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ABSTRACT

In this article, we show how visual constraints such as homographies and fundamental matrices can be
integrated tightly into the locomotion controller of a humanoid robot to drive it from one configuration
to another (pose-regulation), only bymeans of images. The visual errors generated by these constraints
are stacked as terms of the objective function of a Quadratic Program so as to specify the final pose of
the robot with a reference image. By using homographies or fundamental matrices instead of specific
points, we avoid the features occlusion problem. This image-based strategy is also extended to solve
the problem of following a visual path by a humanoid robot, which allows the robot to execute much
longer paths and plans than when using just one reference image. The effectiveness of our approach
is validated with a humanoid dynamic simulator.

1. Introduction
For years, the locomotion of humanoid robots has driven

a lot of attention from the robotics community. In the
continuity of the seminal work by Kajita et al. [17], Wieber
[34] and Herdt et al. [15] have used a cart-table model as a
simplified model for this complex mechanical system. They
plan the trajectory of the Center of Mass (CoM) of the
robot, while simultaneously enforcing its stability through
the notion of Zero Moment Point (ZMP) [33] as a first
step, and they derive its whole body motion by inverse
kinematics, as a second step. The CoM trajectory is modeled
as a piecewise cubic trajectory (piecewise constant jerks),
and Model Predictive Control (MPC) is used to perform
optimization of these jerk values in a horizon window, so
as to anticipate the motions to be done in the future. Then,
the first computed optimal control in the horizon window is
applied to generate a reference CoM position to the inverse
kinematics, and the algorithm is run again in the following
cycles. In Herdt et al. [15], it is shown that the problem
can be tackled in terms of reference velocities to be tracked,
without specifying the footsteps beforehand, and that it can
be efficiently solved as a Quadratic Program (QP), with
quadratic terms smoothing the trajectory, other enforcing the
stability of the robot (penalizing ZMP positions far from
the center of the foot on the ground) and other enforcing
the tracking of the reference velocities. All of these are
expressed in terms of the values of the jerk of the CoM and
the footsteps positions. In addition, hard constraints on the
position of the ZMP and on feasible positions of the footsteps
are encoded as linear constraints on the problem variables,
which allows for an efficient resolution.

In many situations, e.g., when precise metric mapping
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of the environment is difficult, it is useful to specify
the objectives of the robot in terms of the values of its
sensors. This has been a principle at the core of the visual
control community for a couple of decades [5]. It avoids
having to cope with the traditional problems associated
to map building and SLAM strategies: Drifting errors,
Computational load associated to map updates and loop
detection, among others. However, SLAM strategies have
also been used for humanoid locomotion, for instance [29,
30, 31]. After successful works that have demonstrated the
benefits of this approach on wheeled robots, efforts have
been done to integrate visual control within the locomotion
of humanoid robots, i.e., to specify the target pose (position
and orientation) of the humanoid through a reference image,
which is known as pose-regulation. In works like Dune
et al. [9], Delfin et al. [6], the locomotion with visual
objectives is handled in a decoupled way: first, a target
velocity is computed from visual errors and then, it is used
as a reference velocity in the velocity-based walking pattern
generator (WPG) of Herdt et al. [15]. A limitation of such
an approach is that it needs a special and careful handling
of the robot sway motion. In Garcia et al. [13], the authors
use visual references instead of reference velocities in the
objective function. This scheme implements position-based
and image-based visual servoing, with determined points,
by linearizing the image projection functions to keep the
optimization as a QP.

Visual servoing is local by nature. In order to extend it
to larger scale navigation, some authors, e.g. Ido et al. [16],
have proposed to use a sequence of reference images (visual
path). This requires a visual path-following controller and
may generate discontinuous velocities when switching from
one reference image to another. This problem has been tack-
led in Delfin et al. [7] by using transition functions to achieve
smooth switching. Other methods exploit the geometry of
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Figure 1: Setup of the proposed approach: A humanoid robot with an onboard camera has to walk while following a sequence
of goal images, being driven by feedback of visual constraints errors. The key transformations and coordinate frames are shown
here, where the leading superscript denotes the reference coordinate frame and the subscript denotes the frame being described.
For example, Tck cr is the transformation that maps points expressed in

{

cr
}

to points in
{

ck
}

.

the environment, for instance by using vanishing points that
can be computed with corridors [11, 25].

In this work, we present five main contributions towards
a tight coupling between walking pattern generation and
visual references using the setup shown in Fig. 1:

1. We generalize the approach of Garcia et al. [13] to
homography-based and essential matrix-based con-
trol. Sensibility to occlusion is one of the drawbacks
of Garcia et al. [13], that limits its applicability. Our
approach can handle lost point correspondences and
partial occlusions of the reference imagewithout alter-
ing the walking pattern. Homographies and essential
matrices have been successfully exploited for robot vi-
sual control [3, 20, 6]. However, to our knowledge,
this is the first time that they feed an MPC scheme
within a humanoid locomotion controller.

2. We study and compare different strategies to handle
the rotational component of the humanoid motion.
In many previous works [15, 13], the orientation
has been handled as a separate optimization process
so as not to lose the QP structure. Here, we
take advantage of being able to recover the relative
orientation to the goal through the visual constraints
(e.g., homographies) to drive the trunk and feet
orientations within the walking pattern.

3. We extend our control strategy to navigate by follow-
ing a visual path instead of following just one image.
This allows larger scale visual control tasks: Given
a succession of consecutive visual goals (images) to
reach, we take advantage of the MPC approach to in-
tegrate visual errors of subsequent reference images
directly within the WPG, with the benefit of generat-
ing smooth walking patterns when switching from one
reference image to another.

4. We demonstrate that the visual constraints-driven lo-

comotion can be efficiently and robustly implemented
in a dynamic simulator.

5. We demonstrate through experiments that map-less
navigation within a visual memory is more efficient
than classical approaches relying on SLAM.

The remainder of this paper is structured as follows:
Section 2 describes other works related to our approach.
In Section 3, we present the general ideas guiding our
proposal of coupled visual constraint-based visual servoing
and walking pattern generation. Section 4 describes two
optimization schemes for implementing our proposal, one
leading to a Quadratic Program, the other one involving
Sequential Quadratic Programming. Section 5 gives details
on the two cases of studied visual constraints, namely
homographies and essential matrices. Section 6 discusses
simulation results and Section 7 gives our conclusions.

2. Related work
The dynamic model formulation for humanoid locomo-

tion proposed in Kajita et al. [17] assumes that: 1) longitu-
dinal and lateral translations are decoupled and 2) the height
of the Center of Mass position (CoM) is fixed. This simpli-
fied model is used in Herdt et al. [15] to formulate the WPG
as a QP problem, optimizing the sequence of jerks and the
footstep positions to track a given reference velocity while
ensuring stability by keeping the ZMP within the sustenta-
tion polygon of the robot.

In addition to the assumptions made in these works,
we consider a humanoid robot equipped with a calibrated,
monocular camera placed on its head. For MPC, we
assume that the camera motion is described by a decoupled
translation on the plane and rotation around a vertical axis.
We also assume that the head of the robot is fixed and
therefore the relative camera-CoM pose is also fixed.

As mentioned above, the WPG of Herdt et al. [15] may
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be used to drive the robot based on visual feedback, in a
decoupled manner. In Dune et al. [9], a loose coupling
is proposed where the longitudinal and lateral reference
velocities for the CoM are determined based on visual
servoing strategies, as a function of the visual error defined
with respect to a reference goal image. The main drawback
is that it needs to handle explicitly the image motion due
to the robot balancing motion. In Garcia et al. [13], a
tight coupling is proposed where, instead of computing the
reference velocity separately and feeding the QP with it, the
velocity term in the optimization problem of Herdt et al.
[15] is replaced by a visual error term based on the Visual
Predictive Control (VPC) approach proposed in Allibert
et al. [1]. Garcia et al. [13] adds the third term of the
following QP to encode visual errors:

min
Uk

�
2
‖X⃛k‖

2 + �
2
‖Y⃛k‖

2+

�
2

V
∑

�=1
[Sd� − S

m
k+1,�]

TW[Sd� − S
m
k+1,�]+



2
‖Zx

k+1 −Z
x_ref
k+1 ‖

2 +


2
‖Zy

k+1 −Z
y_ref
k+1 ‖

2,

s.t. CUk ≤ c, (1)

where Uk = (X⃛k, X
f
k , Y⃛k, Y

f
k )

T ∈ ℝ2N+2m is a vector
stacking the unknown jerks (X⃛k, Y⃛k)T ∈ ℝ2N along the
two translation directions and them future footstep positions
(Xf

k , Y
f
k )

T ∈ ℝ2m, both in a horizon window of duration
N starting at k. The vector Sd� ∈ ℝN contains the
stacked reference values for the visual features (indexed
by �) and Smk+1,� ∈ ℝN are the stacked values predicted
by the VPC scheme. The matrix W ∈ ℝN×N is a
weight matrix, (Zx

k+1, Z
y
k+1)

