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Abstract—A concurrent optimum design of a manipulator is to
find the best geometrical and control parameters in the same opti-
mization process. One of the main contributions of this article is a
concurrent method for optimum design and its comparison versus
a sequential one, where the last requires several optimization
stages. Besides, we statistically compare three metaheuristics:
the Omnioptimizer, the CMA-ES, and the BUMDA for the
two methodologies, in order to elucidate directions about which
metaheuristic performs the best for this kind of problem, and
whether it must be used in a sequential or concurrent fashion.
These metaheuristics are compared with reported results in the
specialized literature. In addition, we perform an analysis of
results to statistically determine relations between the parameters
and the objective function, as a consequence, we found the most
impacting parameters to the manipulator performance.

Index Terms—Genetic algorithms, Evolutionary computation,
Optimization methods, Design optimization, Concurrent design,
Sequential design.

I. INTRODUCTION

The concurrent optimal design of a manipulator is defined
as finding optimal structural and control parameters for a
given objective function during the same optimization process,
which is dependent on the kinematic or dynamic model of
the mechanism. The design parameters can be links lengths
and control gains among others. The concurrent optimization
problem could also be addressed as two disjoint problems,
firstly searching for the optimal structure parameters, and
secondly, for optimal control parameters. This way of ad-
dressing the problem is referred here as the sequential. The
contribution of this paper is two-fold: First, we introduce and
compare the sequential and concurrent methodologies. To the
best of our knowledge, there is not other paper approaching the
concurrent optimal design of a six degrees of freedom (DOF)
manipulator in an automatic fashion such as this proposal does.
Second, we compare three metaheuristics from three different
families of algorithms, and we show which one is better suited
for the optimization of serial manipulators.

Metaheuristics are powerful tools to solve optimization
problems and their application in engineering optimization is
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well established. For instance, in [1], a survey on applications
to structural optimization is presented and in [2], common
applications in robotics are discussed, contributing with a
taxonomy of robotic optimization problems. According to it,
this article addresses a problem in the class of individual
robot layer, in which the authors also identify the motion
and path planning problems. Nevertheless it is an extended
review, the structure design and the concurrent optimization
problems are not considered. In this vein, our proposal con-
tributes with discussion and directions about these problems
and the appropriate metaheuristics to approach them. We
differentiate three types of optimization problems, which can
be classified as static, kinematic and dynamic, according to
the mathematical model required to numerically simulate the
systems. In the static optimization problems the governing
model is a set of algebraic kinematic equations expressed
as homogeneous transformations. Very often, static problems
are formulated as maximizing the workspace [3], [4], [3]
or reaching a set of point landmarks, considering joint con-
straints, singularities avoidance [6l], stiffness [[7]] and dexterity
[8]. For instance, workspace maximization is addressed in
[O] using the Teaching-Learning-Based Optimization algo-
rithm (TLBO), and it is compared with several evolutionary
algorithms and Sequential Quadratic Programming (SQP),
being SQP the worst performed. Other comparisons of local
and global optimizers applied to robotics have been reported
similar competitive results of global optimizers [3], [10], [11].

Kinematic optimization problems require to solve a first-
order differential equation that represents relationships among
velocities. Typically, the manipulator’s end-effector must track
a trajectory imposed by the user, and the optimization problem
consists in minimizing the error between the trajectory and
the position and orientation of the end-effector. It involves
solving the differential kinematics of the manipulator, applying
collision avoidance, position and velocity constraints [[12]. It is
common to use the classical Proportional-Integral-Derivative
(PID) control [13]] or its P or PD variants [14]. Some authors
focused in optimizing, only, the structural parameters [15]], and
others on the control parameters [[16]], [13]. In [17]], a memetic
algorithm for optimum design of the control parameters of a



serial manipulator is proposed. Kinematics is considered by
defining a set of target points in the workspace which must be
reached by the end-effector. Similarly, in [[13]], a simultaneous
design optimization of a planar manipulator and a non-linear
gain for a PD controller is presented. They combine concepts
from Genetic Algorithms (GA) and Evolution Strategies (ES).

In dynamic optimization problems a second order differ-
ential equation must be solved, since the model to simulate
the manipulator represents relationships at the level of accel-
erations. A common dynamic robotic task is minimizing the
error between the executed and the desired joints trajectories
or to minimize the energy consumed by every joint through
the whole robot’s motion, subject to collisions and dexterity
constrains. In [18], a method for energy-consumption opti-
mization in function of energetic losses of a PUMA 560 serial
manipulator and a parallel kinematic machine is presented.
For the case of a two-link planar manipulator, an ES is
used for simultaneous optimization of design parameters and
control gains of a non-linear PD controller in [19]. In a
similar vein, the optimization of a PID controller of a two-
link planar manipulator through the Non-dominated Sorting
Genetic Algorithm IT (NSGA-II) is presented in [20]. In [21],
a methodology to target kinematic and dynamic performance
in a sequential manner is proposed, nevertheless it is not
compared with other metaheuristics or with a concurrent
methodology, issues that are in the scope of our contributions.

