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Summary

Recently, a first-order differentiator based on time-varying gains was introduced in
the literature, in its non recursive form, for signals having a second-order derivative
bounded by a known time-varying function, where such time-varying bound has
a logarithmic derivative bounded by a known constant. It has been shown that
such differentiator is globally finite-time convergent. In this paper, we redesign
such an algorithm, using time base generators (a class of time-varying gains), to
obtain a differentiator algorithm for the same class of signals, but with guaranteed
convergence before a desired time, i.e., with fixed-time convergence with an a priori
user-defined upper bound for the settling time. Thus, our approach can be applied for
scenarios under time-constraints.
We present numerical examples exposing the contribution with respect to related
state-of-the-art algorithms.
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1 INTRODUCTION

The exact differentiator problem is a relevant problem in control theory, that has recently received a great deal of
attention1,2,3,4,5,6,7,8, as it allows to obtain in a finite-time the derivative of a measurable signal and can be applied, among other
problems, to the unknown input observer problem9,10,11; fault detection and isolation12,13,14; active disturbance rejection15; and
it is an essential part in the universal controller for single-input-single-output systems16,17,18,19.
For the case where the n-th derivative of the input signal is Lipschitz with a known Lipschitz constant, an arbitrary order exact

differentiator algorithm has been proposed by Levant1 and Lyapunov functions for such an algorithm were given for the first-
order in Moreno and Osorio2, the second-order in Sanchez et al.6 and for the arbitrary-order case in Cruz-Zavala and Moreno20.
For the case where the input signal is an n times differentiable signal, with (n + 1)-th derivative bounded by a known time-
varying function, such that the time-varying function has a logarithmic derivative bounded by a known constant, Levant and
Livne5 introduced an arbitrary order exact differentiator with a time-varying gain.
To apply differentiator algorithms for scenarios with time constraints, i.e., with guaranteed convergence before a user

defined-time, there has been some effort to design differentiator algorithms with uniform convergence independent of the
initial condition, i.e., with fixed-time convergence21,22,23,24,25,26, where there exists an upper bound for the settling-time (UBST)
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function that is independent of the initial condition27,28,7,29. Of greater interest is when such UBST is known since the desired
convergence time can be set a priori (predefined) by the user. For the case where the n-th derivative of the input signal is Lipschitz
with a known Lipschitz constant, first-order algorithms with predefined convergence have been proposed7,28,30. However, the
resulting predefined UBST is conservative (see e.g. Cruz-Zavala et al.7, Section 5 where the estimate of the UBST is approx. 217s,
but the simulated one is approx. 2s). Nonetheless, to our best knowledge, no predefined-time algorithm exists for the case where
the input signal is an n times differentiable signal, with (n + 1)-th derivative bounded by a known time-varying function, such
that the time-varying function has a logarithmic derivative bounded by a known constant.
There are different scenarios where real-time constraints need to be satisfied and fixed-time convergence is an important

property for those, for instance: In missile guidance31, stabilization in a desired time is required by the impact time control
guidance laws32. In fault detection, isolation, and recovery schemes33, an unrecoverable mode may be reached if failing to
recover from the fault on time. In hybrid dynamical systems, it is a common need that the observer (resp. controller) stabilizes
the observation error (resp. tracking error) before the next switching occurs34,35. In the frequency control of an interconnected
power network, besides the frequency deviation, it is also of interest to control how long the frequency stays out of the bounds36.
Similarly, for chaos suppression in power systems, the convergence time is an essential performance specification37, since
oscillations are acceptable if they can be damped within a limited time.
In this work, we propose redesigning the first-order differentiator, in its non-recursive form, proposed by Levant and Livne5.