T ∈ ℝ2N is the vector of
stacked predicted ZMP positions in the horizon window and
(Zx_ref

k+1 , Zy_ref
k+1 )T ∈ ℝ2N are the corresponding reference

positions, which are functions of the footstep positions
(Xf

k , Y
f
k ). Finally, �, �, 
 are user-defined scalar weighting

coefficients for the different terms of the objective function
and C ∈ ℝ(4N+4m)×(2N+2m), c ∈ ℝ(4N+4m)×1 encode
linear constraints on Uk (on the ZMP and on the footstep
positions). These terms are all detailed in Garcia et al. [13].
In this QP problem, the future values Smk+1,� of the visual
features are predicted by linearization of the perspective
projection in the horizon window. It is worth noting that this
scheme is not generic, since it relies on the feedback from
point features and using any other visual information is not
straightforward. Another drawback of the aforementioned
approach is that the reference visual features need to remain
visible during the navigation. Hard visibility constraints
may be introduced in the QP algorithm, but this reduces the
range of possible movements and does not ensure robustness
with respect to image processing errors. To allow long-
range navigation using visual path-following, as what has
been done with wheeled robots [26], robustness is needed
to feature appearance/disappearance or occlusions. We will
show that our approach allows to account for occlusions.

3. Humanoid locomotion based on visual
constraints: General principles
In the following, we describe how to modify the WPG

scheme of Eq. 1 to include geometric constraints between
pairs of images as a way to drive the robot to its objective.

3.1. Visual constraints in the WPG formulation
Our strategy still uses MPC, with the same variables as

above, but instead of using the observed/predicted positions
of specific point features, we use the predicted values of
selected elements of a multiple-view constraint, namely a
homography or an essential matrix. In both cases, this visual
constraint can be represented by a 3×3 homogeneous matrix
Mr
k relating the two images indexed by k (“current” image

k taken from the robot) and r (the “reference” image r the
robot has to reach). In the following, we consider a subset
of V scalar elements {mrk,�, � ∈ [1, V ]} of the matrix Mr

k,
where these elements are indexed by �. For example, we may
consider the element (1, 1) of a homography matrix, index it
by � = 1, and denote it as mrk,1.

Let us also define the vectors m̄r
k+1,� and m̂r

k+1,�, which
stack the desired and predicted values, respectively, of the
selected element � of a geometric constraint, in a prediction
window of durationN , starting at k + 1:

m̂r
k+1,� =

(

m̂rk+1,�, m̂
r
k+2,�, ..., m̂

r
k+N,�

)

(2)

and similarly for m̄r
k+1,�. We propose to modify Eq. 1 by

replacing the visual errors term by the following one:

1
2

V
∑

�=1
��[m̄r

k+1,� − m̂r
k+1,�]

TW[m̄r
k+1,� − m̂r

k+1,�], (3)

where � ∈ [1, V ] refers to one of the selected elements of the
geometric constraint, and where � is individualized for each
element � as ��. For a future time-step l > k, we define

M̄r
l = M∗ − Υk, (4)

M̂r
l = m(Uk), (5)

as the desired (resp. predicted) values of the visual measure-
ment (geometric constraint) from image l to reference image
r. These predicted matrix values are written as a function m
of the control vector Uk. The exact nature of m depends
on which geometrical constraint is used and will be detailed
in the cases of homographies and essential matrices in Sec-
tions 4 and 5. The term Υk = Mr

k − M̂r
k ∈ ℝ3×3 is the

prediction error at the current time step k. It is evaluated at
k, based on the current observationsMr

k (computed from im-
age point correspondences) and kept constant in the horizon
window, as suggested in Allibert et al. [1]. The diagonal ma-
trixW = diag

(

wk+1, ..., wk+N
)

weights time indices in the
prediction window. As matricesMr

k are projective, a special
care has to be put on their scaling (see Section 5).

As a major difference with previous works in walking
pattern generation, the use of visual constraints allows us not
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to depend on a world reference frame in which to localize the
robot, as the visual constraints implicitly operate in a relative
frame with respect to the reference image. This means
that the optimization of our controls (jerks and footsteps)
can be done in a local reference frame, namely in the
current CoM frame mk. A global localization of the robot
at every iteration with respect to a world reference frame
requires more information than only the monocular images
(as concluded in Garcia et al. [13]), and it is avoided here.

3.2. Predictive model for the visual constraints
As mentioned above, we do not use all the elements of

the geometric constraint between the target and the current
images but only a subset of V elements. To predict their
values m̂rl,� in the horizon window, we express them in terms
of the jerks to optimize. Based on Fig. 1 and referring to
reference frames with indices “c” (resp. “m”) for the camera
(resp. the CoM), the homogeneous rigid transformation
Tcl cr between the camera frame in a future iteration l and

the camera reference frame is written as

Tcl cr = Tcl ml

(

Tmk ml

)−1 ( Tck mk

)−1 Tck cr , (6)

with Tck mk = Tcl ml the CoM/camera transformation
(roughly, a vertical translation), Tmk

ml the transformation
encoding the planar CoM motion between {mk} and {ml},
and Tck cr the transformation from the reference camera
frame, cr, to the camera frame at k, ck. The pitch rotation
angle of this transformation is referred to as �k. The
transformation Tck cr (and its rotational component �k, in
particular) is deduced, up to a scale, from the decomposition
of the observed geometric constraintMr

k at k (see Section 5
for more details). Under the planar motion assumption used
within the MPC, the vector tcl cr is expressed as:

⎡

⎢

⎢

⎣

( xck
cr + ymk

ml ) cos( �mk
ml ) + ( zck

cr − xmk
ml ) sin( �mk

ml )
0

−( xck
cr + ymk

ml ) sin ( �mk
ml ) + ( zck

cr − xmk
ml ) cos ( �mk

ml )

⎤

⎥

⎥

⎦

,

and similarly for the rotation part,

Rcl cr
=
⎡

⎢

⎢

⎣

cos
(

�k + �mk
ml

)

0 sin
(

�k + �mk
ml

)

0 1 0
− sin

(

�k + �mk
ml

)

0 cos
(

�k + �mk
ml

)

⎤

⎥

⎥

⎦

,

where the notation sa b represents the s-component (in
translation or orientation) of the transformation between
frames a and b. Using the above equations, we deduce
the elements of Mr

l in function of the CoM coordinates at
l, expressed in the CoM frame at k, which are, in turn,
expressed in terms of the jerks. As we will describe it later,
in all the cases we consider (homographies and essential
matrices), the predicted terms take the form

m̂rl,� = �l,�( xmk
ml , ymk

ml , �mk
ml ), (7)

where the functions�l,� are, in general, non-linear. Similarly,
the stacked values of the visual constraint elements can be
expressed as a function of the stacked positions/orientations

m̂r
l,� = �l,�(Xk+1, Yk+1,Θk+1), (8)

where Xk+1 (resp. Yk+1) stacks the N predicted values
xmk
ml (resp. ymk

ml ) of the x (resp. y) positions of the CoM
with respect to the framemk andΘk+1 stacks theN predicted
values of the relative orientation �mk

ml of the trunk/CoM
with respect to its orientation in k. These displacements
are expressed in terms of the jerks to be optimized, which
allows to make Eq. 3 an explicit function of these jerks and
of the initial CoM state (position, velocity, acceleration) at
k, x̂k, ŷk. For axis x, we have:

Xk+1 = (xk+1,… , xk+N )T = Ppsx̂k + PpuX⃛k, (9)

where the sequence of controls (jerks) on x is X⃛k =
(x⃛k,… , x⃛k+N−1)T . The matrices Pps ∈ ℝN×3 and Ppu ∈
ℝN×N are deduced easily from repeated integrations [15].
The same relations apply along the y-axis.

3.3. Constraints in the optimization problem
The optimization hard constraints are similar to Herdt

et al. [15]. One of them forces the ZMP inside the
sustentation polygon at each timestep (4N constraints),
which translates into constraints on the ZMP position
(hence, on the controls) and on the footsteps positions.
The only difference here is that all the quantities are
expressed relatively to the frame {mk}. The same applies
for the constraints on the support foot position in the
horizon window (4m constraints). The sustentation polygon
orientation is driven by the flying foot orientation values
in the prediction window, which in turn induce orientation
values for the support foot. We denote these flying foot
orientation values as Ψk+1 ∈ ℝN . The 4N +4m constraints
above are stacked as

C(Ψk+1)Uk ≤ c.

Moreover, when optimizing orientations, we set con-
straints on the predicted values of the flying foot orientations
Ψk+1 and trunk orientationsΘk+1. This is reviewed in 4.2.2.

4. Solving the optimization problem
Hereafter, we describe and compare two approaches to

solve the optimization problem described above.