This article presents three optimization models, one for
each category: static, kinematic and dynamic. The three are
only used by the sequential methodology, where the output
of a first model is the input for a second, and so on. We
focus on comparing the dynamic optimization model under
both the sequential and concurrent methodologies. This is the
problem of interest because it summarizes the performance
of the structure (links lengths) and control parameters, which
are the optimization variables in both methodologies. Notice
that the concurrent optimization problem is more complex
than the sequential, each set of lengths has an optimal set
of control gains. Hence, the search space for the concurrent
problem (lengths and control gains) is higher than in the se-
quential stages (lengths or control parameters). The concurrent
methodology aims to find the best overall design, while the
sequential aims to find a set of lengths and then the optimal
control gains for those lengths, thus if the lengths are not
optimal, neither the control parameters. On the one hand, the
subproblems approached by the sequential methodology are
simpler than the concurrent, on the other hand the sequential
methodology is more prone to be trapped in a local minimum.

The organization of the paper is as follows: Section
describes the proposed evolutionary design methodologies:
sequential and concurrent. In Section we introduce the
three optimization models used for each design methodology.
Results for two cases of study, a comparative analysis and
discussion are presented in Section [[V] Finally, concluding
remarks are given in Section

II. EVOLUTIONARY DESIGN METHODOLOGY

An objective function that defines the performance of a
manipulator with respect to its lengths and control parameters
is, by nature, highly non-linear and multimodal, considering
that it must encompass solving a set of nonlinear differential
equations, and that changing a link length significantly changes
the manipulator’s kinematics and dynamics. Thus, an adequate
optimizer must be chosen accordingly. For instance, we re-
quire a continuous optimizer for non-linear and non-convex
optimization. Commercial software, i.e., ®Mat1ab, include a
set of widely tested and well performed optimization software
(https://www.mathworks.com/products/optimization.html). On
the other hand, the methods we consider here, currently are
in the testing stage by the research community, they are
considered cutting edge methods in the state of the art, which
possibly, will be implemented in commercial software in a
near future. It is worth mentioning that neither commercial
solvers nor methods under development guarantee to reach
global optima in the kind of addressed problem, however, the
last can obtain adequate solutions for the problem. This sec-
tion presents three metaheuristics for non-linear, multimodal
problems, that are compared in the manipulators’ design, and
introduces two generic design methodologies: the sequential
and the concurrent.

A. Evolutionary algorithms

Evolutionary Algorithms (EAs) are based on the principles
of biological evolution. They evolve a population of indi-
viduals (candidate solutions), by applying reproduction and
variation operators on a selected set which is biased to the
best solutions, the intention is to produce fitter offspring for the
next generation. The offspring replace the current population,
usually, preserving the best solution through generations, this
is called elitism. The process is repeated until a stopping
criterion is met. The EAs used in this paper can be clas-
sified into three families: Evolution Strategies [22], Genetic
Algorithms [23] and Estimation of Distribution Algorithms
(EDAs) [24], all of them classified as evolutionary algorithms,
but each of them with a particular way of working. The
Covariance Matrix Adaptation Evolutionary Strategy (CMA-
ES) [22], uses a multivariate normal distribution to search for
the optimum. A set of parent solutions is used to determine
the size, position and orientation of a normal distribution used
to sample the children candidate solutions. The orientation of
the multivariate normal model aligns the search to promising
regions. The Omnioptimizer 23] is the implementation of a
GA, it selects the most promising individuals by using the
binary tournament operator, then, individuals in the selected
set are re-combined using the Simulated Binary Crossover
(SBX). Exploration on the search space is maintained via
a polynomial mutation operator. The Boltzmann Univariate
Marginal Distribution Algorithm (BUMDA) [24] estimates a
probability distribution by using the best candidates, the better
a candidate is, the higher the weight of such candidate in the
estimation formula. Thus, the resulting probability functions
favor to sample the best regions already known. It requires a
single parameter (population size), its complexity per iteration
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is O(M N log(N)), for M dimensions and N population size,
while CMA-ES is O(M?2N log(NN)). Nevertheless, Omniop-
timizer is, O(M N log(NN)) for mono-objective problems, the
total number of operations is greater than that of the BUMDA.