To this aim, we use a class of time-varying gains known as Time-Base Generator (TBG) gains introduced in Tsuji et. al.38 and
Morasso et al.39 †. However, contrary to the referred work5, in our approach we obtain guaranteed convergence at a desired time
predefined by the user, i.e., fixed-time convergence, with a predefined UBST.
The contribution with respect to other autonomous predefined-time first-order differentiators, such as Cruz-Zavala et al.7

and Seeber et al.30 is two-fold. First, the class of signals that we can differentiate is wider. Second, whereas in such autonomous
algorithms the desired UBST is very conservative and no methodology exists to reduce such slack, in our approach the slack of
the UBST is significantly reduced. This results in a convergence where the maximum value of the differentiation error signals
is significantly lower, as it is illustrated by numerical examples.
To our best knowledge, the closest work to our approach is the work of Holloway et al.40, as the same class of time-varying

gains is used. However, the results in the referred work40 can only be applied to the first order differentiator problem for signals
with zero second derivative. Moreover, in contrast with the work of Holloway et al.40, where for every nonzero trajectory the
time-varying gain tends to infinity as the zero error is reached, in our approach, for all finite initial conditions, zero estimation
error is obtained before the singularity in the TBG gain occurs, allowing to apply some workarounds to maintain the TBG gain
bounded. With a bounded TBG gain, our algorithm is globally finite-time convergent, but predefined-time convergence is only
obtained for a neighbourhood around the zero estimation error and such region can be set arbitrarily large.
The rest of the manuscript is organized as follows. In Section 2, we recall the first-order differentiator, in its non-recursive

form, that will be redesigned5, and present basic concepts on fixed-time stability and time-scale transformations. In Section 3,
we present the problem formulation and the proposed predefined-time exact differentiator algorithm. In Section 4, we show
numerical examples to illustrate our approach, exposing the main advantages with respect to the state-of-the art. Finally, in
Section 5 we present some concluding remarks and suggest some proposed future work.

Notation: ℝ is the set of real numbers, ℝ+ = {x ∈ ℝ ∶ x ≥ 0}. For x ∈ ℝ, ⌊x⌉� = |x|�sign(x), if � ≠ 0 and ⌊x⌉� = sign(x)
if � = 0. For a function � ∶  →  , its reciprocal �(�)−1, � ∈ , is such that �(�)−1�(�) = 1 and its inverse function �−1(t),
t ∈  , is such that �(�−1(t)) = t. For functions �,  ∶ ℝ → ℝ, �◦ (t) denotes the composition �( (t)). Given a matrix
A ∈ ℝn ×ℝm, AT represents the matrix transpose of A.

†Tsuji et. al. 38 and Morasso et al. 39 introduced the notion of a “Time-Base Generator” (TBG) as a time series �(t) characterized by a transition from �(0) = 0 to
�(Tc ) = 1 with a “bell shaped” velocity profile. The time-varying gain �(t) = �̇(t)

1−�(t)
is called the TBG gain. As an abuse of terminology, here, we replaced the “bell shaped

velocity" requirement by �̇(t) > 0 and we called such time series �(t) a TBG. Notice that the time-varying gain in 40,32,41, which is the one considered in this work, can be
obtained in this way with �(t) = t∕Tc . Aldana-López et a. 24 characterized this class of time-varying gains.
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2 PROBLEM STATEMENT AND PRELIMINARIES

2.1 Problem statement: Predefined-time first-order exact differentiator
Problem 1 (The predefined-time exact first order differentiator problem). Considering a user-defined time Tc and a differentiable
signal y(t) ∈ ℝ and |ÿ(t)| ≤ L(t), for all t ≥ 0, with L(t) satisfying 1

L(t)
|

|

|

dL(t)
dt

|

|

|

≤ M for a known constant M , the problem
consists in accurately obtaining the functions y(t) and ẏ(t), for all time t ≥ Tc . The set of admissible signals y(t) is denoted as  .

Solving this problem enables the application to control problems with time constraints. To solve it, we propose, for an a priori
given Tc > 0 (a desired convergence time), to design functions ℎi(w, t; Tc), i = 1, 2 such that with the algorithm:

w =z0 − y(t) (1)
ż0 = − ℎ1(w, t; Tc) + z1, (2)
ż1 = − ℎ2(w, t; Tc), (3)

we obtain that z0 = y(t) and z1(t) = ẏ(t), for all t ≥ 0 + Tc and every initial condition z0(0) and z1(0).
The solutions of (3) are understood in the sense of Filippov42.

Remark 1. Notice that with ℎi(w, t; Tc), i = 1, 2 independent of Tc , the algorithm (3) has the structure of the differentiator in5,
in its non-recursive form. Here our aim is to guarantee exact convergence before a user-defined time given by Tc , regardless of
the initial condition, which is a feature not present in the base approach5.