4.1. Linear approach
In this first approach, we assume: (1) that the predicted

trunk and feet angles Θk+1 and Ψk+1 are determined before
solving for the jerks in x and y (see Section 4.2) and (2) that
the scaling of the visual constraint matrix is done in such a
way as to induce linearity in the jerks (see Section 5). Then,
Eq. 5 takes a much simpler, linear form

m̂rl,� = al,� xmk
ml + bl,� ymk

ml + cl,�,
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where al,�, bl,�, cl,� are constant at k. We also get the vectors
m̂r
k+1,� that stack the predicted visual measurements in terms

of the stacked jerks applied from {mk}, X⃛k, Y⃛k, as

m̂r
k+1,� = Ak,�Xk+1 + Bk,�Yk+1 + Ck,�, (10)

with Ak,�, Bk,� ∈ ℝN×N diagonal matrices that depend
only on the known value of the pitch-to-go �k, for the
case of the homography matrix, and on �mk

ml (assumed as
pre-computed here, see Section 4.2) or �k, for the case of
the essential matrix. Ck,� ∈ ℝN×1 is a constant vector
that depends on the configuration of the target camera
at k ( xck cr , zck cr , �k) and on the angle �mk

ml , both pre-
determined in this case.

Like the position (see Eq. 9), the velocity and acceler-
ation of the CoM, and the position of the ZMP can be pre-
dicted in the horizon window as linear functions of the initial
state x̂k, ŷk and of the sequence of jerks to be applied:

Ẋk+1 = (ẋk+1,… , ẋk+N )T = Pvsx̂k + PvuX⃛k, (11)
Ẍk+1 = (ẍk+1,… , ẍk+N )T = Pasx̂k + PauX⃛k, (12)
Zx
k+1 = (z

x
k+1,… , zxk+N )

T = Pzsx̂k + PzuX⃛k. (13)

The matrices Pvs,Pas,Pzs ∈ ℝN×3 and Pvu,Pau,Pzu ∈
ℝN×N translate the integration processes [15] and apply
similarly along y. The reference ZMP positions are
expressed linearly in terms of the current and future
positions of the support foot (Xc

k, Y
c
k ) and (X

f
k , Y

f
k ):

Zx_ref
k+1 = Vck+1X

c
k + Vk+1X

f
k , (14)

with Vck+1 ∈ ℝN ,Vk+1 ∈ ℝN×m constant binary matrices
selecting when each position of a footstep is taken into
account in the horizon window.

Finally, Eqs. (3) and (10) are integrated into

min
Uk

�
2
‖X⃛k‖

2 + �
2
‖Y⃛k‖

2 +
�
2
‖Ẍk+1‖

2 +
�
2
‖Ÿk+1‖

2+

1
2

V
∑

�=1
��[m̄r

k+1,� − m̂r
k+1,�]

TW[m̄r
k+1,� − m̂r

k+1,�]+



2
‖Zx

k+1 −Z
x_ref
k+1 ‖

2 +


2
‖Zy

k+1 −Z
y_ref
k+1 ‖

2,

(15)
s.t. CUk ≤ c,

where
(

�, �, �1,… , �V , 

)

are weighting coefficients that
impose a desired behavior for each term, i.e., increasing
a weight has the effect of imposing a faster convergence
of the corresponding term. Compared to Eq. 1, we
included an additional term related to the acceleration
in order to reduce this dynamic effect, for instance at
the initial steps. Because of the linear expressions of
X⃛k, Ẍk+1, Ẋk+1, Xk+1, Zk+1, Z

x_ref
k+1 , m̂r

k+1,� in function of
the jerks and of the footsteps positions, the terms tominimize
are all quadratic in the control variables, and the constraints

Trunk angle

Flying foot angle

k s

Support foot angle

s
1 2

Figure 2: Interpolating the flying foot Ψk+1 (green) and trunk
angles Θk+1 (blue).

described in Section 3.3 are linear with fixedC and c. Hence,
Eq. 15 is a Quadratic Problem. Its canonical form is

min
Uk

1
2
UT
k QkUk + qTk Uk, (16)

s.t. CUk ≤ c,

with Qk, qk deduced from the previous developments. The
number of variables is 2N + 2m where m is the number
of support foot positions in the prediction window, and
the number of constraints is 4N + 4m. Although the
mathematical formulation differs, the final structure of the
optimization problem is the same as in Herdt et al. [15], so
there are no significant differences in the execution time for
the solver, for example.

4.2. Handling trunk and feet rotations
In what has been presented up to now, the rotations of the

support foot and of the trunk are assumed to be constant, and
determined before the translational displacement optimiza-
tion of Eq. 15. However, to drive the robot from one config-
uration to another, these rotations should be controlled in a
thorough way. Note that the visual constraint at k gives us
the angle �k required to reach the final configuration.

Hereafter, we describe two approaches to determine the
orientation values in the prediction window: by simple
interpolation and by optimization. Let Θk+1 (resp. Ψk+1) be
the vectors stacking the trunk (resp. flying foot) orientations.

4.2.1. Interpolation.
In this approach, we interpolate the trunk orientations

from 0 to �∗ (target orientation) within the horizon window:

Θk+1 = interp(0, �∗, N), (17)

where interp(a, b, n) is a simple linear interpolator of n
values in the interval [a, b]. The target orientation value �∗
we use here is obtained from the following expression:

�∗ = min(�k, �max), (18)

where �k is the pitch-to-go angle obtained from the visual
constraint at k and �max is a maximal angular displacement
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allowed during N steps. This parameter smooths the
trajectories of the orientations during a walking execution.

The flying foot orientation trajectories Ψk+1 are piece-
wise continuous between two support changes, so they are
interpolated linearly as illustrated in Fig. 2, i.e. as a linear
function starting at the current support foot orientation and
reaching the trunk orientation from Θk+1 at the next support
change (indices si in Fig. 2).

4.2.2. Orientation optimization.
Here, we use the same methodology proposed in Herdt

et al. [15] and optimize both, the orientation of the flying
foot and the orientation of the trunk. This is solved in the
prediction window as:

min
Θ⃛k+1 ,Ψ⃛k+1

�R
2
‖Θ⃛k+1‖2 +

�R
2
‖Ψ⃛k+1‖

2+

�R
2
‖Θk+1 − Θ∗‖2 +


R
2
‖Ψk+1 − Θ∗‖2, (19a)

s.t. |Θk+1 − Ψk+1| ≤ Δ,
Ψk+1 = g( ̂k, 'k, Ψ⃛k),

Θk+1 = Pps�̂k + PpuΘ⃛k, (19b)

where Θ⃛k+1 and Ψ⃛k+1 stack the jerks of the corresponding
orientations, Θ∗ is the reference value computed through
Eq. 17, that we want the orientations to be close to, and Δ a
vector of maximal allowed absolute differences between the
trunk and foot angles. The vectors �̂k and  ̂k are the initial
states that give the values, first, and second derivatives of the
orientations at k. Finally, g is a function (illustrated in green
in Fig. 2) of the flying foot initial state  ̂k, of the current
support foot angle 'k and of the optimized jerks. It can be
shown that it has the following form:

g( ̂k, 'k, Ψ⃛k) = Ψv( ̂k, 'k) + PpukΨ⃛k,

with Ψv( ̂k, 'k) ∈ ℝN×1 and Ppuk ∈ ℝN×N . We only
considerm = 2 footstep positions, for simplicity and because
this is the value used in the experiments. We have

Ψv( ̂k, 'k) =

⎡

⎢

⎢

⎢

⎣

P[0∶s1−1,0∶2]ps  ̂k
'kP

[0∶s2−s1−1,0∶0]
ps

(P[s1−1∶s1−1,0∶2]ps  ̂k)P
[0∶N−s2−1,0∶0]
ps

⎤

⎥

⎥

⎥

⎦

.

The matrix Ppuk is not detailed here for lack of space, but
it can be built as a matrix of 3 × 3 blocks where the blocks
are taken from Ppu and Pps. The notation A[a∶b,c∶d]pu selects
a specific block indicated by the rows (resp. columns) range
[a, b] (resp. [c, d]) of the matrix A. Here, s1 and s2 are the
instants of the first and second change of the support foot
within the prediction window.

The orientation of the support foot is determined from
the orientation of the flying foot. As illustrated in Fig. 2,
this orientation is assigned when the flying foot touches the
floor at each support switch. The next flying foot maintains
the orientation of the previous support foot.

Formulated this way, the problem has, again, the
structure of a QP problem. Note that all the values are

defined relatively to {mk}, the reference frame of the trunk
at k. Further details on this step are given in Section 6.