B. Design optimization methodologies

The optimization problems in this paper are addressed as
mono-objective. We introduce two optimization methodolo-
gies. A flowchart of the sequential methodology is shown in
Fig. [I} it works as follows:

1) Select an optimization algorithm from the following:

a) BUMDA, b) CMA-ES, c¢) Omnioptimizer. 2) The first
subproblem is to optimize the structure lengths for maximizing
the workspace volume. The output is the link lengths and they
are fixed for the next step. 3) For the second optimization
subproblem, given a desired trajectory for the end-effector, op-
timize kinematic control parameters for minimizing the track-
ing error. The approximated optimum control parameters are
used to compute feasible joint position and velocity profiles.
Thus, it maps the trajectory of the end-effector to positions
and velocities of the joints, obtained as a table of discrete
values; the kinematic control parameters are dismissed. 4)
Optimize control parameters of joints for minimizing energy
consumption and joint errors with respect to the position and
velocity profiles from the previous optimization step.

Optimizer= BUMDA or CMAES or Omnioptimizer

Maximization of the workspace
| Execute Optimizer 30 times on Eq. (6) |

Workspace

i ]
[ Lengths from best execution. |

1
Minimization of end-effector's

tracking error
Trajectory |Execute Optimizer 30 times on Eq. (5) |
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Fig. 1. Flowchart of the sequential methodology.

Stage 3

On the other hand, the flowchart of the concurrent method-
ology is shown in Fig. [2] which works as follows:

1) Select an optimization algorithm from the following:
a) BUMDA, b) CMA-ES, ¢) Omnioptimizer. 2) Given a de-
sired trajectory of the joint variables (input), optimize lengths

Optimizer= BUMDA or CMAES or Omnioptimizer

| Preevaluation operations |

Position and +
velocity Evaluation using Eq. (1) |
profiles

| Postevaluation operations |

Y

No

Termination
criteria

Store lengths and control
gains

Fig. 2. Flowchart of the concurrent methodology.

of the structure and control parameters (outputs), for mini-
mizing joint errors and energy consumption via a weighted
function. Thus, preevaluation operations in Fig. 2} are, for
instance, crossover and mutation in the Omnioptimizer, and
sampling from a probability distribution in the CMA-ES and
BUMDA. The postevaluation operations are selection of the
parents to yield the next generations in the Omnioptimizer,
and for updating the probability distribution in the CMA-ES
and BUMDA, and elitism in all the algorithms.

In both optimization methodologies the outputs are ap-
proximations to the optimum structure lengths and control
parameters of joint controllers. Both methods are executed 30
times and their best outputs are compared. The concurrent
methodology can be directly applied if joint desired trajecto-
ries are known, otherwise the process can be also aided by an
initial step to map the desired trajectory of the end-effector to
position and velocity profiles of the joints. Thus, this initial
step reduces the effort of computing the inverse kinematics of
the manipulator for each point in the trajectory of the end-
effector and ensures that the desired positions and velocities
can actually be reached by the mechanism.

III. OPTIMIZATION MODELS FOR OPTIMUM DESIGN

To precisely define the variables involved in the opti-
mization models, consider a manipulator with n joints, [
links, m actuators and d degrees of freedom of the end-
effector. We define & € R™ as actuated joint variables
and ¢ € R™ ™ as passive joint variables. The mech-
anism is defined by a set of design parameters o =
P Iy IO T YO YOI S S =
RP, in this case, the lengths of the links and the control
parameters.

We introduce three objective functions that are used in
the concurrent and sequential methodologies: 1) Simultaneous
minimization of joint errors and consumed energy is the main
problem addressed in the paper, and corresponds to a dynamic



optimization problem. 2) Minimization of end-effector’s track-
ing error is a kinematic optimization problem that is used in
the concurrent and sequential methodologies. The optimization
variables are the kinematic control parameters, nevertheless,
they are finally dismissed. We use this optimization process as
a high level control layer that generates position and velocity
profiles for each joint variable inputted as desired trajectories
to the previous dynamic optimization problem. 3) Maximiza-
tion of the workspace is a static optimization problem only
used as the first stage in the sequential methodology. The
output of this optimization process are the lengths delivered by
the sequential methodology. The reader can consult [25]] for
a deeper explanation, discussion and additional study cases
which use these models.

