accuracy of the low-level velocity controller. Finally, even though

the orange quadcopter is not controlled, we can see some displacement due both

to its inner hovering control and to the external disturbance caused by the

turbulence of the other quadcopters. Nevertheless, the controlled quadcopters

adjust to this movement, reaching their target position.585

As can be seen in Fig. 15, there is no risk of collision along the experiment.

Therefore in Fig. 16 we observe that the distance between quadcopters does not

get close to the security distance.

0 100 200 300 400 500 600 700
iterations

0

1

2

3

4

m

Distance between agents

D

Figure 16: Distance between quadcopters in the formation experiment of Fig. 15.

36

Finally, the computed control inputs appear in Fig. 17. We observe very little

saturation, because of the very high value of the control penalty parameter and590

the adaptive value of consensus error penalty parameter. The velocities oscillate

but decrease in amplitude, allowing the system to converge. The computed

control input of the orange quadcopter remains in 0 as is not controlled.

−0.03

0.00

0.03

u
x

−0.03

0.00

0.03

u
y

0 100 200 300 400 500 600 700
iterations

−0.03

0.00

0.03

u
z

Figure 17: Computed control inputs for the formation experiment of Fig. 15.

To close the case of experiments without obstacles, we highlight that exper-

iments with 5 quadcopters in a larger workspace were realized. One of these595

experiments is described in https://youtu.be/DYwxDR39Rp0, where the quad-

copters are initially aligned and they effectively reach the desired formation. In

the video, we also present the evolution in time of the important variables.

4.3.2. Formation experiment with an obstacle

Fig. 18 shows some snapshots of the evolution of a formation experiment600

with 3 Bebop 2.0 quadcopters with an obstacle, seen from the top. The target

formation is the same as in the previous experiment, given by Fig. 13. The initial

configuration is very close to the previous one, with two quadcopters aligned at

the right and the third one at the bottom left corner. The obstacle is the white

column observed in the scene and is located at the right of the quadcopter in605

the left, with the purpose of avoiding a straight trajectory for this agent. This

37

https://youtu.be/DYwxDR39Rp0

experiment can be seen at https://youtu.be/qaPfFxFETvc.

Figure 18: Evolution of a formation experiment with 3 real Bebop 2.0 quadcopters with an

obstacle.

As can be seen in Fig. 19, the green quadcopter does not follow a straight

trajectory anymore, as it has to evade the obstacle. The trajectory of the blue

quadcopter is very similar to the one of the previous experiment, trying to610

decrease the error relative to the green quadcopter first, and when this one is

closer, converging to the desired formation. In this experiment, the movement of

the noncontrolled orange quadcopter has a lower amplitude than in the previous

experiment, but it can still be appreciated.

The distance between the quadcopters and to the obstacle along the experi-615

ment can be seen in Fig. 20. Initially, the distance between the green quadcopter

and the obstacle is close the security distance, and following a straight trajectory

would have led in passing this limit, that is why the green quadcopter moves

along a curved trajectory far from the obstacle. The obstacle stops the move-

ment of the blue quadcopter to the left around the iterations 100 and 150. Even620

though the gain for the evasion penalty term kd = 1 is much lower than the

control penalty parameter γi = 1000 or the consensus error penalty parameter

whose lower value is 20, it is enough to avoid collisions.

Finally, Fig. 21 shows the computed controls. Some saturation can be ob-

served during the first 100 iterations, and then again between iterations 100 and625

150 for the blue quadcopter when there is a need to evade the obstacle and to

38

https://youtu.be/qaPfFxFETvc

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
X

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Y

Initial formation

Final formation

Figure 19: Paths generated by the formation experiment of Fig. 18.

0 50 100 150 200 250 300 350
iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

m

Distance between agents

D

0 50 100 150 200 250 300 350
iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

m

Distance to obstacle

D

Figure 20: Distance between quadcopters and to the obstacle in the formation experiment of

Fig. 19.

adapt to the movement of the green quadcopter. Again, the controls oscillate

but with decreasing amplitude, leading to convergence to the formation.