4.3. Non-linear approach
In this second approach, we extend the model predictive

control through piecewise-constant jerk values to both
positions and orientations and incorporate the orientation
jerks Θ⃛k+1 and Ψ⃛k+1 in the same objective function as shown
above. We use a non-linear solver to handle the non-linear
nature of the problem. The number of variables is now
4N + 2m. We use a non-linear least square formulation to
solve the problem, which has the form:

min
Uk

1
2
‖f

(

Uk
)

‖

2
2, (20a)

s.t. c ≤ c(Uk) ≤ c. (20b)

To solve this problem, we use Sequential Quadratic
Programming (SQP), that quadratizes the objective function
and linearizes the constraints around a reference value U (0)k .
The method iterates Uk = U (0)k + ΔUk where ΔUk is the
solution of the QP obtained by linearizing f in Eq. 20a and
c in Eq. 20b:

min
ΔUk

1
2
‖f

(

U (0)
k

)

+
(

∇Ukf
(

U (0)
k

))T
ΔUk‖22, (21a)

s.t. c ≤ c
(

U (0)
k

)

+
(

∇Ukc
(

U (0)
k

))T
ΔUk ≤ c. (21b)

Reformulating Eq. 21a as a QP in canonical form

min
ΔUk

1
2
ΔUT

k Q̃kΔUk + p̃TkΔUk, (22a)

s.t. c̃k ≤ C̃kΔUk ≤ c̃k, (22b)

with
Q̃k = ∇Ukf (U

(0)
k )(∇Ukf (U

(0)
k ))T ,

p̃k = ∇Ukf (U
(0)
k )f (U (0)k ),

C̃k = (∇Ukc(U
(0)
k ))T ,

c̃k = c − c(U (0)k ),
c̃k = c − c(U (0)k ).

Our final optimization problem is the following one:

min
Uk

�
2
‖X⃛k‖

2 + �
2
‖Y⃛k‖

2 +
�
2
‖Ẍk+1‖

2 +
�
2
‖Ÿk+1‖

2+

1
2

V
∑

�=1
��[m̄r

k+1,� − m̂r
k+1,�(Θk+1)]

TW[m̄r
k+1,� − m̂r

k+1,�(Θk+1)]+



2
‖Zx

k+1 −Z
x_ref
k+1 ‖

2 +


2
‖Zy

k+1 −Z
y_ref
k+1 ‖

2+

�R
2
‖Θ⃛k‖2 +

�R
2
‖Ψ⃛k‖2+

�R
2
‖Θk+1 − Θ∗‖2 +


R
2
‖Ψk+1 − Θ∗‖2,

s.t. c ≤ c(Uk) ≤ c, (23)

where Uk = ((X⃛k)T , (X
f
k )

T , (Y⃛k)T , (Y
f
k )

T , (Ψ⃛k)T , (Θ⃛k)T )T , and
where

(

�, �, ��, 
, �R, �R, 
R
)

are weighting factors. The
vectors Ψ⃛k ∈ ℝN×1 and Θ⃛k ∈ ℝN×1 are the values of the
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piecewise-constant jerks of the feet and trunk orientations,
respectively. The vector Θ∗ ∈ ℝN×1 is a vector of reference
orientations. The remaining variables are X⃛k, Y⃛k ∈ ℝN×1,
andXf

k , Y
f
k ∈ ℝm×1, whereN is the prediction horizon and

m the number of predicted footsteps.
In this case, we will show that all predicted visual

measurements can be expressedwith the following structure:

m̂r
k+1,� = Ak,�Xk+1 + Bk,�Yk+1 + Ck,�+

��(Θk+1,Φk) + ��(Φk), (24)

where Ak,�, Bk,� ∈ ℝN×N are diagonal matrices with
each diagonal term depending on the known pitch-to-go
angle �k and on �mk

ml (variable in this approach). Ck,� ∈
ℝN×1 is a constant vector that depends on the configuration
of the target camera at k, i.e., ( xck cr , zck cr , �k). The
nonlinear function ��(Θk+1,Φk) ∈ ℝN×1 depends on the
predicted values of the trunk orientation Θk+1 and on Φk =
�k(1, ..., 1)T . Finally, ��(Φk) ∈ ℝN×1 is a nonlinear in Φk.

We recall that the foot/trunk predicted values are
integrated from their corresponding jerks through

Θk+1 = Pps�̂k + PpuΘ⃛k, Ψk+1 = Ψv + PpukΨ⃛k.

We use SQP to solve this Non-linear Model Predictive
Control (NMPC) in each iteration k. The computational time
can be increased due to the iterations it takes to solve each
SQP. If the SQP is initialized carefully

(

U (0)k
)

, then a simple
QP can be solved. More details will be given in Section 6.1.

5. Visual constraints and their estimation
The two visual constraints used in this work relate pairs

of views sharing some part of their field of view.
The homographymatrixHr

k gives an explicit mapping of
the points from the current image k to the reference image
r, provided that the points are projections of a planar scene.
It can be computed from the pair of current and reference
images with 4 point correspondences at minimum [14].

We will reason in terms of the normalized homography
Hr
k relating these two images as shown in Fig. 3. By

“normalized”, wemean that, ifK are the intrinsic parameters
of the camera (supposed to be known), and if the image-to-
image homography between r and k is r

k, then Hr
k =

K−1r
kK. The normalized homography at frame k can be

decomposed as:

Hr
k =

(

Rcr ck

)

(

I − tck cr
nT
d

)

, (25)

where Rcr ck is the rotation matrix mapping points from the
camera frame {ck} to points in the reference frame {cr}, and
tck cr is the position of the reference camera frame {cr} in

the current camera frame {ck}. The underlying plane has
an equation nT p + d = 0 in the camera frame {ck}. This
decomposition is not unique as it is not possible a priori to
disambiguate the scale factor in tck cr and d.

Current Target

Figure 3: The homography matrix: two-view geometry in the
case of a planar scene.

Features
points in a plane

Figure 4: Notations used for the relative pose between the
current frame ck and the reference frame cr for locomotion
based on homography.

The essential matrix Erk is a more general visual con-
straint that does not require the scene to be planar. It en-
codes the epipolar geometry and relates corresponding im-
age points pr, pk between views through prTK−TErkK

−1pk =
0. It can be computed from the current and reference images
with 7 point correspondences at minimum [14]. However,
its computation becomes ill-posed when the current image
gets close to the reference image.

The essential matrix at frame k can be decomposed as:

Erk ∝ Rcr ck

(

tck cr
)

× . (26)

Again, this decomposition is not unique, as the scale of
tck cr cannot be recovered.

5.1. Locomotion based on the homography
The homography matrix was introduced for visual

servoing in 6 degrees of freedom in Benhimane and Malis
[3] by using the complete matrix for the errors computation.
It has been shown in López-Nicolás et al. [20] and Delfin
et al. [6] that if the robotic system is subject to motion
constraints, like nonholonomy or planar motion, only a few
elements of the homography are enough to compute the
visual errors. This idea is exploited here.

We develop Eq. 25 by considering the planar motion
assumption and by normalizing the matrix by element (2, 2),
given that this element is constant and different from zero
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with planar motion. We get the following homography at l:

Hr
l =

⎡

⎢

⎢

⎣

Hr
l,11 Hr

l,12 Hr
l,13

0 1 0
Hr
l,31 Hr

l,32 Hr
l,33

⎤

⎥

⎥

⎦

. (27)

Let us describe the normal vector to the plane expressed
in the frame {ml}, at time l, as nl = ( nl x, n

l
y, n
l
z)
T .

Similarly, the distance is denoted as dl . Then the theoretical
values of the elements of the homography Hr

l , using the
notation depicted in Fig. 4, are the following:

Hr
l,11 = −

nl x

dl
(

xmk
ml sin�k + ymk

ml cos�k
)

+

nl x

dl
(

− xck
cr cos�k + zck

cr sin�k
)

+ cos
(

�k + �mk
ml

)

,

Hr
l,12 = −

nl y

dl
(

xmk
ml sin�k + ymk

ml cos�k
)

+

nl y

dl
(

− xck
cr cos�k + zck

cr sin�k
)

,

Hr
l,13 = −

nl z

dl
(

xmk
ml sin�k + ymk

ml cos�k
)

+

nl z

dl
(

− xck
cr cos�k + zck

cr sin�k
)

− sin
(

�k + �mk
ml

)

,

Hr
l,21 =0, Hr

l,22 = 1, Hr
l,23 = 0

Hr
l,31 =

nl x

dl
(

xmk
ml cos�k − ymk

ml sin�k
)

−

nl x

dl
(

xck
cr sin�k + zck

cr cos�k
)

+ sin
(

�k + �mk
ml

)

,

Hr
l,32 =

nl y

dl
(

xmk
ml cos�k − ymk

ml sin�k
)

+

nl y

dl
(

− xck
cr sin�k − zck

cr cos�k
)

,

Hr
l,33 =

nl z

dl
(

xmk
ml cos�k − ymk

ml sin�k
)

−

nl z

dl
(

xck
cr sin�k + zck

cr cos�k
)

+ cos
(

�k + �mk
ml

)

. (28)

Given the rotation Rmk
ml undergone by the CoM

between {mk} and {ml}, we deduce the normal nl from
nl = ( Rmk

ml )
T nk , which we emphasize is a function of

�mk
ml . We can write it as:

nl =
⎡

⎢

⎢

⎣

nk x cos( �mk
ml ) + nk z sin( �mk

ml )
nk y

− nk x sin( �mk
ml ) + nk z cos( �mk

ml )

⎤

⎥

⎥

⎦

.