A. Simultaneous minimization of joint errors and energy

This is the main optimization model introduced in this
paper, it is a weighted sum of time integrals. The first term
depends on the absolute error between the desired and the
current position of each joint. The second is the integral of
the absolute torque applied to each joint. The last term is a
penalization to the torque gradients, whose aim is to reduce
sudden changes in the trajectory.

m tn
m&n}'(a) = w; Z/|e(i)(t)|8t+

'i:ltu
m tn m tn (1)
wgz/|T(i)(t)|8t—|—)\Z/|AT(i)(t)|8t,
i:lto i:lto

S.T. 070 < 9, < 6™ and ¢ < ¢; < P, ()

where ¢ = 1,...,m, 7 = 1,...,n — m, wy, wo and A\ are
weights of each term, the used values are described in each
experiment. The expressions in Eq. 2] represent joint limits.
We assume that they are set in such a way that self-collisions
are avoided. Position and velocity joint errors are given by:

e(t) = 0(t) — 0P (t), 6(t) = 0(t) — 6" (1), ()

with 87 (t) € R™ and o (t) € R™ being desired position
and velocity profiles. Regarding the second term of Eq.[I] we
assume that each actuated joint is commanded by a classical
PID controller, such that the vector of torques is given by:

tn
T(t) = kpe(t) + kaé(t) + k; / e(t)dt e R™, (4)
to

where kj,, kq and k; are diagonal matrices with the
proportional, derivative and integral control parameters.
Regarding the third term of the objective function,
AT®(t) is the numerical torque gradient for each 4
actuator, defined as A7@(t) = 7 (t) — 7O (t — 1).
This model is used in the concurrent methodology and
in the last stage of the sequential methodology. In the
concurrent methodology the optimization variables are the

set of link lengths and dynamic control parameters o« =

m 1 m 1 m
PV Iy O TR IO SN S SR o) )
while for the last optimization stage of the sequential
methodology the optimization variables are the dynamic
control parameters maintaining the lengths constant.

B. Minimization of end-effector’s tracking error

This model is for minimizing the error between a desired
and the current trajectory followed by the robot’s end-effector,
by optimizing kinematic control parameters. However, we use
it as a mean to generate position and velocity profiles delivered
by the approximated-optimal control parameters. They are
used in the concurrent and sequential methodologies. We
consider that each DOF of the manipulator’s end-effector is
under a proportional-derivative (PD) control action. Hence, the
objective function is the integral of the absolute value of the
control signal, for shorting e(® (t) = e* and &) (t) = é?,
as follows:

d tr, t,
min F(a) = Y | &) / let|at + kP / lef|at, |, )
i=1 to to

subject to (Z). Where K,S:) and F-‘,((;) are proportional and
derivative control gains, respectively, which are the opti-
mization variables, o¢ = [ng), ey ng, nfil), ey nfid)]. The
functions e(t) = X(t) — XP(t) € R? and &(t) = X(t) —
XP (t) € R? are translation and velocity errors, respectively,
X (t) and X (t) are current translation and velocity coordinates
(including orientation in both cases) of the manipulator’s end-
effector. Likewise, XP (¢) and X P (t) are desired translation
and velocity coordinates given by the desired trajectory.

C. Maximization of the workspace

This objective function is only used by the sequential
methodology with the purpose of finding optimum link lengths
that are fixed for subsequent optimization stages. The problem
is written as a minimization problem, in order to be consistent
in all the objectives and algorithms. A workspace W is
discretized by a set of r points in d dimensions, X € R"*9,

moitn Fla) =1—-W(a), (6)

Subject to (@), where the link lengths are the optimization
variables a = [lq, ..., 1;]. We assume that joint limits are set
such that self-collisions are not possible. In Eq. [(] W () is
the percentage of reached points in W.

D. Considerations about implementing the objective functions

As can be seen in Eqs. (I) and (), absolute functions are
used to correctly compute the accumulated values of errors and
torques along the time. Indeed, similar results can be obtained
by using quadratic functions. The numerical simulation of
robot with explicit iterative methods such as the classical
4th order Runge-Kutta used in this article, returns the torque,
velocities, positions, and corresponding errors discretized with
the same time step. Finally, if the integrals in the objective
functions are computed with methods of higher order, then the



values must be very similar among methods and it is expected
that the integrals must converge to the real value.

E. Multi-objective vs mono-objective approaches

As aforementioned, the previous optimizations problems are
addressed as mono-objective. Regarding the case of simultane-
ous minimization of joint errors and energy, the problem can
be addressed in two fashions: as a mono-objective approach a
priori assuming that adequate weights w1y, wg and A have been
chosen, or as a multi-objective problem with three objectives
considering that a posteriori, a Decision Maker (DM) will
chose an adequate solution from an optimal set (Pareto set).
Considering that two of the optimizers tested in this article are
not equipped for multi-objective optimization (BUMDA and
CMA-ES), and that the multi-objective approach comprises
additional issues such as convergence to the real Pareto front,
spreading and coverage of the solution space, and DM support
for the final decision, we have chosen addressing a mono-
objective problem, and to use these results as a reference for
a future multi-objective investigation which considers all the
mentioned issues and other studied in specialized literature ??.