5. Conclusions and future work

In this paper, we have addressed the formation control of a group of quad-630

copters via a distributed model predictive control scheme. A dynamic formation

control was proposed, in which a position consensus error is minimized at each

control cycle. The formation is achieved using a consensus strategy with vir-

tual quadcopters defined such that if the virtual agents achieve consensus, the

39

−0.03

0.00

0.03

u
x

−0.03

0.00

0.03

u
y

0 50 100 150 200 250 300 350
iterations

−0.03

0.00

0.03

u
z

Figure 21: Computed control inputs for the formation experiment of Fig. 19.

real quadcopters reach the desired formation. We have integrated an effective635

solution for three different tasks of a system with multiple quadcopters: for-

mation control, collision/obstacle avoidance and connectivity maintenance. We

have introduced soft and hard constraints for the MPC problem to deal with

these tasks and we have shown that using both kinds of constraints give better

performance than using only one of the two. The advantages of the proposed640

approach are that only relative positions between neighboring quadcopters and

local measurements to avoid obstacles are needed; hence, our approach might

be implemented without using a global coordinate system nor a map of the

environment. Moreover, only local connectivity between pairs of quadcopters is

required to preserve the initial communication graph, without the need of global645

information about the topology. The approach is free of predefined trajectories,

providing flexibility to achieve the goals of the three tasks without relying on

a high level motion planner. Our kinematic control scheme was evaluated in

realistic simulations and experiments with real quadcopters in indoors settings,

showing its effectiveness to solve the MPC problem in a distributed fashion.650

As future work, the proposed approach could be extended to the leader-

following configuration, which might allow us to implement the approach for

long-distance navigation of a group of quadcopters in formation in more general

40

environments with complex obstacles while connectivity is guaranteed. In prin-

ciple, one could ensure to reach the formation without using a common frame,655

by using the notion of rigidity and extracting measurements from onboard cam-

eras only, as explored in some recent works [47, 48]. To achieve that, we need

to leave the global localization system, equip the quadcopters with on-board

sensors such as depth cameras and develop adequate algorithms to measure the

relative information required by the distributed control scheme.660

Acknowledgement

The authors would like to acknowledge the financial support of Intel Corpo-

ration for the development of this work and to Eng. Antonio Sánchez Medel for

his technical support in the realization of the experiments.

Conflict of interest statement665

Conflict of interest - none declared.

Appendix A. Formulation as a quadratic programming problem

For general dynamic systems, the optimization problem of Eq. 10 is hard to

solve and it is not evident that a solution exists. The equations presented in this

Appendix holds for each quadcopter i. In order to rewrite Eq. 10 as a quadratic670

programming problem, that guarantees the existence of a global minimum, the

following vectors are defined

Ẑ(k + 1) ,


ẑ(k + 1|k)

ẑ(k + 2|k)
...

ẑ(k +Hp|k)

 ,R(k + 1) ,


r(k + 1|k)

r(k + 2|k)
...

r(k +Hp|k)

 ,U(k) ,


u(k|k)

u(k + 1|k)
...

u(k +Hu − 1|k)

 ,

(A.1)

41

where the different numerical values over the horizon are stacked together. Then,

having that Hw = 1, the objective function of Eq. 7 can be rewritten as

Φ(k) =
(
Ẑ(k + 1)−R(k + 1)

)T
Λ
(
Ẑ(k + 1)−R(k + 1)

)
+U(k)TΓU(k),

(A.2)

where U(k) is defined in Eq. 15 and the matrices Λ and Γ hold weights for the

different terms of the objective function,

Λ ,


λ 0 · · · 0

0 λ · · · 0
...

...
. . .

...

0 0 · · · λ

 , Γ ,


γ 0 · · · 0

0 γ · · · 0
...

...
. . .

...

0 0 · · · γ

 .