We use the previous expression in Eq. 28 to express
the homography elements as functions of the optimization
variables.

The normalized homography of Eq. 25 should be
equated to H∗ = I3×3 so as to reach the configuration
corresponding to r. We use some of the matrix elements
as visual measurements, namely the element 11 (denoted by
� = 1 in the following), the element 12 (denoted by � = 2),
the element 13 (denoted by � = 3), the element 31 (denoted
by � = 4), the element 32 (denoted by � = 5), and the
element 33 (denoted by � = 6). Based on Eq. 25, the selected

homography elements are written as specified by Eq. 7. For
the sake of clarity, we will only give details for � = 1 and
emphasize the dependency on �mk

ml (relative orientation of
the trunk/CoMwith respect to its orientation in k). The other
cases are similar. For l > k,

ℎrl,1 =
nl x( �mk

ml )

dl
(

− xmk
ml sin�k − ymk

ml cos�k
)

+

nl x( �mk
ml )

dl
(

− xck cr cos�k + zck cr sin�k
)

+

cos
(

�mk
ml + �k

)

,

which can be stacked to give the form for ĥrk,1 presented in
Eq. 10 for the linear approach or in Eq. 24 for the non-linear
approach, as follows:

ĥrk,1 =
⎡

⎢

⎢

⎢

⎣

− n1 x
d1
sin�k … 0
⋮ ⋱ ⋮

0 … − nN x
dN
sin�k

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

xmk
mk+1
⋮
xmk
mk+N

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

− n1 x
d1
cos�k … 0
⋮ ⋱ ⋮

0 … − nN x
dN
cos�k

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

ymk
mk+1
⋮
ymk
mk+N

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

n1 x
d1

(

− xck cr cos�k + zck cr sin�k
)

⋮
nN x
dN

(

− xck cr cos�k + zck cr sin�k
)

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎣

cos
(

�mk
mk+1 + �k

)

⋮
cos

(

�mk
mk+N + �k

)

⎤

⎥

⎥

⎦

. (29)

where the elements nl x, n
l
y, n
l
z have been described above.

We omitted their dependency on �mk
mk+l for clarity.

The translation elements xmk
ml , ymk

ml of Tmk
ml are

expressed in terms of the jerk vectors to be applied in the
prediction window, since this transformation encodes the
displacement induced by these controls from k to l. In the
linear case (Section 4.1), all �mk

ml are pre-determined before
this step so that the predictive equations are linear in function
of the jerks, with the last two terms of Eq. 29 being Ck,1,

ĥrk,1 = Ak,1Xk+1 + Bk,1Yk+1 + Ck,1. (30)

In the non-linear case (Section 4.3), Rmk
ml depends on

the orientation jerks Θ⃛k, which makes Eq. 29 a non-linear
predictive model,

ĥrk,1 = Ak,1Xk+1 + Bk,1Yk+1 + �1(Θk+1,Φk) + �1(Φk).
(31)

One problem arises with the distance to the plane dl :
It depends on the displacement from k to l, in a way that
would make the formulation of the predicted coefficients hrl,�
non-linear in the jerks. However, we suppose that the plane
is far enough with respect to the translation done during an
iteration, hence we assume dl ≈ dk .
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Current

Virtual target

Target

Figure 5: The essential matrix: two-view geometry in the
case of non planar scenes, with a virtual target used to avoid
degeneracies.

Features
points

Figure 6: Notations used for the displacements between the
current frame ck and the reference frame cr for locomotion
based on the essential matrix.

5.2. Locomotion based on the essential matrix
The epipolar geometry has been exploited for visual

servoing, for instance in Rives [27], Becerra et al. [2].
In particular, it has been shown that some elements
of the essential matrix are enough to solve a visual
servoing problem for nonholonomic robots undergoing
planar motion [21, 19]. However, the estimation of these
visual measurements directly from images is ill-conditioned
when the relative distance between the current and target
positions is too short, which is known as the short-baseline
problem. To overcome this problem, it has been proposed
the use of a virtual target image by López-Nicolás et al.
[21]. This virtual image is built by using the epipolar
constraint and an essential matrix Evk that considers a
vertical displacement of the camera position in the target
configuration. The following projection is used to generate
the virtual target images:

pv = (Evk)
T pk × (Evr )

T pr, (32)

where pk and pr are corresponding points in the current
image k and target image r, respectively. Then, the visual
measurements are estimated without degeneration issues
from the virtual target points and the corresponding points
in the current image k. The principle is illustrated in Fig. 5
and the reader can refer to López-Nicolás et al. [21] for the
details about the estimation of the essential matrix without
degeneracies for planar motion.

With the notations of Fig. 6, the theoretical values of
the elements of the essential matrix Evl normalized by the
element 13 are:

Evl,11 = − tan
(

�k + �mk
ml

)

,

Evl,12 =
( xck

cr + ymk
ml ) sin �mk

ml + ( xmk
ml − zck

cr ) cos �mk
ml

yck
cv cos

(

�k + �mk
ml

) ,

Evl,13 =1,

Evl,21 =
( xck

cr + ymk
ml ) sin�k + ( zck

cr − xmk
ml ) cos�k

yck
cv cos

(

�k + �mk
ml

) ,

Evl,22 =0,

Evl,23 =
−( xck

cr + ymk
ml ) cos�k + ( zck

cr − xmk
ml ) sin�k

yck
cv cos

(

�k + �mk
ml

) ,

Evl,31 = − 1,

Evl,32 =
( xck

cr + ymk
ml ) cos �mk

ml + ( zck
cr − xmk

ml ) sin �mk
ml

yck
cv cos

(

�k + �mk
ml

) ,

Evl,33 = − tan
(

�k + �mk
ml

)

, (33)

where yck cv is the predefined height of the virtual camera.
The target essential matrix to reach the robot configura-

tion at the reference image r is the following:

E∗ =
⎡

⎢

⎢

⎣

0 0 1
0 0 0
−1 0 0

⎤

⎥

⎥

⎦

. (34)

Considering the planar motion assumption and the
dependency on the optimization variables, we have four
useful elements of the essential matrix, namely the element
12 (denoted by � = 1 in the following), the element 21
(denoted by � = 2), the element 23 (denoted by � = 3) and
the element 32 (denoted by � = 4). For the shake of clarity,
we only present the case of � = 1:

erl,1 =
xmk
ml cos �mk

ml

yck cv cos
(

�k + �mk
ml

)
+

ymk
ml sin �mk

ml

yck cv cos
(

�k + �mk
ml

)
+

xck cr sin �mk
ml − zck cr cos �mk

ml

yck cv cos
(

�k + �mk
ml

)
.

Again, these predicted elements can be stacked to give
the form mentioned in Eq. 24, as êrk,1:

⎡

⎢

⎢

⎢

⎢

⎢

⎣

cos
(

�
mk

mk+1

)

y
ck

cv cos
(

�k+ �
mk

mk+1

) … 0

⋮ ⋱ ⋮

0 …
cos

(

�
mk

mk+N

)

y
ck

cv cos
(

�k+ �
mk

mk+N

)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

xmk
mk+1
⋮
xmk
mk+N

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎣

sin
(

�
mk

mk+1

)

y
ck

cv cos
(

�k+ �
mk

mk+1

) … 0

⋮ ⋱ ⋮

0 …
sin

(

�
mk

mk+N

)

y
ck

cv cos
(

�k+ �
mk

mk+N

)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

ymk
mk+1
⋮
ymk
mk+N

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎣

x
ck

cr sin
(

�
mk

mk+1

)

− z
ck

cr cos
(

�
mk

mk+1

)

y
ck

cv cos
(

�k+ �
mk

mk+1

)

⋮
x

ck
cr sin

(

�
mk

mk+N

)

− z
ck

cr cos
(

�
mk

mk+N

)

y
ck

cv cos
(

�k+ �
mk

mk+1

)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Noé G. Aldana-Murillo et al.: Preprint submitted to Elsevier Page 9 of 25



Humanoid Locomotion from Visual Constraints

Recall that �mk
ml is precomputed in the linear approach

of Section 4.1. Hence, we can express the stacked predicted
elements as:

êrk,1 = Ak,1Xk+1 + Bk,1Yk+1 + Ck,1, (35)

and similarly for all the elements. In the nonlinear
formulation of Section 4.3, the example for � = 1 can be
written as:

êrk,1 =Ak,1Xk+1 + Bk,1Yk+1 + �1(Θk+1,Φk). (36)

In the case of the essential matrix, all the elements have
the same form as the example above.