IV. RESULTS OF CASE STUDIES

We present two case studies, a 2-DOF 2-link serial ma-
nipulator and a 6-DOF anthropomorphic serial manipulator.
For the 2-DOF 2-link serial manipulator the purposes of
the experiments are the following: a) Show that the selected
optimizers are competitive and even superior than other meta-
heuristic reported in specialized literature, by comparing the
results of the metaheuristics used in this paper with reported
results for a 2-DOF manipulator. ) Contrast the sequential
and concurrent methodologies in a simple case, executing both
methodologies with the best performed metaheuristic. The 2-
DOF manipulator has 2 actuated joints (n = m = 2)
to control the 2 DOF (d = 2). The structure parameters
are 2 link lengths (I1,l3) and the control parameters are 6
(,%(31)’ k;z), kfi”» k:z(iZ)’ kgl)’ kz@))-

For the 6-DOF anthropomorphic manipulator the pur-
poses of the experiments are the following: a) Compare
the sequential versus the concurrent methodology, using the
best performed metaheuristic, in a more complex case study.
b) Show how to take advantage of the posterior informa-
tion (after several executions of the methodologies), analyz-
ing the correlations among variables and objective function
to elucidate which variables have the most impact on the
manipulator’s performance. The anthropomophic manipula-
tor has 6 actuated joints (n = m = 6) to control its
6 DOF (d = 6). The structure parameters are 4 link
lengths (l1,...,14) and the dynamic control parameters are
18 (k) oy kO, kD, kD BD o (D).

We use two kinds of stopping criteria for the optimizers
evaluation. The first is the number of evaluations, which
yields to fair comparisons with similar computational cost for
all algorithms. All algorithms stop at a maximum of le4-p
evaluations, for p optimization variables. The second is based
on the exploration capability of the algorithms, for instance,

the CMA-ES stops if the difference between two consecutive
generations is less than 1.0e-20, tiny changes not only are
neglected improvements of the performance, but, they indicate
that the probability of exploring a different region than the
current is almost null. The same applies for the BUMDA,
it requires to compute all marginal variances, thus, if the
maximum marginal variance is less than 1.0e-12, then, it
is stopped. The Omnioptimizer stops when it reaches 40
generations, as suggested in [26]]. This is a suggested and
tested criterion in literature, since this optimizer does not have
a variance measure as the two others. Supplementary material
is provided in the following address: https://drive.google.com/
file/d/1iLVCJet3DQVZbE3C75CF3BX9YArKKfS3/

A. Case study: Two-link serial manipulator

A representation of the mechanism is shown in Fig. [3]
This simple robot has been considered as a benchmark in the
literature [[19], [20], [26].

Fig. 3. Case study: Two-link serial manipulator. Scheme of its structure.

We address the optimization problem presented in the
objective function of Eq. [T} to initially optimize only the
parameters of a PID control for each joint. The desired
trajectory is given by 0P (t) = 0P(to) + (6r%,,.. —
1578+ 10r3,  )(0P(tf) — 6P (to)), where riime =
to/ty, 0P (to) = 02 (to) = 0 for to = 0 when and
67 (ty) = m/2 and 69 (t;) = m/6 for t; = 2. The search
range of the control parameters is [0, 400] for gains kz(f), k:l(;)
and k?), for ¢ = 1, 2. For links masses, lengths and inertial
moments the ranges are [0.1,0.1], [0.8,0.4] and [0.64,0.016],
respectively. In Eq. [I} we set w3 = wy = 0.5 and A = 0
which is denoted as JF*. Additionally, we will have the values
of each term: the minimum energy (F2), which is equivalent
to set w3 = 0 and wg = 1, and the minimum tracking error
(F1), which is equivalent to set w; = 1 and w2 = 0. Hence,
JF* is the average of 7 and F».

In the following subsection, we present the optimization
results only for control parameters for the sake of comparing
our method with the reference [26]]. In the second subsection,
we compare the sequential and concurrent methodologies for
the optimization of structure lengths and control parameters.

1) Optimal design of a dynamic control: This experiment
validates the use of the selected EAs with respect to other
similar algorithms in the specialized literature. Table [I, com-
pares the results from [26] with the three algorithms used
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in this paper. It shows that CMA-ES and Omnioptimizer
return similar control parameters and values of F*. Although,
BUMDA is not better than the other algorithms tested in this
paper, it is better than the known reported results.

