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SUMMARY

This paper addresses the problem of optimal mechanisms design, for the geometric
structure and control parameters of mechanisms with complex kinematics, which is one
of the most intricate problems in contemporary robot modeling. The problem is stated by
means of task requirements and performance constraints which are specified in terms of
the end-effector’s position and orientation to accomplish the task. Usually, this problem
does not fulfill the characteristics needed to use gradient-based optimization algorithms.
In order to circumvent this issue, we introduce case studies of optimization models using
evolutionary algorithms (EAs), which deal with the concurrent optimization of both:
structure and control parameters. We define and review several optimization models
based on the workspace, task and dexterity requirements, such that they guarantee an
adequate performance under a set of operating and joint constraints, for a Delta parallel
manipulator. Then, we apply several methodologies that can approximate optimal
designs. Additionally, we compare the EAs with a quasi-Newton method (the BFGS), in
order to show that the last kind of methods is not capable of solving the problem if the
initial point is not very close to a local optimum. The results provide directions about
the best state-of-the-art EA for addressing different design problems.

KEYWORDS: Design; Dimensional synthesis; Evolutionary algorithms; Mechanisms
with complex kinematics; Delta robot; Concurrent design, CMA-ES, GA, BUMDA.

1. Introduction
Optimal mechanism design can be defined as finding design parameters which performs
the best for a given task. The parameters to be optimized can be type synthesis,
dimensional synthesis, masses, actuator specifications, control parameters, etcetera. A
concurrent design optimization problem for actuated mechanisms is to simultaneously
find two or more sets of optimal parameters which belong to different types of parameters,
by instance, in this paper, we tackle the problem of concurrently finding control gains and
geometric parameters that best perform on a desired task. This kind of methodologies
have been applied to high-speed mechanisms for position approaching using dynamic
models 2 The performance can be measured by computing the error with respect to a
given path, or the percentage of the reached volume in a given workspace, or the widest
regular region which can be covered by the manipulator. In addition, the mechanism
movements are, usually, constrained by joint limits and dexterity constraints.

Optimal design methodologies could be considered as consolidated for serial
mechanisms® which are nowadays exploited in numerous successful industrial
applications.*™® Even though, parallel manipulators exhibit inherent desirable features
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2 Concurrent Design Approaches for a Delta Manipulator

as lower inertia, lower moving masses and high velocity and acceleration capabilities,
they have not reached the same total market as their serial counterparts. In general,
parallel manipulators are devoted to few applications, namely for positioning in machine
tools and telescopes, or for pick-and-place operations. A possible reason is that they
do not perform the desired tasks as expected, because the design is not well suited for
such particular task, hence, a crucial issue for an adequate performance of the parallel
manipulators is the optimal choice of the geometric design parameters,” this problem
is referred as dimensional synthesis. In designing a robotic mechanism in a sequential
classical way, even with fixed structure parameters, a large number of design variables
can be involved. In a classical design methodology, the mechanical structure and the
control parameters are designed separately. It is desirable that the control algorithm can
be implemented by using an automatic tuning of control gains, without a tedious and
time-consuming tuning procedure. This suggests that if the robotic structure parameters
and control parameters are simultaneously designed using an optimization criterion, then
a better overall performance of the robotic system can be obtained. The need of this type
of concurrent design methodology is therefore highlighted into the robotics area.

1.1. Literature review
Searching for the best robot design and verifying that such design fulfills the system
requirements is not a simple task for a human designer. As a consequence, there
is a wide set of approaches, in the specialized literature, that intend to circumvent
this issue by proposing algorithmic methodologies for automatic optimization for
representative parallel kinematic structures like planar manipulators,®® and spatial (3D)
manipulators ¥ Design problems could be categorized by means of the order of the
differential equations that have to be solved for simulating the robotic task, since it is
directly related with the complexity of the problem and the task requirements. First,
let us introduce the static design problem. This kind of problems can be described as
optimization problems where, actually, there is no differential equation, but an algebraic
equation (or a differential equation of order 0) must be solved. Therefore, the task
only depends on the kinematic equations, commonly used for maximizing a desirable
workspace, considering joint and dexterity constraints, and collision avoidance. In this
paper, the static design problem of a Delta parallel manipulator is defined as the
maximization of a regular workspace. This design problem can be formulated from
kinetostatic performance indices used to bound the serviceable workspace. A regular
workspace is a reachable volume inside a regular 3D figure, which has some faces equal
and all internal angles are equal. For the particular case of our experiments we use
a parallelepiped. Recently, some optimization problems were formulated taking into
account these quality indices, such as dexterity*#1% stiffness'® and manipulability.*”

The static problem is of interest for robotics researchers considering the effective
regular workspace, by instance, a research aimed to find optimal design parameters of a
Delta robot and a Gough-Stewart platform.™ The authors used the controlled random
search (CRS) method, introducing a collision avoidance constraint, which is simplified
by adjusting the limits of the joints. More recently, a sequential quadratic programming
(SQP), a CRS, a genetic algorithm (GA), a differential evolution (DE) and a particle
swarm optimization (PSO) were applied to optimization of the geometric parameters of
a Delta robot and a Stewart-Gough platform.'® The algorithms were compared without
a statistical test. In other work, a simulated annealing procedure that generates optimal
approximations to Delta-manipulator structures is defined, developed and tested*? A
similar approach is implemented by applying the previous process to optimize a Delta
robot, using a randomized linear search method.?Y With the same aim, other researchers
have used a GA*!' or a quasi-Newton algorithm .22