We use uniform weights along the horizon window, but the weights could be

defined in a different manner (penalizing differently according to the position in

the horizon window).675

Given the model of the system defined in Eq. 8, it can be shown that the

model can be extended along the prediction horizon as

Ẑ(k + 1) = PXz(k) + PUU(k), (A.3)

where

PX ,


A

A2

...

AHp

 , PU ,



B 0 · · · 0

AB B · · · 0
...

...
. . .

...

AHu−1B AHu−2B . . . B

AHuB AHu−1B . . .
1∑
i=0

AiB

...
...

...

AHp−1B AHp−2B · · ·
Hp−Hu∑
i=0

AiB



. (A.4)

Let us first analyze the case where the reference trajectory is static, i.e., pre-

computed from the theoretical value of consensus as described in Section 4.1.3.

Substituting Eq. A.3 in Eq. A.2, the objective cost function can be rewritten in

42

the following standard form

Φ(k) =
1

2
U(k)TH(k)U(k) + f(k)TU(k) + g(k), (A.5)

where

H(k) , 2
(
P T
UΛPU + Γ

)
, (A.6)

f(k) , 2P T
UΛ
(
PXz(k)−R(k + 1)

)
, (A.7)

g(k) ,
(
PXz(k)−R(k + 1)

)T
Λ
(
PXz(k)−R(k + 1)

)
. (A.8)

Now, let us consider the proposed distributed scheme in which the reference

is a linear function of the control inputs given by R(k+ 1) = Q(k) +S(k)U(k),

(Eq. 16). In this case, the matrices in the standard formulation are as follows:

H(k) , 2
[(
PU − S(k)

)T
Λ
(
PU − S(k)

)
+ Γ

]
, (A.9)

f(k) , 2
(
PU − S(k)

)T
Λ
(
PXz(k)−Q(k)

)
, (A.10)

g(k) ,
(
PXz(k)−Q(k)

)T
Λ
(
PXz(k)−Q(k)

)
. (A.11)

One can obtain the optimal control vector by making ∂Φ(k)

∂U (k)
= 0. The matrix

in Eq. A.9 is positive definite and describes the quadratic part of the objective

function in Eq. A.5, and the vector in Eq. A.10 describes the linear part. The

term in Eq. A.11 is independent of U so it has no influence in the determination

of the optimum U∗. Then, the optimal control vector is

U∗ = −Ψ
(
PXz(k)−Q(k)

)
, (A.12)

with Ψ ,
((
PU − S(k)

)T
Λ
(
PU − S(k)

)
+ Γ

)−1 (
PU − S(k)

)T
Λ. The first

term of the sequence in Eq. A.12 is actually implemented as control law u∗(k|k)

for the quadcopter i.

In Lemma 3.1 of [32], it is proven that the kind of control protocol of

Eq. A.12 has an equivalent expression as an individual consensus control law680

u∗i (k|k) = −ψi (zi(k)− ri(k)), with ψi ∈ R+ a control gain and ri(k) =

1
|Ni(k)|+1

∑
j∈Ni(k)∪{i}

zj(k). Using this equivalent control law, in Theorem 3.1 of

[32], the stability of the closed-loop system to achieve consensus of the virtual

43

quadcopters (equivalently the formation of the real quadcopters) is guaranteed

for communication graphs having a spanning tree.685

The cost function in Eq. A.5 is written as a quadratic form in U , and this

ensures that solving optimization problem of Eq. 10 is possible and that the

optimum is unique, because H(k) is positive definite.

There exists a lot of solvers for this type of optimization problems, that are

fast and reliable. This is important given the fact that the system we are using,690

a quadcopter, requires a fast computation of the control inputs.