TABLE I
BEST SOLUTION FOR EQ.E} OBJECTIVE=F* FOR w1 = w2 = 0.5 AND
A=0.F1 FORw1 = lANDw(g = 0, AND F2 FOR w1 = 1 AND
w2 = 0. {kp”, k:((;) , k:il)} ARE CONTROL GAINS.

EA S A 1 N 11 o
Known [20] 3.63e¢+2 3.58¢+2 6.79 1.77e+1 3.54e+1
CMA-ES 4.00e+2 4.00e¢+2 4.48e¢+1 1.15e+1 4.00e+2
OMNI 3.99¢+2 3.99¢+2 4.4Te+1 1.17e+1 3.99e+2
BUMDA 3.99¢+2 3.99e+2 2.13e+2 8.27 3.84¢+2
EA kEZ) F1 F2 F*

Known [26] 3.07e+2 4.36¢-3 6.18¢-3 5.27¢-3

CMA-ES 4.00e+2 3.56e-3 4.55¢-3  4.06e-3

OMNI 3.99¢+2 3.56¢-3 4.55¢-3 4.06e-3

BUMDA 3.99¢+2 3.11e-3  5.04e¢-3  4.07e-3

2) Sequential vs Concurrent Optimization: This subsec-
tion is devoted to compare the sequential and concurrent
methodologies in the complete problem of optimizing structure
lengths and control parameters. The sequential methodology,
for this case, is as follows: First, the static problem defined by
Eq. [0] is solved, where a discretized circular region centered
at the origin with radius 1m is introduced as the reference
workspace. Subsequently, the kinematic problem defined by
Eq. 5] is used to obtain the joints position and velocity
profiles. The desired end-effector trajectory is generated by
taking 10 time-equidistant points from X = [(0.15t/ty +
0.6) cos(t/tym), (0.15t/t; 4 0.6) sin(t/tym)], for ty =
4 and t € [0,4]. The points are interpolated using C°-
lines for the sake of observing the behavior of the control
when tracking derivative-discontinuous trajectories. The last
problem addressed is defined by Eq. [I] to find the control
parameters of PID controllers for each joint. Table [[T} shows
the best optimization parameters and objective function values
found in 30 executions. The first row are results from the
sequential optimization, columns 2 and 3 are from the static
problem and the remaining from the dynamic. The second
row is the concurrent optimization, which outperforms the best
result obtained by the sequential methodology by 32.1434%
and an average improvement of 32.1423% computed over
the 30 executions. A graphical comparison of the sequential
optimization with and without penalization is shown in Fig. {]
Torques have less drastic changes using A = 500 than with
the unpenalized A = 0. Hence, it is notorious the effect of
the penalization term weighted by A in the proposed model
of Eq.[I] As can be observed, smoothing the torques has an
impact in the trajectory tracking. This problem has a relatively
low dimensionality, hence, it is not the most challenging for
the optimization algorithm, nevertheless the concurrent method
delivers an evident better design. The explanation is that the
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Fig. 4. Execution of the sequential methodology without (A = 0) and with
(A = 500) penalization term in Eq. [T] for the two-link manipulator.

sequential methodology finds approximated optimal lengths,
if such lengths are not optimal, for the dynamic model in
Eq. [1} the whole design is suboptimal even if the optimum
control gains are found for the given lengths. We argue that
the sequential methodology could perform a better local search
in each stage, but a wrong output from any stage, highly affects
the whole design, while the concurrent methodology always
performs a global search, thus it is more probable to find the
global optimum during the whole optimization process. In the
same vein, an increment in the problem dimensionality affects
more the concurrent method than the sequential due to it only
deals with subsets of optimization variables.



TABLE 11
BEST SOLUTION FOR EQ.[[]WITH w1 = w2 = 0.5 AND A = 0. LINK
LENGTHS={l1, 2}, CONTROL PARAMETERS={ k%", ky) , kgz)} AND
OBJECTIVE VALUE=F. SEQUENTIAL=S AND CONCURRENT=C.

Met. I3 ly kD kP

N 6.6253¢-1 5.814¢-1 5.8936 2.6337

C  4.2791c-1 4.00e-1  3.7093 1.8759

Met. kS K kD k) F

S 1.1897¢-1 4.8364¢-2 le-12 4.5123¢-10 9.3273e-1
C 4.78273¢-2 1.8013¢-2 1le-12 le-12 6.3292¢-1
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B. Case study: Anthropomorphic serial manipulator

The anthropomorphic 6-DOF manipulator is of general
purpose and has great applicability for its manipulability in
3D. Popular robots like the PUMA, Motoman HP6, Fanuc
10L and ABB S4 2.8, are examples of this type of manipulator
[27]. Fig. [5] shows a representation of the 6-DOF manipulator.