Regarding on a second class of design problems, namely the kinematic design problem,
the basic idea is to solve the first-order differential equations that represent the differential
kinematics of the robot. In this case, a typical problem is the tracking of a trajectory
imposed by the user, which seeks to minimize the error between the desired path and
the position and orientation of the end-effector of the mechanism. This type of problem
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typically involves solving the kinematics of a redundant mechanism, applying collision
avoidance, position constraints, and speed constraints. To perform trajectory tracking,
it is necessary to use a control technique which feeds back the actuators according to the
tracking error. The control law is a function of the tracking error and a set of parameters
named control gains. A classical control technique in robotics is the proportional-integral-
derivative (PID)2324 controller and its variants as only proportional (P) or proportional-
derivative (PD) controllers.*® Therefore, the geometric parameters, as well as the control
gains of the mechanisms are optimizable variables, a simpler case is to consider constant
geometric parameters.2#25

Finding adequate control gains to achieve an optimum performance is not
straightforward, thus it is important to use computational optimization tools to
determine the best values under certain criteria. In a related work, the optimum design
of the control parameters of a serial manipulator is approached*” Only kinematics
is considered in a task-based problem. A memetic algorithm which uses a tunneling
algorithm for local search is used to approximate the solution of this problem. A similar
scheme has been proposed in other work, where simultaneous design optimization of
a planar manipulator and a nonlinear gain for a PD controller is presented.** A hybrid
evolutionary algorithm (GAES), which is formulated by combining the concepts from two
well-known members of evolutionary algorithms family, GA and evolution strategies (ES),
is applied as the optimization method. The same procedure had been used to optimize a
redundant 7-DOF spatial manipulator.®? A task-priority redundancy resolution technique
is developed and sequential quadratic programming is applied to optimize the control
parameters of the mechanism. It is worth noting that few researches have addressed
concurrent optimization for both geometric parameters and control gains to track a
desired trajectory. In addition, to the best of our knowledge, this kind of design problem
has just been formulated for serial mechanisms or simpler than the one studied herein.

In this paper, two different mathematical models for the optimal design of parallel
mechanisms are presented, each one of the models results in an optimization problem.
These models are presented in two categories: the first one is a static design problem that
consists in the maximization of a regular workspace, and the second one is a kinematic
design problem that combines the concurrent optimization of both: structure geometry
and control parameters for a task-based problem.

We approach the solution of such problems using different evolutionary algorithms in
the state-of-the-art. The combination of the models for optimal design with evolutionary
algorithms delivers a set of methods for automated optimal design of mechanisms. In this
approach, our case study (the Delta parallel manipulator) is considered a kinematically
complex mechanism. We consider that a mechanism is kinematically complex when due
to a large number of DOF, redundancy or multiple kinematic chains, its kinematic model
is preferably solved in a numeric fashion rather than in a closed form.

The organization of this article is as follows: Section |2 is devoted to present the
kinematic analysis of a Delta robot. Section [3| describes the proposed evolutionary design
methodology. In Section [4], we introduce the two objective models for the design of the
Delta parallel manipulator along with the problem formulation of applying the different
evolutionary algorithms. Results, a comparative analysis and discussion are presented in
Section [5] Finally, concluding remarks are presented in Section [6]

2. The Delta parallel manipulator

2.1. Kinematic structure of a Delta robot

The Delta robot was introduced by Clavel’ as a 3-DOF parallel manipulator, dedicated
to high-speed pick and place applications. Fig.[I|shows a 3D structure of a parallel Delta
manipulator. It consists of a base, a moving platform, and three identical kinematic
chains that connect the base with the end-effector, each kinematic chain is driven by a
revolute joint located at the base. The key design feature is the parallelogram link in
each arm that allows maintaining the orientation of the end-effector.
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Fig. 1. 3D structure of a Delta parallel manipulator 4

_The kinematic parameters are depicted in Fig. [2, where a denotes the length of arms
A;B;, b the length of the parallelogram B;C;, R = OA; and r = PC;, with O and P
being the centers of the base and the moving platform, respectively. Three revolute
actuated joints on the base at points A; are arranged symmetrically at three vertices of
an equilateral triangle. There are three revolute passive joints on the moving platform
at points Cj.

In the sequel of this section, we present two modeling components that are needed to
solve the addressed optimization problems for the Delta robot.

2.2. Inverse Kinematics
The coordinate-based framework of the manipulator angles of the i — th arm is shown in
Fig. |2, where 6, ; is the angle between the z;-axis to link A;B;, 05, is the complementary
angle between A;B; and the projection of link B;C;, 05 is the angle between the y;-
axis and the link B;C;, ¢, is the angle between the global z-axis and the z,-axis, and
x = (P,, P,, P,)" is the vector from the center of the fixed base (point O) to the center
of the mobile base (point P) expressed in the global reference frame and represents the
end-effector’s position.

Let us move the origin reference framework to the A
chain for each arm is defined as:

framework, the closed loop

Y,y

p—d=a; +b, (1)

where p = R,(¢;)x with R.(¢;) a rotation matrix with respect to z-axis, d is the
difference between the center of the mobile base and the fixed based relative to the
reference framework, given as d = (R —r)[1,0,0]”, a; is the distance from point A4; to
B;, relative to the reference framework, and finally, b; is the distance from point B; to
Ci-
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Side view b

Fig. 2. Definition of variables on the i — th arm over point A;.