Appendix A.1. Additional constraints

Model Predictive Control is very flexible when it is necessary to take con-

straints into account as they just need to be attached to the optimization prob-

lem, as depicted in the “Constraints” block of Fig. 1. Some of the most used

ones are the ones related to the physical limitations in the control input sig-

nals, such as bounds in the values that can be applied to the system. These

constraints can be expressed as

umin(k) ≤ u(k) ≤ umax(k), (A.13)

then the optimization problem in Eq. 10 becomes

u∗ = arg min
u

Φ(k),

subject to Mu ≤m
(A.14)

where

M ,

 Im
−Im

 m ,

 umax(k)

−umin(k)

 . (A.15)

Extending this to the quadratic form in Eq. A.5, the constraints become

U(k) ≤ Umax(k) (A.16)

−U(k) ≤ −Umin(k) (A.17)

44

where

Umin(k) ,


umin(k)

umin(k + 1)
...

umin(k +Hu − 1)

 , Umax(k) ,


umax(k)

umax(k + 1)
...

umax(k +Hu − 1)

 .

References

[1] K. N. McGuire, Indoor swarm exploration with pocket drones, Ph.D. thesis,

Delft University of Technology (11 2019).695

[2] T. I. Zohdi, Multiple UAVs for mapping: A review of basic modeling, sim-

ulation, and applications, Annual Review of Environment and Resources

43 (1) (2018) 523–543.

[3] R. Tallamraju, E. Price, R. Ludwig, K. Karlapalem, H. H. Bülthoff, M. J.

Black, A. Ahmad, Active perception based formation control for multiple700

aerial vehicles, IEEE Robotics and Automation Letters 4 (4) (2019) 4491–

4498.

[4] E. T. Alotaibi, S. S. Alqefari, A. Koubaa, LSAR: multi-UAV collaboration

for search and rescue missions, IEEE Access 7 (2019) 55817–55832.

[5] D. K. D. Villa, A. S. Brandao, M. Sarcinelli-Filho, A survey on load trans-705

portation using multirotor UAVs, J Intell Robot Syst 98 (2020) 267–296.

[6] O. S. Oubbati, A. Lakas, P. Lorenz, M. Atiquzzaman, A. Jamalipour,

Leveraging communicating UAVs for emergency vehicle guidance in ur-

ban areas, IEEE Trans. on Emerging Topics in Computing 9 (2) (2019)

1070–1082.710

[7] K. K. Oh, M. C. Park, H. S. Ahn, A survey of multi-agent formation control,

Automatica 53 (2015) 424 – 440.

45

[8] C. Rosales, P. Leica, M. Sarcinelli-Filho, G. Scaglia, R. Carelli, 3D for-

mation control of autonomous vehicles based on null-space, J Intell Robot

Syst 84 (1-4) (2016) 453–467.715

[9] E. L. de Angelis, F. Giulietti, G. Rossetti, Multirotor aircraft formation

flight control with collision avoidance capability, Aerospace Science and

Technology 77 (2018) 733–741.

[10] A. Joshi, A. Wala, M. Ludhiyani, D. Chakraborty, H. Chung, D. Manju-

nath, Outdoor cooperative flight using decentralized consensus algorithm720

and a guaranteed real-time communication protocol, Control Engineering

Practice 88 (2019) 128–140.

[11] J. Wang, Z. Zhou, C. Wang, J. Shan, Multiple quadrotors formation fly-

ing control design and experimental verification, Unmanned Systems 7 (1)

(2019) 47–54.725

[12] S. Huang, R. S. H. Teo, K. K. Tan, Collision avoidance of multi unmanned

aerial vehicles: A review, Annual Reviews in Control 48 (2019) 147–164.

[13] O. Cetin, G. Yilmaz, Real-time autonomous UAV formation flight with

collision and obstacle avoidance in unknown environment, J Intell Robot

Syst 84 (1-4) (2016) 415–433.730

[14] L. Dai, Q. Cao, Y. Xia, Y. Gao, Distributed MPC for formation of multi-

agent systems with collision avoidance and obstacle avoidance, Journal of

the Franklin Institute 354 (4) (2017) 2068–2085.

[15] X. Liu, S. S. Ge, C.-H. Goh, Formation potential field for trajectory track-

ing control of multi-agents in constrained space, Int. Journal of Control735

90 (10) (2017) 2137–2151.