1) Sequential vs Concurrent Optimization: We present a
comparison between the sequential and concurrent method-
ologies using the best performed optimizer from the above
sections: CMA-ES. In the sequential methodology the process
is as follows: A static optimization problem, defined by Eq.
[l is solved for a discretized spherical volume with center
at the origin and radius 1m. It maximizes the workspace
volume constrained to manipulability and joint limits. The
discretized desired workspace is reconstructed with cubes. The
number of reached cubes is taken as an approximation to the
volume of the reachable workspace. Subsequently, a kinematic
problem, defined by Eq. [5] is solved to obtain positions and
velocity profiles for each joint by minimizing the tracking error
with respect to the desired trajectory of the end-effector given
by X = [(0.15t/ty + 0.6) cos(t/tym), (0.15t/ty +
0.6) sin(t/tym),0.80t/ty — 0.2,3,~,n], where 3,7,n
are the direction cosines of the corresponding point. C°-
curves are used to interpolate the discretized trajectory for
testing the effect of the penalization term weighted by A
in the final dynamic optimization process defined by Eq.
[[l to optimize the PID control parameters of each joint.
On the other hand, the concurrent methodology is applied
to minimize the objective function of Eq. [T] using also the
desired trajectory delivered by the kinematic optimization.

Hence, both methodologies use the same desired trajectory.
Table [ITI] shows the best parameters and objective function
values from 30 executions of the sequential and concurrent
methodologies. In this case, the sequential delivers a better
result than the best of the concurrent method by 1.4384%.
Nevertheless, in both cases, in 20 from 30 executions the
methods found geometry and control parameters that can be
evaluated during the whole simulation time. In the rest of the
executions, the resulting manipulator cannot track the whole
trajectory due to singularities. A graphical comparison of the
two methodologies is shown in Fig. [6} it presents the applied
torque and the angular position error for each joint throughout
time, and the trajectory tracking using the dynamic control
for the best solution of the two methodologies. From the suc-
cessful executions, the sequential delivers an average objective
function value of 1.583717 and the concurrent of 2.766822,
with a corresponding standard deviation of 0.0346445 and
0.5606268, respectively. Hence, the sequential methodology
performs the best in this case. The higher variance in the
concurrent design provides of empirical evidence about the
search: the concurrent method looks for a solution in a higher
number of design configurations. Furthermore, according to
the error plot in Fig. [f] the concurrent method delivers a
smaller error, nevertheless, the torques from both methods are
in the same scale. The explanation is that according to Table
the concurrent requires larger control gains. Considering
that the concurrent delivers a smaller error, possibly, another
execution or a local refinement of the control gains could
deliver better results than the sequential, which very possible
cannot find better control gains considering that the lengths are
fixed. Thus, future work could explore memetic algorithms and
hybridization of this two methods.

TABLE III
BEST SOLUTIONS FOR EQ.[T]WITH XA = 500. LINK LENGTHS=;,
CONTROL PARAMETERS :{k:él , k:((;) , kgl) } AND OBJECTIVE VALUE=ZF.
SEQUENTIAL=S, CONCURRENT=C.

Met. In 1z g la SR O S 1S

S 9.04¢-3 0.677 0.5012 0.4987 0.3692 6.639 3.057 1.406

C 04 0.8 04393 0.4 9385 7.236 8.582 7.549
kz()5) k]()ﬁ) k((il) k¢(i2) k;{i) kfi4) k((i5) kl(iG)

S 272 0.255 0.0171 0.1542 0.0642 0.0036 0.024 9.29¢-4

C 7.38 2.35 0.1214 0.1650 0.0713 0.0123 0.021 3.02¢-3
P N O I O O

S 3.01 9.931 9.147 9.346 2.331 3.44  1.527

€10 1.9 8.846 1.862 0.1982 6.674 1.549

In summary, the sequential method delivers the best overall
result in 30 executions, however, this solution is near from
the best delivered by the concurrent method. From the 30
executions, only 20 are successful for both methods, i.e., in 2/3
of the executions the methods found a manipulator capable of
closely tracking the desired trajectory. In the simplest 2-DOF
case, the concurrent method is the best and it always finds a
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Fig. 6. Comparison of the sequential (left) and concurrent (right) methodologies for the anthropomorphic manipulator using the CMA-ES. First row: torques,

second row: position errors and third row: executed and desired trajectories.

solution. Although the proposed optimization methodologies
are performed offline, we would like to have results in an
acceptable execution time. To give an idea, the concurrent
methodology execution time is about 3 days and it is 61%
of the sequential execution time.