2.2 Fixed-time stability
To analyze the convergence of the differentiators, we analyze the stability of the differentiation error dynamics given by

ė1 = − ℎ1(e1, t; Tc) + e2, (4)
ė2 = − ℎ2(e1, t; Tc) − ÿ(t), (5)

where ℎi ∶ ℝ2 × ℝ+ → ℝ2, i = 1, 2, is some function that is continuous on x (except, perhaps, at the origin), and continuous
almost everywhere on t and |ÿ(t)| ≤ L(t).
We assume that ℎi(w, t; Tc), i = 1, 2 are such that the origin of (5) is asymptotically stable and, perhaps except at sets of

measure zero, (5) has the properties of existence and uniqueness of solutions in forward-time on the interval [0,+∞)42, Proposition 5.
The set of admissible y(t) functions, on the interval [0, t] with t > 0 is denoted by [0,t]. The solution of (5) for t ∈ [0, t],

with signal y[0,t] (i.e. the restriction of the map y(t) to [0, t]) and initial condition e0 is denoted by e(t; e0, y[0,t]).
We assume that the origin is the unique equilibrium point of (5). Note that because ℎi(w, t; Tc), i = 1, 2may be discontinuous

at a set of measure zero, system (5) can have an equilibrium point at the origin despite the presence of the disturbance −ÿ(t).
For the system in Eq. (5), its settling-time function T (e0) for the initial state e0 ∈ ℝ2 is defined as:

T (e0) = inf
{

� ≥ 0 ∶ ∀y[0,∞) ∈ [0,∞), limt→� e(t; e0, y[0,∞)) = 0
}

. (6)

For simplicity, in the rest of this paper we write “stable" instead of “the origin is globally stable". With this shorthand, we
can introduce the notion of fixed-time stability.

Definition 1. (Pag. 108 in Bhat and Bernstein43)(Finite-time stability) System (5) is finite-time stable if it is asymptotically
stable44 and for every initial state e0 ∈ ℝn, the settling-time function T (e0) is finite.

Definition 2. (Definition 2 in Polyakov45) (Fixed-time stability) System (5) is fixed-time stable if it is asymptotically stable44
and the settling-time function T (e0) is bounded onℝ2 ×ℝ+, i.e. there exists Tmax < +∞ such that T (e0) ≤ Tmax, for all e0 ∈ ℝ2.
The quantity Tmax is called an Upper Bound of the Settling Time (UBST) of the system (5).
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2.3 Levant’s first-order differentiator with time-varying gains
Theorem 1 (Levant and Livne5). Given a differentiable signal y(t) ∈ ℝ and |ÿ(t)| ≤ L(t), for all t ≥ 0, with L(t) satisfying
1
L(t)

|

|

|

dL(t)
dt

|

|

|

≤M for a known constantM . The algorithm:

w =z0 − y(t) (7)
ż0 = − �1(w;M,L(t)) + z1, (8)
ż1 = − �2(w;M,L(t)), (9)

is a first-order exact differentiator, i.e., there exists a finite-time t̂, such that z0 = y(t) and z1 = ẏ(t) for all time t ≥ t̂, where

�1(w;M,L(t)) ∶= �1L(t)
1
2
⌊w⌉

1
2 + �1Mw (10)

and
�2(w;M,L(t)) ∶= �0L(t)sign(w) + �1�0L(t)

1
2M⌊w⌉

1
2 + �0�1M2w, (11)

where �i, i = 0, 1 and �i, i = 0, 1 are suitable positive constants.
In other words, the system

ė1 = − �1(e1;M,L(t)) + e2, (12)
ė2 = − �2(e1;M,L(t)) − ÿ(t), (13)

where e1 = z0 − y(t) and e2 = z1 − ẏ(t) (i.e., system (5) with ℎ1(w, t; Tc) = �1(w;M,L(t)) and ℎ2(w, t; Tc) = �2(w;M,L(t))),
is finite-time stable.

For the sake of simplicity, throughout the manuscript we consider �0 = 1.1, �1 = 1.5, �0 = 2 and �1 = 3 as suggested in5.