6. Simulation results
The results in this section are divided in three parts.

First, single visual servoing tasks are presented, where only
one reference image is considered. In the second part, results
of an extension of our approach to follow a visual path using
a sequence of reference images are given. Finally, in a third
part, results obtained on a dynamic simulator are analyzed.

6.1. Implementation details
All the simulations presented hereafter have been gener-

ated in C++ and run on an Intel 2.50 GHz i7 Core proces-
sor. We have used the OPENCV [4] library for most of the
required computer vision functions, in particular the estima-
tion and decomposition of the homography matrix and the
essential matrix. We have also used the QPOASES [12] li-
brary as a solver for the QPs to solve. This is an open source
solver in C++ that implements an online active sets strategy.

In all cases, we have supposed that the calibration matrix
K of the camera is known.

6.2. Simulations of single visual servoing tasks
In the simulations described in this section, we have

considered the physical parameters of a HRP-2 humanoid
robot [18]. The initial pose of the CoM in the motion plane
is always taken as q0 = (0m, 0m, 0 deg), while the final pose
is denoted by qr. In the reported results, the task termination
condition is given by a maximal number of iterations (which
is specified in each case). The following objective functions
weights are kept constant as � = 1e−4, 
 = 10, � = 0.025,
�R = 0.01, �R = 100 and 
R = 100.

6.2.1. Homography-based visual servoing.
The linear approach for homography-based visual pre-

dictive control, proposed in Sections 4.1 and 5.1, is evalu-
ated here for different configurations of visual servoing tasks
with a single reference image r. In all the experiments, the
reference and the current images r and k are simulated
by projecting a set of 3D points that lie in a plane. Gaus-
sian noise was added to the projected points with a standard
deviation of 2 pixels. The homography is computed based
on the projected points with the DLT algorithm [14]. We
use the homography decomposition algorithm proposed in

Triggs [32] to compute the predicted elements ℎrl,1, as ex-
plained in Section 5.1. The distance from the target config-
uration to the plane where the points lie was 4m.

The first test, shown in Fig. 7, corresponds to an
experiment to reach the desired pose qr = (4m, 2m, 30 deg).
In Fig. 7(a), the footsteps, altogether with the CoM and
ZMP evolution, are shown in the x, y plane. With the red
rectangle, we depict the desired pose qr, while the cyan
footprints give the last configuration of the robot. The
desired pose is reached with a good final accuracy in both
position and orientation after around 200 iterations. As it
can be seen, a smooth trajectory for the CoM is obtained
without having to model the sway motion induced in the
camera by the locomotion. In Fig. 7(b), the image points
paths are shown in the image plane. We have included
the evolution of the controlled elements of the homography
matrix (Fig. 7(c)), with both the one-step-ahead predicted
values from the MPC (in dashed lines) and the observed
(measured) values estimated from the point matches. Note
that the elements ℎ12 and ℎ32 are almost zero through the
experiment. This is because we use a vertical plane and
the components nl y (see Eq. 28) are almost null. The
CoM velocities in the local frame mk are shown in the
Fig. 7(d). In the first iterations, the angular velocity becomes
saturated while trying to reach the reference orientation,
because of the constraint on maximal angular displacement
in the optimization problem of Eq. 19a. Fig. 7(e) shows
the optimized objective function values for the translation
component of Eq. 15. The value of the weights of the visual
features are �1 = 3, �2 = 1, �3 = 3, �4 = 2, �5 = 1, �6 = 1.
We will modify these values in the subsequent experiments.

Using feedback of a visual constraint instead of specific
points as in Garcia et al. [13] provides robustness of our
approach to visual occlusions. This is shown in Fig. 8,
where we present the results of an experiment similar to
the previous one in which half of the image points are
occluded at the middle of the experiment, for the rest of
the iterations. Occluded points are depicted in black in
Fig. 8(b). As it can be seen, not only the goal is reached with
good accuracy but also the occlusion effect is not perceptible
on the velocity profiles, which shows the robustness of the
approach for these cases and motivates the use of multiple
view constraints. In Fig. 8(e), we illustrate the orientation
control process, implemented as explained in Section 4.2.

As expected, the weighting coefficients �� related to
the visual errors are important to determine the transient
response and the accuracy to reach the desired robot
position. We report the effect of varying the weights �3
and �6 related to the sagittal visual error in Fig. 9, to reach
the pose qr = (5m, 1.82m, 20 deg), while the other weights
are kept constant. In most cases, the robot reaches the
desired pose, but the path toward the target is significantly
different. Taken into account this results, the values of the
visual weights chosen for the next experiments were �1 = 3,
�2 = 1, �3 = 3, �4 = 2, �5 = 1, �6 = 0.5 since they
provide the best accuracy to reach the target (Fig. 9(d)).

Fig. 10 compares humanoid walks to reach qr =
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(a) Footsteps and paths of the robot CoM and ZMP in the x,y plane.
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(b) Evolution of the features in the image.
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(c) Evolution of the homography elements.
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(d) Evolution of the velocities in frame mk.

0 50 100 150 200 250 300
Iterations

−80

−70

−60

−50

−40

−30

−20

−10

0

Tr
an

sl
at

io
n

O
bj

ec
tiv

e
fu

nc
tio

n

(e) Translation objective function (Eq. 15).

Figure 7: Simulation (300 iterations) of a single visual servoing task with separate position and orientation control for the
homography-based locomotion linear setup (Sections 4.1 and 5.1). The desired pose is qr = (4m, 2m, 30 deg).

(2m, 0.8m, 20 deg) for three different ways of evaluating the
distance d to the plane used in the predicted homography
elements (see Eq. 25). In the first case, d is lower to the real
value, while in the second case, it is higher. In both cases,
d is kept constant for the duration of the experiment. In the
third case, d is first fixed to the real value and then updated
along the trajectory, at the beginning of each iteration k,
according to the robot motion (i.e., we integrate the value of
d used in k− 1 and the motion undergone by the robot from
k − 1 to k, up to time step l). In principle, this should give
a better approximation of d. However, as seen in Fig. 10,
there is no significant performance differences between the
three cases, so it is reasonable (and more computationally
efficient) to set d as a constant value in the horizon window.

In Fig. 11, we have tested the robustness of the approach
against an external transient perturbation introduced as an
additional acceleration to the CoM. The goal is qr =
(2.5m,−1.0m,−30 deg). Since we proposed to include a
term penalizing high accelerations in Eq. 15, the effect
of including it or not is also tested. The perturbation
direction and the instant of its application are depicted in
the left part of the figure. In both cases (with or without
the acceleration term) the humanoid reaches effectively the
target pose regardless the perturbation. However, the ZMP
has a smoother behavior when the acceleration is penalized
(top row of Fig. 11). We have observed that this acceleration
term is useful at the beginning of visual servoing tasks,

when large visual errors may cause the ZMP to be very
close to the footprint boundaries. Another evaluation of
the acceleration term in Eq. 15 is shown in Fig. 612. We
repeat the experiment shown in Fig. 7, where the final
desired pose is qr = (4m, 2m, 30 deg), with and without
the acceleration term. In both cases, the humanoid robot
reaches the desired pose, however, with the acceleration
penalization, the velocities are lower and the trajectories of
the CoM and ZMP are smoother.

Figure 13 shows a walking experiment where all the
visual features were occluded (depicted through black lines)
from iteration 150 and during a relatively long period of
other 150 iterations. This means that the robot is blind
during iterations 150 ≤ k ≤ 300 and a homography cannot
be computed. Instead, the controller uses the homography
predicted at k− 1 for time k as our new visual features. The
desired configuration is qr = (4m, 2m, 30 deg). As it can be
seen, the robot reaches the desired pose after an overshooting
in position and comes back when the visual features become
available again at iteration 300. Between iterations 150 and
300, the robot uses only its predictions, which results in
accumulated drift, visible in Fig. 13(c). At iteration 300,
the drift between the predicted and ground truth values for
the visual features shrinks again. This drift also occurs in
the angle estimations since the reference angle values in
Fig. 13(e) are estimated based on the decomposition of the
predicted homographies, introducing a large drift.
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(a) Footsteps and paths of the robot CoM and ZMP in the x,y plane.
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(b) Evolution of the features in the image. Black
trajectories indicate completely occluded features.
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(c) Evolution of the homography elements.
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(d) Evolution of the velocities in frame mk.
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(e) Evolution of the trunk, flying foot and support
foot orientation (in the global frame).

Figure 8: Simulation (300 iterations) of a single visual servoing task with separate position and orientation control for the
homography-based locomotion linear setup (Sections 4.1 and 5.1), in presence of partial occlusion (depicted as black lines
in 8(b)). The desired pose is qr = (4m, 2m, 30 deg).