2) Robustness of the design and parameter impact analysis:
A correlation plot is presented in Fig. [/} It is a graphical
representation of the statistical correlation matrix from the
best solutions found by each methodology. These plots allow
us to infer relationships between design parameters that affect
the performance of the mechanism. The widest ellipses show
uncorrelated variables or a low correlation, while tight ellipses

with stronger color show a high correlation. Tight ellipses
rotated clockwise in red color show positive-high correlation,
in contrast, if they are rotated counter clockwise and in blue
color, they show negative-high correlation. Thus, in Fig. [7]
(top), at the first row, for the sequential methodology, we can
infer that the objective value is closely related to some of the
proportional and derivative control parameters. The last have
a greater impact, mainly, k((f) s k((13)’ since the correlation with
the objective function is negative, which means that increasing
k((f') decreases the objective function. For the concurrent case,
it is interesting that, clearly, k;ﬁ) and k:((f) have the most
impact to the objective function. When the correlation for
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Fig. 7. Correlation analysis for the anthropomorphic case. Top: Sequential.
Bottom: Concurrent.

some parameters is not clear, it means that modifying them
in a closed vicinity does not impact the objective function
significantly. This is a kind of robustness of the design.
Standard deviations (SD) of the objective functions and control
parameters give an idea of how much one can perturb the
control parameters while maintaining a similar performance.
For example, considering the sequential optimization, the SD
of kéﬁ) is 3.19, and 0.03464 for the objective function. Hence,
the small SD of the objective function, shows that, when a
feasible design is found, it is also robust because it supports
relatively large perturbations on the parameters without sig-
nificantly changing the performance. This is expected if the
algorithm converges to the same region of the search space.

Hence, our analysis shows that there are some parameters
more important than others, in general some of the most
important are the derivative control parameters. This analysis,
also shows whether increasing a parameter value increases the
objective function and vice versa. On one hand, the sequential
method presents a lower variance than the concurrent, and a
stronger correlation between the control parameters and the
objective function, according to Fig. [7] This suggest that the
solutions delivered by the sequential method highly depend
on the last optimization step, while the solutions delivered by
the concurrent method are not as dependent, as those of the
sequential, on a few parameters. Notice that the sequential
methods is searching for 18 optimum parameters in the last
optimization step (6 proportional, 6 integral, and 6 derivative
gains), while the concurrent is searching for 22 (the same than
the sequential plus 4 lengths).

V. CONCLUSIONS

According to our experiments, we can give clear direc-
tions about the three metaheuristics tested (Omnioptimizer,
BUMDA and CMA-ES), CMA-ES consistently delivers the
best objective function values. Considering the sequential
versus the concurrent optimization methodologies, the first
one performs better for the anthropomorphic manipulator case,
nevertheless, the concurrent method delivers similar results. In
addition, the concurrent is best suited for a global search, the
larger variance obtained in its results suggests that a more
exhaustive exploration or a local search procedure inside this
method could improve its performance, which is contemplated
as future work.

Notice that in the sequential methodology for each set of
lengths there is a different set of optimum control gains,
because modifying the lengths, modifies the masses and ma-
nipulator dynamics. The optimization step that determines
the lengths in the sequential method does not consider the
dynamics, while the concurrent method does. Hence, the
sequential method searches with high precision the control
parameters for a given set of lengths and it is competitive if
the lengths are an approximation close to optimal. In contrast,
the concurrent method delivers a solution which considers
the dynamics to set the lengths and control parameters using
significantly less computational load. According to our results,
the best solutions from both methodologies are not so far from
each other in performance (objective function) but they are
quite different in the parameter values. Our results suggest that
the sequential method must be used if one is confident on the
lengths approximation delivered by the first optimization step,
while the concurrent method could be used to obtain a rough
approximation of an optimum configuration which considers
the dynamics to set simultaneously the lengths and the control
parameters. Thus, future work considers to hybridize the two
proposals, for example, by using the concurrent methodology
to set the search limits of the optimization variables in the
sequential method, or by using the steps of the sequential
methodology to refine the solution given by the concurrent
methodology. This paper gives directions for optimum manip-



ulator design using evolutionary algorithms, considering that
the very same methodologies could be used in other scenarios,
for instance, in reconfigurable robots, where the lengths and
control parameters can be optimally set for each given task.
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