Remark 2. The case where y(t) satisfies |ÿ(t)| ≤ L(t)with constantL(t)was proposed in46, where it was shown, using Lyapunov
analysis, that (13) is finite-time stable with a settling time that is an unbounded function of the initial conditions.

2.4 Time-scale transformations
The trajectories corresponding to the system solutions of (5) are interpreted, in the sense of differential geometry47, as regular
parametrized curves3,24. Since we apply regular parameter transformations over the time variable, then without ambiguity, this
reparametrization is sometimes referred to as time-scale transformation.

Definition 3. (Regular parametrized curve, Definition 2.1 in Kühnel47) A regular parametrized curve, with parameter t, is a
C1() immersion c ∶  → ℝ, defined on a real interval  ⊆ ℝ. This means that dc

dt
≠ 0 holds everywhere.

Definition 4. (Regular curve, Pg. 8 in Kühnel47) A regular curve is an equivalence class of regular parametrized curves, where
the equivalence relation is given by regular (orientation preserving) parameter transformations ', where ' ∶  → ′ is
C1(), bijective and d'

dt
> 0. Therefore, if c ∶  → ℝ is a regular parametrized curve and ' ∶  → ′ is a regular parameter

transformation, then c and c◦' ∶ ′ → ℝ are considered to be equivalent.

Remark 3. We will apply time-scale transformations to asymptotically stable systems. Thus, the trajectories of the system are
represented by regular parametrized curves with time interval I spanning from the initial condition to the origin. Thus, for
x(t) and its reparametrization (time-scaling) x̃(�), to belong to the same equivalence class of regular parametrized curves, it is
necessary that limt→inf I x(t) = lim�→inf I ′ x̃(�) and limt→sup I x(t) = lim�→sup I ′ x̃(�), where the trajectory x̃(�) is defined on the
interval � ∈ I ′ ⊆ ℝ+.

Lemma 1 (Aldana-López et al.24). The bijective function ' ∶ [0, Tc) → [0,+∞) defined by � = '(t) ∶= −�−1 ln(1 − t∕Tc),
defines a parameter transformation with t = '−1(�) = Tc(1 − exp(−��)) as its inverse mapping.

3 MAIN RESULT

Next, we introduce our main result.

Theorem 2. Let
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• '(�) be chosen as in Lemma 1 with � > 0,

• �(t) ∶=
(

�(Tc − t)
)−1,

• (�) such that ('(t)) = L(t)�(t)−2, and

•  such that 1
(�)

|

|

|

d(�)
d�

|

|

|

≤ .

Then, using the algorithm (3) and selecting ℎi(w, t; Tc), i = 1, 2, as:

ℎ1(w, t; Tc) =
{

�(t)
(

−�w + �1(w;,('(t)))
)

for t ∈ [0, Tc)
�1(w;M,L(t)) otherwise, (14)

ℎ2(w, t; Tc) =
{

�(t)2
(

�2w + �2(w;,('(t)) − ��1(w;,('(t))))
)

for t ∈ [0, Tc)
�2(w;M,L(t)) otherwise, (15)

solves Problem 1 with Tc as the upper bound for the convergence time. Moreover, if L(t) is such that the settling-time function
of (13) is not uniformly bounded, i.e., if (13) is finite-time convergent but with a settling time function that is an unbounded
function of the initial condition, then Tc is the least UBST of (5). Thus, for initial conditions ‖e0‖ → ∞, T (e0) → Tc .

Proof. Let e1(t) = z0 − y(t) and e2 = z1 − ẏ(t). The proof is divided in two parts. First we will show that e1(t) = 0 and e2(t) = 0
for t ∈ [t̂, Tc) for some time t̂. Afterwards, we show that the condition e1(t) = 0 and e2(t) = 0 is maintained for all t > Tc .
Consider the coordinate change �1 = e1 and �2 = �e1+�(t)−1e2, where the error dynamics is given in (5). Then, the dynamics

under the coordinate change for t ∈ [0, Tc) is

�̇1 =�(t)
(

−�1(�1;,('(t))) + �2
)

, (16)
�̇2 =�(t)(−�2(�1;,('(t))) − �(t)−2ÿ(t)). (17)

Now, consider the parameter transformation given in Lemma 1 and notice that (�) ∶= L( (�))�(�)−2, where �(�) =
�(t)|t='(t) = (�Tc)−1exp(��) and L( (�)) = L(t)|t='(t); and let � = [�1, �2]T , then

d�
d�

= d�
dt

dt
d�

|

|

|

|t='−1(�)
.