[16] E. D’Amato, M. Mattei, I. Notaro, Bi-level flight path planning of UAV

formations with collision avoidance, J Intell Robot Syst 93 (2019) 193–211.

46

[17] J. Hu, M. Wang, C. Zhao, P. Quan, C. D., Formation control and collision

avoidance for multi-UAV systems based on voronoi partition, Science China740

Technol. Sci. 63 (2020) 65–72.

[18] R. Olfati-Saber, J. Fax, R. Murray, Consensus and cooperation in net-

worked multi-agent systems, Proceedings of the IEEE 95 (2007) 215–233.

[19] X. Zhu, Y. Liang, M. Yan, A flexible collision avoidance strategy for the for-

mation of multiple unmanned aerial vehicles, IEEE Access 7 (2019) 140743–745

140754.

[20] M. A. Trujillo, H. M. Becerra, D. Gomez-Gutierrez, J. Ruiz-Leon, Ramirez-

Treviño, Hierarchical task-based formation control and collision avoidance

of UAVs in finite time, European Journal of Control 60 (2021) 48–64.

[21] P. D. Christofides, R. Scattolini, D. M. de la Peña, J. Liu, Distributed750

model predictive control: A tutorial review and future research directions,

Computers & Chemical Engineering 51 (2012) 21–41.

[22] M. Saska, D. Hert, T. Báca, V. Krátký, T. P. do Nascimento, Formation

control of unmanned micro aerial vehicles for straitened environments, Au-

ton. Robots 44 (6) (2020) 991–1008.755

[23] L. Dubois, S. Suzuki, Formation control of multiple quadcopters using

model predictive control, Advanced Robotics 32 (19) (2018) 1037–1046.

[24] W. Zhao, T. H. Go, Quadcopter formation flight control combining MPC

and robust feedback linearization, Journal of the Franklin Institute 351 (3)

(2014) 1335–1355.760

[25] T. Chevet, C. Vlad, C. S. Maniu, Z. Y., Decentralized MPC for UAVs

formation deployment and reconfiguration with multiple outgoing agents,

J Intell Robot Syst 97 (2020) 155–170.

[26] Z. Chao, S. L. Zhou, L. Ming, W. G. Zhang, UAV formation flight based on

nonlinear model predictive control, Mathematical Problems in Engineering765

2012 (2012).

47

[27] S. R. Bassolillo, E. D’Amato, I. Notaro, L. Blasi, M. Mattei, Decentralized

mesh-based model predictive control for swarms of UAVs, Sensors 20 (15)

(2020).

[28] R. Van Parys, G. Pipeleers, Distributed MPC for multi-vehicle systems770

moving in formation, Robotics and Autonomous Systems 97 (2017) 144–

152.

[29] C. W. Chang, J. K. Shiau, Quadrotor formation strategies based on dis-

tributed consensus and model predictive controls, Applied Sciences 8 (2018)

2246.775

[30] Y. Kuriki, T. Namerikawa, Formation control with collision avoidance for

a multi-UAV system using decentralized MPC and consensus-based con-

trol, SICE Journal of Control, Measurement, and System Integration 8 (4)

(2015) 285–294.

[31] T. Murayama, Distributed model predictive consensus control for robotic780

swarm system, Artif. Life Robot. 23 (4) (2018) 628–635.

[32] Z. Cheng, M. C. Fan, H. T. Zhang, Distributed MPC based consensus for

single-integrator multi-agent systems, ISA Transactions 58 (2015) 112–120.

[33] J. Alonso-Mora, E. Montijano, T. Nägeli, O. Hilliges, M. Schwager, D. Rus,

Distributed multi-robot formation control in dynamic environments, Au-785

ton. Robots 43 (5) (2019) 1079–1100.

[34] J. Fu, G. Wen, X. Yu, Z. G. Wu, Distributed formation navigation of

constrained second-order multiagent systems with collision avoidance and

connectivity maintenance, IEEE Trans. on Cybernetics (2020) 1–14.