A final evaluation of the homography-based locomotion
under camera modeling errors is presented in Fig. 14. In
particular, we considered imprecise camera intrinsic param-
eters. Recall that the predicted values of the homography
elements are computed based on the decomposition of the
estimated homographies from point matches, which uses the
matrix of intrinsic parametersK. The real parameters of the
camera are �u = 391.59, �v = 391.59, u0 = 338.82 and
v0 = 274.59. We perturbed these parameters by adding
Gaussian noise with standard deviation proportional to the
parameters values (30% for the focal length and 25% for the
principal point), along a series of 200 simulations. The de-
sired configuration is qr = (4.5m,−1.5m,−20 deg). On the
left of Fig. 14, we depict the distribution of the final poses for
the case of using the real camera parameters (but with vari-
ations due to image noise and selection of reference points).
On the right of the figure, considering uncertain camera pa-
rameters, one can see that the robot reaches the desired pose
rather precisely in spite of the introduced inaccuracies, with
a bounded variance on the final position.

6.2.2. Essential matrix-based visual servoing.
In this case, the simulated image features are generated

by projecting a set of 3D points, randomly distributed in

the 3D space in front of the robot, onto the robot camera.
As explained in Section 5.2, we follow the virtual target
image approach described in López-Nicolás et al. [21] to
avoid the degeneracy problem of the fundamental matrix
estimation close to the goal configuration. The virtual target
(consisting in a set of image points) is only generated at the
first iteration and is kept as a constant set of reference image
points during the walk. At each iteration, we estimate the
fundamental matrix between the virtual image points and
the current image points by using the 8-point algorithm.
Then, we recover the essential matrix and use the algorithm
proposed in Ma et al. [22] to decompose it and compute its
predicted elements with Eqs. 33. The value of the height of
the virtual image

(

yck cv

)

was set to 6 meters.
In Fig. 15, the scheme based on the essential matrix

is evaluated and point features occlusion is included. The
desired pose is qr = (4m, 1.5m, 30 deg). We depict
the same quantities as shown in previous experiments,
and, in addition, we depict the virtual reference features
in Fig. 15(b) (in green). As it can be seen, the robot
is correctly driven to its target and the essential matrix
elements converge to their target values. This behavior is
obtained even though all the visual features are occluded
between iterations 50 and 150. During this total occlusion,
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(c) �3 = 10, �6 = 1
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(d) �3 = 3, �6 = 0.5
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(e) �3 = 3, �6 = 3
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(f) �3 = 3, �6 = 8

Figure 9: Simulation (400 iterations) of a single visual servoing task under the homography-based locomotion linear setup
(Sections 4.1 and 5.1) for different weights �3 and �6 in the visual term of Eq. 15. �2 = �5 = 1, �1 = 3 and �4 = 2. Footsteps and
evolution of the CoM and ZMP in the x,y plane are shown. The desired pose is qr = (5m, 1.82m, 20 deg).

the controller uses the essential matrix elements predicted
at k − 1 for time k as visual features, since an essential
matrix cannot be computed from the images. Because of
the accumulated drift, as can be seen in Fig. 15(c), the
robot walks faster to compensate the drift at iteration 150 and
finally reaches the desired pose. The values of the weights on
visual errors were �1 = 4.0, �2 = 3.0, �3 = 8.0 and �4 = 1.0
(we recall that in this case only 4 elements are used).

In Fig. 16, we compare three humanoid walks to reach
the pose qr = (4.5m,−1.5m,−20 deg), for different values
of the height of the virtual image, yck cv . In the first case,
yck cv is set to 6m, in the second case, to 7m, and in the third

case, to 9m. As it can be seen, for the first and third cases,
the final position has a small lateral error. This is explained
by the fact that varying the value yck cv is equivalent to
modifying the weight coefficients of the visual term in Eq. 3.

We have also tested the robustness of the approach
based on the essential matrix against an external transient
perturbation and it is illustrate in Fig. 17with andwithout the
acceleration term in Eq. 15. The objective is to reach qr =
(3.0m, 1.0m, 20 deg). Similarly as in the homography-based
approach, in spite of the perturbation, in both cases, with
or without the acceleration term (top and bottom figures),
the humanoid effectively reaches the target pose. It is clear
in the plots to the right in Fig. 17 that the magnitude of
the accelerations is smaller and the evolution of them is
smoother when the acceleration term is used.

Finally, we have evaluated essential matrix-based loco-
motion under modeling errors. We introduce uncertain val-
ues in the camera intrinsic parameters K, which are used to
decompose the essential matrix and compute the predicted
values for the MPC scheme. In Fig. 18, we see that in spite
of moderate errors on K (as in the homography case, 30%

of standard deviation for focal length, 25% for the principal
point), the desired pose can still be reached successfully; the
variance on the final position (≈ 20cm) is a bit larger than in
the homography case, but still acceptable.

6.2.3. Evaluation of the non-linear approach.
The nonlinear formulation presented in Section 4.3

uses an analytical linearization of the constraints and a
quadratization of the objective function to obtain a standard
QP with linear constraints. We evaluated two different ways
to define the linearization/quadratization point in the SQP at
time k: either we simply set U (0)k to zero

U (0)k = 0, (37)

or we adapt the controls Uk−1 computed at k − 1,

U (0)k = �(Uk−1), (38)

where the function � “shifts” the previous solution by one
time unit to the left (this is effectively a shifting for the jerks
in x and y but it is a bit trickier for the other parts of the
state). We compare the linear approach versus the non-linear
approach in a series of experiments using the homography-
based visual servoing. The objective to reach is the position
(6.0m, 3.46m) and the desired angles is varied from 0 to 50
degrees in 5-degree increments. The results are presented
in Table 1 (average final position errors), Table 3 (average
computational times) and Table 2 (average final orientation
errors). The results presented are average values over 100
experiments. As it can be seen, the final position errors are
significantly reduced by using the non-linear approach and
even more when using the initialization strategy of Eq. 38.
The error in orientation has similar values for all three cases,
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Figure 10: Simulation (200 iterations) of a single visual servoing task under the homography-based locomotion linear setup
(Sections 4.1 and 5.1) with two different settings for estimating the distance d to the plane generating the homography. The
desired pose is qr = (2m, 0.8m, 20 deg) and the real distance to the plane is 4 meters. Top row: d is fixed to 3 meters along the
walk. Middle row: d is fixed to 5 meters. Bottom row: d is set to 4 meters and is updated along the horizon window using the
robot self-motion information.

while computational times are higher with the non-linear
approaches (but keep in mind that in the linear approach,
another QP has to be solved, the one of Eq. 19a). Finally,
in Fig. 19, we depict the resulting distributions of the final
positions for these three cases, when the desired orientation
is set to 45 deg. In all these cases, the final variance on the
position is comparable to the one observed in Fig. 14.

6.3. Applications to visual path-following.
In this section, we extend the two-images method

described above to use it with a set of images as consecutive
targets, which is what we call a visual path. This

strategy allows the robot to reach its final goal by going to
intermediate reference images first [26]. We suppose that
such a visual path is given, and we aim at controlling the
robot to follow this path. We present two strategies to do it.

6.3.1. Weighted visual errors averages.
In this first approach, we extend the VPC term in Eq.

15 to handle multiple reference images rk(i), where the
function rk(i) specifies, at time k, which is the i-th reference
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Figure 11: Simulation (400 iterations) of a single visual servoing task with a transient perturbation, using the homography-based
locomotion linear setup (Sections 4.1 and 5.1). The desired pose is qr = (2.5m,−1.0m,−30 deg). Top row: the acceleration term
in Eq. 15 is included. Bottom row: this term is not included. Left column: Footsteps and paths of the robot CoM and ZMP in
the x,y plane. The instant and orientation of the perturbation are indicated by the black arrow. Right column: accelerations.
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Figure 12: Simulation (300 iterations) of a single visual servoing task comparing the effect of including the acceleration term,
with the homography-based locomotion linear setup (Sections 4.1 and 5.1). The desired pose is qr = (4m, 2m, 30 deg). Top row:
the acceleration term in Eq. 15 is not included. Bottom row: the acceleration term is included. Left column: footsteps and
paths of the robot CoM and ZMP in the x,y plane. Right column: evolution of the velocities in frame mk.
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(a) Footsteps and paths of the robot CoM and ZMP in the x,y plane.
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(b) The portion of the black trajectories corresponds to the period of
total occlusion of the visual features.
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(c) Evolution of the homography elements.
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(d) Evolution of the velocities in frame mk.
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(e) Evolution of the trunk, flying foot and support
foot orientation (in the global frame).