Since dt
d�

= �(t)−1|
|t='−1(�), for t ∈ [0, Tc), then the dynamics of (17) in the new time � are given by

d�1
d�

= − �1(�1;,(�)) + �2, (18)
d�2
d�

= − �2(�1;,(�)) + �(�), (19)

where �(�) = −�(�)−2 [ÿ(t)]|t='(t).
Thus, the disturbance �(�) satisfies |�(�)| ≤ (�). Notice that (�) is such that

1
(�)

|

|

|

|

d(�)
d�

|

|

|

|

≤ .

Thus, according to Theorem 1, system (19) is finite-time stable and has a settling time function  (�0). Using Lemma 1, we
can conclude that the settling-time function of (5) is

T (e0) = lim
�→ (�0)

('−1(�)) = Tc(1 − exp(−� (�0))). (20)

Thus,
sup
e0∈ℝ2

T (e0) ≤ Tc . (21)

Then, e1(t) = 0 and e2(t) = 0 for t ∈ [t̂, Tc), where t̂ = Tc(1 − exp(−� (�0)). Moreover, it follows from (20) that the equality
in (21) holds when supe0∈ℝ2  (�0) = +∞.
The second part of the proof follows trivially from Theorem 1, because, for all t ≥ Tc , the differentiation error dynamics is

given by system (13).

Remark 4. To our best knowledge, the closest work to our approach to provide predefined-time algorithms is the work of
Holloway et al.40. However, notice that the referred method40 can only be applied to the first-order exact differentiator problem
for signals with zero second derivative.
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Remark 5. Similarly as in Holloway et al.40, although the error correction functions in (14) and (15) are bounded, the time-
varying gain �(t) tends to infinity as the time approaches the predefined-time Tc , such unbounded gainsmay be problematic under
noise or limited numerical precision. However, unlike40, where the settling time is exactly Tc and therefore limt→T (e0) �(t) = ∞,
(i.e., to obtain exact convergence the TBG gain is require to become singular), in our approach, exact convergence is obtained
before the singularity occurs, and therefore limt→T (e0) �(t) < ∞. Thus, to maintain the TBG gain in practice, we can force the
switching in (14) and (15) to occur at a time T ∗ < Tc (notice that the singularity in k(t) is avoided because the switching is done
before the singularity occurs). With this workaround, the differentiation error of our algorithm is still finite-time convergent.
Moreover, there exists a neighbourhood of initial conditions around the origin for which the settling time is bounded by Tc ,
and the size of such neighbourhood can be set arbitrarily large with a suitable selection of the � and  parameters. A similar
workaround was suggested in Holloway et al.40. However, in Holloway et al.40 bounded gains are maintained at the cost of no
longer obtaining exact convergence. In our approach, bounded gains are maintained at the cost of obtaining predefined-time
convergence semi-globally (i.e., there exists a neighbourhood of initial conditions around the origin for which the settling time
is bounded by Tc and can be set arbitrarily large with a suitable selection of the parameters). This remark will be illustrated in
Example 1.

Remark 6. Compared with existing autonomous algorithms7,30, whose predefinedUBST is conservative (i.e., the slack between
the least UBST and the predefined one is large‡), we show that in our approach such slack can be significantly reduced. A
consequence of reducing such slack is that the maximum differentiation error is significantly reduced, as it will be illustrated
in Example 2. Another advantage with respect to the algorithms proposed in Cruz Zavala7 and Seeber et al.30 is that such
algorithms can only be applied to the differentiator problem if the second derivative is bounded by a constant, a restriction that
is not present in our approach.