By manipulating Eq. , angles 0, ;, 02, 05; can be computed as in Eqgs. (24]):

03; = cos™! (Cz’i> (2)

-1 2, +C§i +ct,—a? = b Sin2(‘93,i)
05 ; = cos : : s
’ 2absin(6s ;)

Czign ]
_ -1 Cx,i g2
9171' = tan <g1 T ot > (4)

g2 Cx,i

where ¢, ; = P, cos(¢;) + P, sin(¢;) — (R —r), ¢,; = —P,sin(¢;) + P, cos(¢;) and ¢, ,; =
P., g1 = a—bsin(f;;) cos(f2;) and go = bsin(fs ;) sin(hs;). Refer to Clavel*® for a detailed
procedure to obtain the inverse kinematics of the Delta manipulator.

2.8. Jacobian matriz

In this section, the relation between the angular joints velocities and the end-effector
velocity of the Delta manipulator is presented. We are looking for a expression in the
form:

J,%x=J,0, (5)

where J, € R3*3 and Jo € R?’X?" are the Cartesian and angular Jacobian, respectively.
x = (P, P,, P,)T and 0 = (6,1, 0,2,6,3)" are the Cartesian velocities of the end-effector
and angular velocities from the actuated joints, respectively.

Lopez et al*Y introduced a closed-form equation for the required Jacobians in Eq. ,
as follows:

j:'Ul,m j:vl,y J:ULZ . . . .
J, = ],1)2,1 ‘7,U2,y ‘].v2,z ; Jo = dla‘g (]01 J6> ']93) ? (6)
]’U3,I j’U3,y ]'US,z



6 Concurrent Design Approaches for a Delta Manipulator

where

Joi.. = sin(03;) cos(b; + 02;) cos(¢p;) — cos(83,;) sin(¢;),
Jui, = sin(fs;) cos(0y; + 0a;) sin(¢;) + cos(Bs ;) cos(e;),
) sin(@u =+ 9271‘),

Joi,. = sin(0s,;
Jo, = —asin(0s ;) sin(fs ;).
The relationship between the Cartesian reference frame and the reference frame of
each joint is computed by x = JO, where J is the manipulator Jacobian matrix. In this
case, the Jacobian matrix is computed as J = J 1 J,.

3. Evolutionary design methodology

Evolutionary Algorithms (EAs) are based on the principles of biological evolution, a
general framework can be stated as follows: first they generate a population of candidate
solutions, then some solutions are selected, usually, via a stochastic method which favors
the most promising ones. By using the selected set, a variation operator is applied to
generate a new set of candidate solutions, these solutions replace the current population.
Usually, the best solution is preserved trough generations and the process is repeated
until a stopping criterion is met.

3.1. Evolutionary Algorithms

The EAs used here for solving the concurrent design problem can be classified into
three families: Estimation of Distribution Algorithms (EDAs),*! Evolution Strategies
(ESs),*# and Genetic Algorithms.** Although all of them can be classified as evolutionary
algorithms, each of them has a particular way of working. The Omni-optimizer#? is the
implementation of a multi-objective GA, it re-combinates some of the most promising
candidates selected using simulated binary crossover (SBX) and a binary tournament
selection strategy. The exploration is maintained via the polynomial mutation operator.
The Boltzmann Univariate Marginal Distribution Algorithm (BUMDA) estimates a
probability distribution by using the best candidates, the better a candidate is, the
higher the weight of such candidate in the estimation formula. Thus, the resulting
probability functions favor to sample the best regions already known. The Covariance
Matrix Adaptation Evolutionary Strategy (CMA-ES) uses a reproduction operator which
favors promising directions. The Omni-optimizer and BUMDA share the characteristic
of sampling the regions where the best candidates are, while the CMA-ES samples
in directions where the best candidates were generated. A brief description of these
algorithms is given in the rest of this section.

3.1.1. Omni-optimizer'*# This optimizer is a general optimization GA, which is used, in
this case, to solve a single objective problem. Nevertheless, it is an optimizer that can
be applied to a wide range of problems from mono-objective to multiobjective with and
without constraints in discrete and continuous domains. In our problem, we used it as a
simple GA with simulated binary crossover (SBX)*? and polynomial mutation. These are
the same operators than those used in the Non-dominated Sorting Genetic Algorithm II
(NSGA-IT) =0

The Omni-optimizer is presented in Algorithm the workflow is as follows: the
initial population is randomly generated, in step 1, using a uniform distribution, then,
it is evaluated in step 2. In step 3, the population is sorted and selected via Pareto
ranking. Then, binary tournament selection, recombination and mutation operators are
applied to generate children, as notice in step 4, and evaluated in step 5. The algorithm
initialization is different than the main loop because of elitism is introduced. Inside the
main loop, in step 8, parents and children are combined together. In steps 9 and 10, the
combined population is sorted according to non-domination, the new parent population
is selected by means of Pareto ranking. If adding all solutions with certain rank produces
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Algorithm 1 Omni-optimizer (NSGA-II) Pseudocode

Py + L[(min(i), max(?)
Fo — f(F)
Sort P, based on the non-dominated solutions
Qo « tournament selection, recombination and mutation operators(F)
Go + f(Qo)
t<« 0
while stopCrit # true do
Rt =P, y U Qt
Sort R; based on the non-dominated solutions
Compute Pareto ranking and crowding distance
Select P;,; using Pareto ranks and Crowding distances
Q+1 < tournament selection, recombination and mutation operators(F; ;)
Gry1 f(Qt—H)
: end while
: return Pt(l)

T T
W o

[
Ut

a set greater than the population size, then these solutions are discriminated using the
crowding distance in step 11. Then, children are generated as usual in step 12, and
evaluated as shown in step 13.