[35] R. J. M. Afonso, M. R. O. A. Maximo, R. K. H. Galvão, Task allocation790

and trajectory planning for multiple agents in the presence of obstacle

and connectivity constraints with mixed-integer linear programming, Int.

Journal of Robust and Nonlinear Control 30 (14) (2020) 5464–5491.

48

[36] A. Filotheou, A. Nikou, D. V. Dimarogonas, Robust decentralised naviga-

tion of multi-agent systems with collision avoidance and connectivity main-795

tenance using model predictive controllers, Int. Journal of Control 93 (6)

(2020) 1470–1484.

[37] D. Mellinger, V. Kumar, Minimum snap trajectory generation and control

for quadrotors, in: Robotics and Automation (ICRA), 2011 IEEE Interna-

tional Conference on, IEEE, 2011, pp. 2520–2525.800

[38] J. Jin, N. R. Gans, Collision-free formation and heading consensus of non-

holonomic robots as a pose regulation problem, Robotics Auton. Syst. 95

(2017) 25–36.

[39] R. Olfati-Saber, R. M. Murray, Consensus problems in networks of agents

with switching topology and time-delays, IEEE Transactions on Automatic805

Control 49 (9) (2004) 1520–1533.

[40] M. N. Zeilinger, M. Morari, C. N. Jones, Soft constrained model predictive

control with robust stability guarantees, IEEE Transactions on Automatic

Control 59 (5) (2014) 1190–1202.

[41] D. Mayne, J. Rawlings, C. Rao, P. Scokaert, Constrained model predictive810

control: Stability and optimality, Automatica 36 (6) (2000) 789–814.

[42] S. Zhou, A. Shen, M. Wang, S. Peng, Z. Liu, Study on composing dense

formations in a dynamic environment of multirotor UAVs by distributed

control, Mathematical Problems in Engineering 2018 (2018).

[43] N. Koenig, A. Howard, Design and use paradigms for Gazebo, an open-815

source multi-robot simulator, in: IEEE/RSJ Int. Conf. on Intelligent

Robots and Systems, Vol. 3, 2004, pp. 2149–2154.

[44] F. Furrer, M. Burri, M. Achtelik, R. Siegwart, Robot Operating System

(ROS): The Complete Reference (Volume 1), Springer International Pub-

lishing, Cham, 2016, Ch. RotorS—A Modular Gazebo MAV Simulator820

Framework, pp. 595–625.

49

[45] M. Monajjemi, bebop autonomy - ROS driver for Parrot Bebop drone

(quadcopter) 1.0 & 2.0, http://bebop-autonomy.readthedocs.io/, ac-

cessed: 2020-12-05 (2015).

[46] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, S. Boyd, OSQP: an op-825

erator splitting solver for quadratic programs, Mathematical Programming

Computation 12 (4) (2020) 637–672.

[47] F. Schiano, P. Robuffo Giordano, Bearing rigidity maintenance for forma-

tions of quadrotor UAVs, in: IEEE Int. Conf. on Robotics and Automation,

2017, pp. 1467 – 1474.830

[48] E. Montijano, E. Cristofalo, D. Zhou, M. Schwager, C. Sagüés, Vision-based

distributed formation control without an external positioning system, IEEE

Trans. on Robotics 32 (2) (2016) 339–351.

50

http://bebop-autonomy.readthedocs.io/

	Introduction
	blackProblem formulation
	Proposed control scheme
	MPC formulation
	Distributed control
	Collision and obstacle avoidance
	Hard constraints
	Soft constraints

	Connectivity maintenance

	Simulation results and real experiments
	Comparison of control options
	Control architecture
	Type of constraints
	Reference trajectory

	Experiments in a dynamic simulator
	Experiments with real quadcopters
	Formation experiment without obstacles
	Formation experiment with an obstacle

	Conclusions and future work
	Formulation as a quadratic programming problem
	Additional constraints