Remark 7. Unbounded gains may be problematic under noise. However, notice that considering the workaround to maintain the
TBG gain bounded discussed in Remark 5, then the behavior under noise, after T ∗ can be analyzed using the results in Levant and
Livne5. Nonetheless, the formal analysis of our algorithm’s filtering properties before T ∗ is out of the scope of this manuscript
and it is considered as future work.

4 SIMULATIONS AND STATE-OF-THE-ART COMPARISON

In this section we present numerical simulations to illustrate our methodology. Our first order differentiator algorithm guarantees
convergence before the desired time given by Tc . The simulations below were created in OpenModelica using the Euler
integration method with a step of 2 × 10−4.
To illustrate the advantages with respect to the closest algorithm from Holloway et al.40, consider the following example.

Recall that the result in the referred work40 can only be applied to the first-order exact differentiator problem for signals with
zero second derivative. Thus, we consider the problem of differentiating a linear function of time.

Example 1. Consider the signal y(t) = t + 1 which satisfies ÿ(t) = 0, and set Tc = 1. For comparison, consider Example 1 in
Holloway et al.40, i.e., algorithm (3) with ℎi(w, t; Tc) = gi(t; Tc)w where

g1(t; Tc) =l1 + 2(m + 2)�(t; Tc), (22)
g2(t; Tc) =l2 + l1(m + 2)�(t; Tc) + (m + 1)(m + 2)�(t; Tc)2, (23)

where � = l1 = l2 = m = 1. The convergence of (23) under different initial conditions is shown in the first row of Figure 1, where
it can be seen that convergence is obtained exactly at Tc . For our algorithm consider � = 1, L(t) = 0.1exp(−(t)) and  = 6.
Notice that, |ÿ(t)| ≤ L(t), (�) = 0.1�2T 2

c exp(−Tc + Tcexp(−��) − 2��) and therefore 1
(�)

|

|

|

d(�)
d�

|

|

|

= �(Tcexp(−��) + 2) ≤
�(Tc + 2) ≤ . The convergence of our algorithm under different initial conditions is illustrated in the second row of Figure 1.
Notice that zero differentiation error is obtained before the desired time given by Tc = 1. To illustrate how to maintain a bounded
gain, consider the workaround proposed in Remark 5, which is the same described in Section II.A of Holloway et al.40. For
illustrative purposes we choose a bound for �(t) of 10. For this case, the simulation of the algorithm (23) is shown in the first
row of Figure 2, whereas the simulation of our algorithm is shown in the second row of Figure 2. As can be seen, for any nonzero

‡See e.g., the example in Section 5 of Cruz-Zavala et al. 7 where the estimate of the UBST is approx. 217s, but the simulated one is approx. 2s; or the example in
Seeber et al. 30 where the UBST is set as Tc = 1, but in the simulations the convergence is bounded by 0.25s. Note that no methodology is provided in such works to
arbitrarily reduce such slack.
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FIGURE 1 Simulation of Example 1, i.e., online differentiation of the signal y(t) = t + 1.
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FIGURE 2 Simulation of Example 1, i.e., online differentiation of the signal y(t) = t+ 1. Bounding the TBG gain for practical
scenarios. For illustration purposes the TBG gain is maintained below �(t) ≤ 10, using the workaround suggested in Remark 5.

initial condition, only convergence to a neighbourhood of the signals is obtained in the prescribed time with the algorithm under
comparison40, but zero error cannot be obtained. In fact, the size of such neighbourhood tends to infinite as ‖e0‖ → +∞,
whereas in our algorithm there is a neighbourhood around the origin of e0, where predefined convergence is still obtained. By
selecting the bound for �(t), the size of such neighbourhood can be made arbitrarily large.
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FIGURE 3 Simulation of Example 1, i.e., online differentiation of the signal y(t) = sin(t).

Notice that the algorithm under comparison40 cannot be applied for the first-order exact differentiator problem of sine
functions, which is our next example. Compared with autonomous predefined-time first-order differentiators7,30, whose
predefined UBST is conservative, here we show that the slack in our predefined UBST is significantly reduced.