3.1.2. Boltzmann Univariate Marginal Distribution Algorithm (BUMDA)!Y This
algorithm is an EDA that uses a univariate Gaussian model to approximate a Boltzmann
distribution,whose energy function is related to the objective function. This means that
the better a candidate is, the probability to sample in the same region increases. The
mean and variance parameters of the Gaussian model are derived from the analytical
minimization of the Kullback-Leibler divergence. Pseudocode of the BUMDA is shown
in Algorithm

Algorithm 2 Boltzmann Univariate Marginal Distribution Algorithm (BUMDA)
Pseudocode
Require: D=dimensions of the problem. n,,, =user given population size.

1: X + U(min® max®)

2. F f(X)

3: Sort X according to the objective function
4: N A= Npop, O < Fry t =0

5: while stopCrit # true do

n (1) +
. (4) Z]‘:lxi 7 (@)
6: My — Z:,Zl F(zy)
, " F(a) (et — )
O Do Flag) (g —p)

1+Z:;1 F(z;)
8  Zpesy=Elitism(X, F)
9: )A( «— (N(:U’tyvt) U xbest)
10 F + f(X)
11:  Sort X according to the objective function
12: n < min (max(k|0; < Fi), 3 - Npop)
13: 0, « F,
14: t+t+1
15: end while
16: return x;

In steps 1-2, the initial population X is sampled from a uniform distribution and it
is evaluated on the objective function f. As introduced by Valdez et al.,* BUMDA is a
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maximization algorithm, and, in order to solve a minimization problem, the vector with
the original objective function values F is transformed to F =1 — (F — Faz), Where
Fmaz 18 the maximum of F. In agreement with this transformation of the objective
function, for any configuration, Fis always greater than 1, as a consequence, the 1, in
the denominator in step 7 of Algorithm[2] does not significantly impact the variance value.
In addition, when the algorithm is not near to convergence different configurations have a
different weight in the parameter computation, while, near to convergence any solution in
the selected set has, practically, the same weight in the parameter computation. Notice
that when the algorithm converges the values of the optimization variables must be
almost the same for the whole population, thus, the weights used for mean and variance
computation do not significantly affect their values.

The population is sorted according to the objective function in step 3. Then, using the
candidates with objective function value greater or equal to 6;, mean and variance are
computed for each dimension independently in steps 6-7. In step 8-10, the best candidate
Tpest 18 preserved through generations and the new population is sampled from a normal
distribution, which uses the computed mean and variance. The threshold 6; is augmented
each iteration to ensure the improvement of the selected set. Steps 6-14 are repeated until
a stopping criterion is met.

3.1.3. Covariance Matriz Adaptation Evolutionary Strategy (CMA-ES)*® This strategy
uses a multivariate Gaussian model. Parent solutions are used to determine the size,
position and orientation of a Gaussian distribution used to sample the children candidate
solutions. One of the most important characteristics of the CMA-ES is that the
orientation of the multivariate Gaussian model directs the search to promising regions,
in a kind of descent path. The Gaussian mean is computed as the addition of a weighted
sum of the difference between the current population (parents) and the current mean.

Algorithm 3 Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES)
Pseudocode
1: Set A «<—number of samples per iteration, at least two, generally > 4

2: Initialize m,o,C =1,p, =0,p. =0

3:t+0

4: while stopCrit # true do

5 fori=1:Xdo

6: z; < N(m,o?C)

8: end for

90 Ty Ts(n)..sn) With s(i) = argsort(f(1,...,)),1)
10: m =m

11:  m < update-m(zy,...,xy)

12: p, < update_ps(py, o0 'C~2(m —m'),||p.||)

13: pe < updatepc(p, o~ (m —m'), ||p,||)

14:  C <« update C(C,p., (x1 —m')/o,...,(xx —m') /o)

15. o < update_sigma(o, ..., ||ps||)
16: end while
17: return x;

In Algorithm [3] steps 1-3 initialize the multivariate Gaussian distribution and the
algorithm parameters. In steps 5-7, the new candidate solutions are generated from the
multivariate Gaussian distribution and evaluated on the objective function f. In step 9
the population is sorted selecting the best solutions. The previous mean is stored, then
the new mean, the isotropic path p, and the anisotropic path p. are computed in steps
10-13. Lastly, in steps 14-15 the new covariance matrix is computed and the isotropic and
anisotropic paths are used to modify the new covariance matrix for guiding the search
toward the maximum improvement directions as the maximum variance direction. Steps
5-15 are repeated until a stopping criterion is met.
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3.2. Proposed evolutionary-algorithm based methodology
In this section, a general methodology for optimization of kinematically complex
mechanisms is described. This methodology can be used for static and kinematic
optimization problems. Indeed, the methodology can be applied for dynamic design
problems where second order differential equations model the mechanism. However,
such kind of optimization is left as future work in this paper. The case of kinematic
optimization problems are treated as concurrent optimization problems: the optimization
of geometry and control parameters simultaneously subject to a certain task.

Fig. shows a graphical representation of the proposed methodology, which
summarizes the process in the following main steps:

1. The mechanical model of the mechanism to be optimized must be selected together
with a set of design parameters, e.g., masses, fixed lengths, inertial moments, desired
workspace size and shape, etcetera, as well as a static or kinematic model.

2. At the same level, an optimization problem must be selected, such as: a) maximizing
a regular workspace, or b) minimizing the integral of the absolute value of the control
signal. For the first case, the output is a set of normalized lengths for the mechanism
elements, which in turn can be scaled to any physical unit of length, that is to say, to
meters, inches, feet or any arbitrary unit. For the second case the output is a set of
lengths and control gains.