Example 2. Let y(t) = sin(t). Thus, |ÿ(t)| ≤ 1. Notice that L(t) = 1. For comparison, consider the algorithm in30, i.e.,
algorithm (3) with ℎi(w, t; tc) = ki�i(w), i = 1, 2, where

�1(w) = ⌊w⌉
1
2 + k23⌊w⌉

3
2 (24)

�2(w) = ⌊w⌉0 + 4k23w + 3k43⌊w⌉
2, (25)

where k1 = 4
√

L, k2 = 2L and k3 =
9.8

Tc
√

L
. The convergence of (25), under different initial conditions is shown in the first row

of Figure 3. For our simulation we take � = 0.3 andM = 1. Notice that  should satisfy  ≥ 2�. Thus, we take  = 1.
The convergence of our algorithm under different initial conditions is shown in the second row of Figure 3, and the convergence
of the error signals is shown in Figure 4. Observe in the first two rows of Figure 4, that the convergence of the algorithm (25)
occurs before 0.5s, but the predefined one is Tc . Thus it has a slack of 0.5s. As can be seen in the last two rows of Figure 4, such
slack is significantly reduced in our algorithm (in fact, it can be made arbitrarily small). An advantage of reducing such slack is
that the maximum differentiation error is significantly reduced (in this simulation, our maximum differentiation error results in
several orders of magnitude lower), an important feature when the differentiator is in closed loop with a controller.

Notice that the algorithms in Cruz-Zavala et al.7 and Seeber et al.30 cannot be applied for the first-order exact differentiator
problem of functions where the second derivative is not bounded by a constant, such as y(t) = 2 sin

(

1
2
t2
)

. Compared
with the predefined-time first-order differentiators based on time-varying gains in Levant and Livne5, our approach provides
predefined-time convergence, which is shown in the following example.

Example 3. Let y(t) = 2 sin
(

1
2
t2
)

. It is easy to verify that such function satisfies

|ÿ(t)| =
|

|

|

|

2 cos
(1
2
t2
)

− 2t2 sin
(1
2
t2
)

|

|

|

|

≤ L(t)

with L(t) = 2(t)2 + �, � ≥ 2 and that 1
L(t)

|

|

|

dL(t)
dt

|

|

|

≤M =
√

2
�
. Notice that,

(�) = (2(Tc(1 − exp(−��)))2 + �)(�Tcexp(−��))2
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FIGURE 4 Simulation of Example 2, i.e., online differentiation of the signal y = sin(t).

and
1

(�)
|

|

|

|

d(�)
d�

|

|

|

|

=4�T 2
c
exp(−��)(1 − exp(−��))
� + 2T 2

c (1 − exp(−��))2
+ 2�. (26)

It can be verified that the maximum of 1
(�)

|

|

|

d(�)
d�

|

|

|

is 2�
(−�+

√

�(2+�)
, which occurs at � = log

(

1 +
√

�
2+�

)

. Thus,  should

satisfy  ≥ 2�
−�+

√

�(2+�)
.

Consider our algorithm with � = 0.3, � = 2 and  = 0.6
√

8−2
. The convergence of our algorithm under different initial

conditions is shown in Figure 5, where it can be verified that the convergence is upper bounded by the desired time given by Tc .
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time time time

z0(t)z1(t)
y(t)
ẏ(t)

z0(0) = z1(0) = 1e1 z0(0) = z1(0) = 1e2 z0(0) = z1(0) = 1e4

FIGURE 5 Simulation of Example 3, i.e., online differentiation of the signal y = 2 sin
(

1
2
t2
)

.

5 CONCLUSION

In this paper, we introduced a predefined-time first-order exact differentiator algorithm for the case where the second derivative
of a signal is bounded by a known time-varying function. Our approach redesigns the algorithm proposed by Levant and Livne5,
which is based on time-varying gains, by incorporating a time-varying gain known as TBG gain. To our best knowledge, our
approach is the first predefined-time first-order differentiator for such class of functions. We presented numerical examples
highlighting the contribution with respect to state-of-the-art algorithms.
As future work we consider the discretization of our algorithm. Discretization of differentiators is an active area of

research48,8,49,50,51. Of particular interest is consistent discretization maintaining the convergence properties52,53. Additionally,
we will explore the output-based predefined stabilization for second-order systems, using the proposed differentiator in
combination with the predefined-time control proposed in54. Thus, contributing toward control algorithms for systems under
time constraints.
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