3. As a final option, an optimization algorithm must be selected, for instance one of the
EAs of the previous sections, and the parameters of such algorithm must be inputted.

4. Given the mechanism, optimization problem and optimization algorithm, the overall
optimization process is executed.

| Optimization Problem |

Optimization Algorithm | | Mechanical Model |
I ]

[ Generate Candidates  |—

[ Evaluate Objective Function |

| Selection | No

Yes

|
Optimal
Manipulator

Fig. 3. Graphic representation of the concurrent optimization method for kinematically complex
mechanisms.

As can be seen, this methodology could be used to optimize any mechanism under the
requirement of providing an evaluator of a function which describes its quality.

4. Concurrent design of a Delta parallel manipulator

In order to compare the optimization methods described in Section [3| a formulation of
the concurrent design for a Delta parallel manipulator is introduced. Let us define the
general terms used in the optimization models. Considering a general mechanism with
m joints, s actuators and d degrees of freedom of the end-effector. Thus, we can define
0 € R® as the actuated joint variables and ¢ € R™° as the passive joint variables. The
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mechanism is defined by a set of design parameters a € RP, for instance, the lengths
of the links, the relative position of each link, the relative arrangement between each
axis, the size and shape of the end-effector, etcetera. Aditionally, let us define a target
workspace X € R**" as a set of Cartesian coordinates of position and orientation in a
fixed reference frame, where n is the number of points. Notice that these points can
represent a whole target workspace or a path which is a subset of the whole workspace.
In this paper, we consider two models for optimum design of a Delta manipulator,
a) the maximization of a regular workspace subject to a constant norm of the links
lengths: the goal is to cover the maximum volume of a regular workspace, usually set
as a cube, sphere or cylinder. b) The minimization of the trajectory tracking error for
concurrent optimal design: given a path as a set of points, each point is associated with
a time coordinate to form a trajectory and the problem is to find the set of link lengths
and control parameters which provide the minimum integral of the absolute value of the
control signal. These models are expressed using the following objective functions.

4.1. Objective 1: Optimal mechanism design for the mazimization of a regular
workspace

This problem consists in finding the maximum regular workspace for a mechanism
whose sum of the links lengths is the unity*® The problem is subject to constraints
that guarantee an adequate performance, such as manipulability constraints, which
aim for keeping the robot away from singular configurations. A dexterity measure
used in this work, which is often referred as an intuitive quantitative measure, is
the inverse of the condition number of the Jacobian matrix x(J), defined as k(J) =
Tmin(J)/Tmax ()22 where o, (J) and 0,4 (J) are the minimum and maximum singular
values of the Jacobian matrix, respectively. Notice that, x € [0, 1]. From now on, we refer
as manipulability to this dexterity measure introduced previously. In order to decouple
translational and rotational manipulability of the end-effector to guarantee position and
orientation manipulability, independent constraints are imposed for these measures. In
general, the Jacobian matrix J contains the terms of translational and rotational motion,
and can be written in two separated sub-matrices as follows:

(k) =@)e @

where %x; and X, are translational and rotational velocities of the end-effector,
respectively. Thus, we can compute separately manipulability measures for position «(J,)
and orientation x(J,). The reader must consider that computing a dexterity measure
based on singular values of independent translational and rotational Jacobians is valid if
the manipulator performs only one type of motion (pure translation or rotation), if the
manipulator performs a complex motion involving displacement and rotation, a different
dexterity measure could be more suitable2*# The Delta manipulator is considered a
pure translational mechanism.

Let us define a measure ®(a) for the volume of the workspace W. The measure ®(a) is
expressed in terms of a parameter of the regular workspace, for this case, the side length
of a cube. Considering all the statements above, the optimization problem is defined as
follows:

max d(av), (8)
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subject to
r(Jp(X, 0, 0)) = 7, (9)
£ (X, 0, a)) > 7,
g < 9, < g
¢; <

¢;1’111]

~—

9

b5,
Z lk(a) =T,

k=1

wherei=1,...,s,j=1,...,m — s,y and ~, are position and orientation manipulability
bounds, respectively. [;(a) is the lenght of the link k& and 7 is a given normalizing
constant, set to 7 = 1 in this work. The last constraint removes the dimension effects by
normalizing the design parameters o of the manipulator. The joint limits are specified
for actuated and passive joint variables. Additionally, we assume that joint limits are set
adequately to avoid self-collisions. In the case study presented in this work, the Jacobian
of the Delta parallel manipulator is only translational, but the formulation is presented
in general for any mechanism. Thus, in our case study there is not a rotational Jacobian
matrix.

4.1.1. Evaluation of a candidate solution. We define a cubic shape for a regular workspace
W. The length of an edge of the cubic workspace is denoted by 2/ and it is used to
compute the objective function in Eq. . The center of the resultant maximal effective
regular workspace is unknown for the evaluation of each candidate solution, but it is
known that the manipulator is symmetrical with respect to the z-axis. In consequence,
the coordinates of the center of the workspace have the form (0,0, z.). In our work z, is
found by an intensive search, placing the reference frame at the origin frame as presented
in Fig. 2| the z-axis is discretized from 0 to (a 4 b) in partitions of size 1.0e-5.

For this case study, we evaluate a candidate solution by finding the maximum cube for
each z. in the discretized segment of the z-axis, the maximum cube is found as follows:

1. Initialize I; = 0.0 and A, = 1.25(a + b).

2. Generate 27 equidistant points in a cube of length [; + A, centered at (0,0, z.), in
such a way that a point has the coordinate (x;,y;, z.).The constraints in Eq. are
verified to be fulfilled for each point

3. If any point does not fulfills all the constraints, A, is decreased by a factor of 0.5,
otherwise the length of the side of the cube I; is updated as l;;; = I; + A,.

4. The loop is repeated from step 2 until A, is lower than a tolerance of 1e-8.

4.2. Objective 2: Concurrent optimal design of kinematic control

In this problem, we consider an actuated mechanism under a proportional-derivative
control action. Given a position and orientation function dependent on time, we aim to
minimize the error between the desired trajectory and the actual trajectory followed by
the end-effector of the mechanism. The error is a time-dependent function. Hence, we
propose to model the optimization problem as the integral of the absolute value of the
control signal, as follows:

min F(e) = k() [ lle(e, 010t + kate) [ l1e(ext)jor, (10)

subject to
orin < 0, < 07,

PP < by < B,
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where i =1,...,s, j=1,...,m—s, ky(a) and k() are proportional and derivative
control gains, respectively, which are included as optimization variables in a besides of
the link lenghts. The functions e(a,t) = X(a,t) — XP(t) € R® and é(a,t) = X(a, t) —
XP(t) € R® are translation and velocity errors, respectively. X(a,t) and X(a,t)
are the translation and velocity coordinates (including orientation in both cases) of
the manipulator’s end-effector at an instant ¢. Likewise, X”(¢) and XP(t) are the
desired translation and velocity coordinates imposed to the manipulator by the desired
trajectory. In the same way that in the previous case study, the joint limits are specified
for actuated and passive joint variables in such a way that self-collisions of the links are
avoided.

The physical meaning of Eq. is the following: the control signal is, basically,
the energy required to perform the trajectory tracking, whose accuracy depends on the
control gains k, and k;. Notice that we need to use the norm of the position and velocity
errors to avoid cancellation in the integral. Moreover, the control signal includes in a
single term the position and velocity error as well as the energy. Hence, this objective
function intends to complete the task with the minimum energy.

The kinematic proportional-derivative control that allows tracking the desired
trajectory is implemented as follows:

0,1 = I, (XP(t) — kpe, — kpé,), (11)

The values of the joints variables in the next instant of time are obtained using the Euler
method, so that 6;,, = 6; + At - 8;,,. The translation and orientation variables in the
next instant of time can be computed by using the Cartesian velocity in the current
instant of time as follows: X; 1 = X; + At X1, where X; 1 = J,60,.1.

In order to find an optimal configuration, if any constraint is unfulfilled or if the angular
positions are indeterminate, the simulation is stopped at time ¢, and the configuration is
penalized by adding 8, where 8 = le+3 - (t, — t);

4.8. Algorithms setting and termination criteria

The stopping criteria are the following: the CMA-ES stops if the best objective function
value is less than 1.0e-9, or the difference between two consecutive generations is less
than 1.0e-20. The Omni-optimizer stops when it reaches 40 generations. The BUMDA
stops if the maximum variance is less than 1.0e-12. Additionally, all algorithms stop at a
maximum of 1e4-p evaluations, for p optimization variables. In order to conclude which
algorithm delivers the best performance value for each design problem, we have used a
non-parametric intensive sampling technique for statistical hypothesis test, the boostrap
method .2

5. Results and comparative analysis

5.1. Results for the mazimum reqular workspace.
Considering the first problem addressed for the Delta robot, we aimed to find the
maximum regular workspace within the total workspace of the mechanism. The set of
optimization variables are the links lengths denoted as a = [a b d], where d = R — 7.
The search range of the lengths is [0, 1] for all of them. Joint limits and manipulability
constraints are taken as in Lou et al’® and the inverse kinematics for the Delta robot
is computed as described in Section Fig. 4] (a) presents the optimal approximation
of the whole workspace, as well as the enclosed regular workspace. Figs. [4] (b), (c¢) and
(d) show a cross section of the workspace at heights of 0.4137, 0.5940 and 0.7742 units,
respectively.

Table [ shows the best solution found by each algorithm for the lengths {a,b,d} and
the corresponding objective function as well as the mean and standard deviation of ten
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Table I . Best solution for Eq. , links lengths {a, b, d} and objective value F(cx).

EA a b d Flo)
CMA-ES 0.40119 0.56786 0.03039 0.1807
OMNI 0.36434 0.56111 0.02573 0.1685
BUMDA 0.38189 0.57725 0.03678 0.1752

independent executions. As can be notice, the best solution is found by the CMA-ES,
nevertheless, the lengths are similar for all the algorithms.
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Fig. 4. Workspace visualization. (a) 3D total and regular workspace. (b) Cross-section at 0.422703. (c)
Cross-section at 0.592961. (d) Cross-section at 0.763219.

5.2. Results for the concurrent optimization of the geometry and control parameters.

In the second problem addressed for the Delta manipulator, we aimed to find the
geometric and control parameters to minimize the tracking error of a desired trajectory.
In this case, we use 100 equidistant points in time, sampled from the function X,(t) =

(e28in(2.07 - ¢1), ca cos(m - ¢1), e3(ct) 4+ 0.2), where ¢; = Q'O'ttfftf, c2=0.3,¢c3=0.5,00<
t <30.0 s and i = 1,...,100. The search range of the links lengths is [0, 1] for lengths
a, b and d, and the range for the control parameters is [0,100] for gains k, and k,. In
order to justify the concurrent optimization model, we present a comparison between
only control optimization using a fixed geometric structure versus concurrent geometry
and control optimization. Table [[I] shows results obtained by EAs for proportional
(P) control and proportional-derivative control (PD). The last column presents the
objective function value of the solution when optimizing only control gains, while the
previous column to the last one shows the objective function value obtained by the
concurrent optimization methodology. As can be seen, the signal value of the concurrent
optimization is lower than the control gain optimization, meaning that the energy
applied to the concurrently designed mechanism is lower than that applied to the fixed-
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lengths mechanism. An additional advantage of the concurrent optimization is that the
performance of a mechanism is subject to track a trajectory, thus, when considering
fixed lengths, flexibility and manipulability of the manipulator are reduced. Concurrent
optimization allows to find a suitable set of link lengths which maximizes flexibility and
manipulability of the manipulator for each desired task.

Table II . Best solution for Eq. for concurrent optimization, links lengths {a,b,d}, control gains
{kl(,c), kéc)} and objective value Fle) (ex), and a control optimization, with fixed links lengths {0.4,0.5,0.1},
control gains {kl()f), k((if)} and objective value f(f)(a).

EA a b d KO kD kY D FO) FD()
Proportional control

CMA-ES 4.35e-1 4.90e-1 7.39e¢-2 1.00e2 8.49¢-2 - - 3.7le-1  6.66e-1

OMNI 3.36e-1 5.51e-1 9.07e-2  9.99el 8.49e-2 - - 3.7le-1  6.66e-1

BUMDA 4.72e-1 4.61le-1 7.41e-2 1.00e2 8.54e-2 - - 3.7le-1  6.67e-1

Proportional-derivative control

CMA-ES 4.38e-1 4.87e-1 7.26e-2 9.99e-1 9.87e-1 8.28e-1 8.33e-1 8.74e-3  5.28e-1
OMNI 4.25e-1 5.02e-1 7.61le-2 9.99e-1 9.87e-1 8.28e-1 8.33e-1 8.76e-3  5.28e-1
BUMDA 4.55e-1 4.77e-1 7.50e-2  9.99e-1 2.29 8.28e-1 6.62e-1 8.75e-3  5.80e-1

As for the concurrent optimization, notice that for both controls, P and PD, the best
structure parameters are almost the same, meaning that those parameters could be one
local or global optimum, and that they are robust due to they support small changes
in the links lengths. Nevertheless, the proportional gain is larger for the P than for the
PD controller, meaning that the P controller is using more energy in order to achieve
a reasonable performance. This can be noticed in the objective function column. In
addition, notice that all algorithms reach basically the same objective function value,
but the CMA-ES consistently delivers a similar value for the P and PD control gains.
Fig. [5| (a) and (c) shows the logarithmic absolute End-Effector Position Error (EEPE)
over time for the P and PD control, respectively. Figs. |5| (b) and (d) show in green the
path undertaken by the Delta robot and the desired path in blue, for the P and PD
controls, respectively. Fig. [5| (e) describes the integration of the control signal over time,
in order to compare energy consumption of the P and PD controllers. As shown, the P
control reaches faster the target trajectory at a higher energy consumption.

5.8. Statistical comparison of optimization algorithms
With the aim of comparing the optimization methods, we use hypothesis tests to
compare pairs of them via the bootstrap methodology,* it is presented in Table m
Each evolutionary algorithm is executed 10 times for each optimization problem under
the same conditions. We test for each optimization variable and objective function, if the
value delivered by the algorithms in the first column are different (less than or greater
than) each other. For the optimization parameters, that is to say lengths and control
gains, if there is not statistical evidence that they are different we write =, if the first is
greater than the second we write > and the p-value of the corresponding hypothesis test,
similarly if the second is greater than the first we write <. For the objective function
comparison, we show in bold the name of the algorithm which performs the best according
to the hypothesis test, and the p-value of the hypothesis test in the corresponding column.
If neither algorithm can be consider the best according the statistical evidence, hence
both names are in normal font, and there is an asterisk in the value of the F column.
According to Table the methods find similar geometrical as well as control
parameters, nevertheless, we can see that CMA-ES consistently reports the best objective
function value. The hypothesis test also can be used to infer the relationship between the
optimization parameters and the objective function, by instance, for the first problem
the CMA-ES is the best and it seem that the only statistical significant difference is in
the d parameter. For the concurrent optimization problem it seems that, in general, the
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Fig. 5. Trajectory tracking control for the Delta robot. (a) Logarithmic absolute EEPE over time for
P control. (b) Trajectory tracking for P. (c) Logarithmic absolute EEPE over time for PD control. (d)
Trajectory tracking for PD. (e) Absolute EEPE integral for P and PD control.

difference is not significant for the parameters while the objective function actually is. A
possible explanation is that there is not a high correlation between the objective function
and the parameters even if they are dependent, in other words, it is not straightforward
to statically predict the objective function by means of the parameters, even though the
objective function is a function of the parameters.

5.4. Addressing the problem using a quasi-Newton method

In order to empirically demonstrate how difficult the problem is, we present a comparison
with the BFGS*¥ implemented in the minfunc function in Matlab, and the Nelder-Mead
Simplex** in the fminsearch function.

The results are show in Table [Vl The first method can not find a solution, the
message from minfunc is: stopped because it cannot decrease the objective function along
the current search direction. While the second successfully terminates after 142 iterations.
The initial parameters are randomly drawn in a vicinity of the best known solution. The
CMA-ES and actually any of the EAs deliver a greater workspace than that delivered
by these methods.
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Table III . Results of the hypothesis test (u4 < pup) with a 5% significance for the optimization of a
Delta parallel manipulator, with the objective functions described in Eq. and Eq. .

EA; vs EAg a b d kp kq Fla)
1.- Optimal maximum regular workspace mechanism design

CMA-ES vs BUMDA = = < (0.02) - - 6.00e-4
CMA-ES vs OMNI = = < (0.02) - - 0.000
BUMDA vs OMNI > (0.032) = = - - 8.200e-4
2.- Optimal concurrent mechanism design with a kinematic proportional control

CMA-ES vs BUMDA = = < (0.016) = - 0.000
CMA-ES vs OMNI = = = = - 0.000
BUMDA vs OMNI = = = = - 0.110 *
3.- Optimal concurrent mechanism design with a kinematic proportional-derivative control
CMA-ES vs BUMDA = = = = = 0.033
CMA-ES vs OMNI = = = > (0.000) = 2.100e-4
BUMDA vs OMNI = = = > (0.009) = 0.134 *

Table IV . Comparison of BFGS and simplex vs CMA-ES Eq. (8), links lengths {a,b,d} and objective

value F(av).
EA a b d
BFGS Initial parameters 0.4364588 0.5151318 0.0484094
BFGS Final parameters 0.4863362 0.5136638 0.0000
Nelder-Mead Initial parameters 0.4093702 0.5469331 0.0436966
Nelder-Mead Final parameters 0.4550914 0.5062968 0.0386118
Objective function BFGS 0.1297084
Objective function simplex 0.1205316
Objective function CMA-ES 0.1807

The very same procedure is applied to the concurrent design with the P and PD
controls. The results are shown in Table [V} as can be seen, even if the initial values are
not so far away from the solution, the BFGS is incapable of finding an adequate result,
the simplex, finds a similar objective function value (P control) for the first case than
the EAs, but for the second case it can not find a closed approximation to the EAs
solution. One can infer from the second case (PD control) that both algorithm intend
to minimize the function by minimizing the control gains, that is reasonable, because
the objective function is linear and convex with respect to the control gains, but they,
actually, can not optimize the lengths, because the function is not convex with respect
to these parameters.

6. Conclusions

In this article we propose a categorization for the optimum design of robots as follows:
static (model of zero order differential equations), kinematic (model of first order
differential equations), dynamic (model of second order differential equations). Two
instances of these problems are addressed, the first is a static problem for approximating
the optimum lengths which maximize a regular workspace, while the second is a kinematic
problem that concurrently approximates the optimum control and geometrical design
of a Delta parallel manipulator using P and PD controllers. On the one hand, we
have shown that these problems are not solvable using gradient base methods such as
BFGS or greedy-like methods such as the Nelder-Mead simplex, hence, it is adequate
to approximate the solutions using evolutionary algorithms. On the other hand, all EAs
deliver similar optimum approximations in the parameters and objective function, note
in Tables [l and Table [[I} that the difference among objective functions and parameters
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Table V . Comparison of BFGS and simplex vs CMA-ES Eq. (10), links lengths {a,b,d}, control gains
{kp, kq} and objective value F(cat).

EA a b d kp kq
Proportional control

BFGS Initial parameters 0.4329 0.4882 0.0279 98.9
BFGS Final parameters 0.4329 0.4882 0.0279 100
Nelder-Mead Initial parameters 0.4166 0.4449 0.0339 96.73
Nelder-Mead Final parameters 0.4802 0.411 0.03166 100
Objective function BFGS 18820.4
Objective function simplex 0.371816
Objective function CMA-ES 0.371262

Proportional-derivative control
BFGS Initial parameters 0.4149 0.4802 0.0547 2.584 5.579
BFGS Final parameters 0.6346 0.4802 0.2713 1.0 1.0
Nelder-Mead Initial parameters 0.4117 0.4609 0.0391 4.83 4.8
Nelder-Mead Final parameters 0.4351 0.4613 0.0543 1.0 1.0
Objective function BFGS 20598.5
Objective function simplex 19769.6
Objective function CMA-ES 0.00874

are less than 1%, in spite of the fact that all of the compared EAs work different and
belong to different families. Hence, we have shown that the problems can be addressed
under a unified framework, although they are different in the goal, optimization variables
and complexity.

The optimization methods are compared via non-parametric hypothesis tests. This
allows us to determine which optimization method is most suitable for each optimization
problem. According to the results, in most of the cases, the CMA-ES consistently delivers
the best solution and in 90% of the cases it statistically outperforms the other algorithms.
Thus, we suggest using CMA-ES as a basic optimization method to solve the optimization
problems of kinematically complex mechanisms. Table [[TI] can be used to determine
relations between optimization variables and the corresponding objective function, for
example, for the maximum workspace, it could be inferred that a small change in d
slightly but consistently cause a change in the objective function, an it is the cause of
the difference of the CMA-ES with other algorithms. Considering that the values in the
objective function and parameters delivered by the CMA-ES are quite similar to the ones
delivered by the other algorithms, we can conclude that CMA-ES can refine better the
solution, that is to say, it performs a better exploration in a closed vicinity at the end of
the search process which consistently improves the objective function value. There are
limitations on the CMA-ES, for instance, the estimation of the parameters uses more
memory and computation than the other algorithms. Meanwhile, the BUMDA uses less
memory and it is not as computationally expensive as the CMA-ES. Therefore, it can be
executed in situ with low computational resources, in addition, it is shown the difference
in the objective function is less than 1% in most of the cases.

Future work contemplates approaching other optimization problems, like dynamic
design problems, including different mechanisms, requirements, and using more realistic
simulations, which could consider stiffness as part of the optimization model.
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