Figure 13: Simulation (350 iterations) of a single visual servoing task with separate position and orientation control for the
homography-based locomotion linear setup (Sections 4.1 and 5.1), including a total occlusion of the visual features between
iterations 150 and 300. The desired pose is qr = (4m, 2m, 30 deg).
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Figure 14: 200 simulations (400 iterations for each simulation) of a single visual servoing task comparing the effect of imprecise
camera intrinsic parameters (30% error on the focal length, 25% error on the principal point), with the homography-based
locomotion linear setup (Sections 4.1 and 5.1). The desired pose is qr = (4.5m,−1.5m,−20 deg). Left: real camera intrinsic
parameters. Right: imprecise camera intrinsic parameters.

image in the visual path to follow. It is written as:

1
2

NI (k)
∑

i=1
�(i)

[

M
∑

�=1
��[h̄

rk(i)
k,� − ĥrk(i)k,� ]

TW[h̄rk(i)k,� − ĥrk(i)k,� ]

]

, (39)

where NI (k) is the number of images remaining in the
visual path to be followed from k. This is a weighted sum of
the visual errors for all the reference images rk(i), where
�(i) is a function of the image index i. The weights �(i)
are positive and sum to one. We select them empirically to
give priority to the closest reference images, with smaller
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(a) Footsteps and paths of the robot CoM and ZMP in the x,y plane.
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(b) Evolution of the features in the image.
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(c) Evolution of the essential matrix elements.
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Figure 15: Simulation (400 iterations) of a single visual servoing task with separate position and orientation control for the
essential matrix-based locomotion linear setup (Sections 4.1 and 5.2), including a total occlusion of the visual features between
iterations 50 and 150. The desired posed is qr = (4m, 1.5m, 30 deg).

Table 1
Final CoM error to the desired position in meters.

Desired
orientation

(deg)

Linear
approach

Non-linear
approach with

Eq. 37

Non-linear
approach with

Eq. 38
0 0.61 0.21 0.15
5 0.47 0.20 0.12
10 0.43 0.20 0.13
15 0.43 0.20 0.12
20 0.41 0.20 0.12
25 0.40 0.19 0.12
30 0.13 0.25 0.17
35 0.29 0.25 0.17
40 0.56 0.25 0.17
45 0.57 0.25 0.17
50 0.60 0.25 0.18

Mean 0.45 0.22 0.15
Std. dev. 0.138 0.027 0.026

weights to indexes farther from 1, and 0 to the reference
images that do not have point correspondences with the
current image k. Since the number of reference images
NI (k) decreases with k, the function �(i) is adjusted to deal
with the remaining reference images.

Table 2
Absolute value of errors in orientation in degrees.

Desired
orientation

(deg)

Linear
approach

Non-linear
approach with

Eq. 37

Non-linear
approach with

Eq. 38
0 0.6 1.1 1.1
5 0.2 0.2 0.7
10 0.3 0.3 0.9
15 0.1 0.5 0.5
20 0.1 0.6 0.6
25 0.4 0.2 0.8
30 0.2 0.2 0.2
35 0.1 0.1 0.6
40 0.5 0.5 0.5
45 0.3 0.3 0.3
50 0.4 0.2 0.2

Mean 0.3 0.4 0.6
Std. dev. 0.17 0.29 0.29

Note that the term of Eq. 39 preserves the quadratic
problem structure, and only induces small, straightforward
modifications to matrices Qk and qk of the QP.

The switch from a subset of reference images {rk(1), ...,
rk(NI (k))} to the next one {rk+1(1), ..., rk+1(NI (k+ 1))} is
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Figure 16: Simulation (300 iterations) of a single visual servoing task under the essential matrix-based locomotion linear setup
(Sections 4.1 and 5.2) with three different values for the virtual camera height. The desired pose is qr = (4.5m,−1.5m,−20 deg).
Top row: ℎ is fixed to 6m along the walk. Middle row: ℎ is fixed to 7m. Bottom row: ℎ is fixed to 9m.
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Figure 17: Simulation (300 iterations) of a single visual servoing task with a transient perturbation, using the essential matrix-
based locomotion linear setup (Sections 4.1 and 5.2). The desired pose is qr = (3.0m, 1.0m, 20 deg). Top row: the acceleration
term in Eq. 15 is included. Bottom row: this term is not included. Left column: Footsteps and paths of the CoM and ZMP
in the x,y plane. The time instant and the orientation of the perturbation are indicated by the black arrow. Right column:
accelerations.
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Figure 18: 200 simulations (300 iterations for each simulation) of a single visual servoing task comparing the effect of including
imprecise camera intrinsic parameters (30% error on the focal length, 25% error on the principal point), with the essential matrix-
based locomotion linear setup (Sections 4.1 and 5.2). The desired pose is qr = (4.5m, 1.5m,−20 deg). Left: correct camera
intrinsic parameters. Right: imprecise camera intrinsic parameters.
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Figure 19: Simulations (600 iterations) of a single visual servoing task comparing the linear (Section 4.1) versus the non-linear
(Section 4.3) approach, with the homography-based locomotion (Section 5.1). The desired pose is qr = (6.0m, 3.46m, 45 deg).
(a) Linear approach. (b) Non-linear approach with Eq. 37. (c) Non-linear approach with Eq. 38.

Table 3
Time to solve the (S)QP in miliseconds.

Desired
orientation

(deg)

Linear
approach

Non-linear
approach with

Eq. 37

Non-linear
approach with

Eq. 38
0 9.1 18.2 18.2
5 9.0 18.3 18.2
10 9.1 17.9 17.8
15 9.0 17.8 17.8
20 9.1 17.8 17.7
25 9.0 17.8 17.8
30 9.0 17.8 17.9
35 8.9 17.8 17.8
40 8.9 18.0 17.9
45 8.9 18.1 18.0
50 9.2 18.3 18.2

Mean 9.0 18.0 17.9
Std. dev. 2.81 6.89 6.86

triggered when the visual error goes below a threshold. This
error is measured as the simple moving average (SMA) of
the last S values of the visual features hrk(1)k,� , evaluated for

the first reference image d� = h̄rk(1)k,� −hrk(1),SMA
k,� . The switch

occurs when, for all the features �,

|d�| < � (40)

for a specified � > 0. In our experiments, we evaluate these
conditions only during the single support foot change.

6.3.2. Shared prediction windows.
The idea for this approach is to use the following errors:

ĥk+1,� =
(

ℎ̂rk(1)k+1,�, ℎ̂
rk(1)
k+2,�, ..., ℎ̂

rk(1)
k+S,�, ℎ̂

rk(2)
k+S+1,�, ..., ℎ̂

rk(2)
k+N,�

)T
, (41)

s where the first part of the vector is relative to the next
reference image, rk(1), and the second part is relative to the
following reference image, rk(2) (when it exists). The time
index S is determined by using the previous optimization
solution u∗k, and evaluating the predicted errors for the next
reference image rk(1) in the prediction window, d� = h̄rk(1)k,� −

hrk(1)k,� (u∗k) and defining:

S =
{

min{l ∈ [1, N] s.t. |d�(l)| < � for all �} if this set ≠ ∅
N otherwise.

The visual term of the objective function keeps a similar
form as the original one, since
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Figure 20: Simulations (700 iterations) of a visual path-following with the homography-based locomotion (Section 5.1) using 3
images. The desired pose is qr = (16m, 2m, 0 deg).

ĥk,� = DS ĥ
rk(1)
k,� + (I − DS )ĥ

rk(2)
k,� ,

where DS is a diagonal matrix with ones in its first S
elements, and zero afterwards. Hence, the visual term of
the objective function is kept as a quadratic. The switching
policy is kept similar to the one above.

6.3.3. Evaluation of the path-following approaches.
In Fig. 20, we evaluate the proposed approaches for

following visual paths. The setup for this evaluation
is similar to the previous ones, but with now a set of
3 consecutive reference images. Each reference image
is associated to a different plane used for homography
estimation (depicted with different colors in Fig. 20).
The desired poses for the reference images are qr(1) =
(5m, 2m, 20 deg), qr(2) = (10m, 1m,−5 deg) and qr(3) =
(16m, 2m, 0 deg). In the top row, we depict the results
obtained with the scheme of Eq. 39, with the weights set
as �(1) = 0.75, �(2) = 0.2 and �(3) = 0.05. At the switches
between reference images, a sharp decrease in velocity is

visible. In the second row, we depict the results obtained
with the scheme of Eq. 41. Again, sharp velocity decreases
occur at transitions. As a third experiment (bottom row), we
use the same scheme as in Eq. 41 and introduce a new term
in the objective function to make Ẋk as close as possible to a
fixed, reference velocity, whenever new reference images do
exist in the visual path. As it can be seen, the longitudinal
velocity transitions are now much smoother in the vicinity
of the reference image.

6.4. Experiments with a dynamic simulator
Finally, our approach was validated using the dynamic

simulator Pymanoid 1, a humanoid robotics controller
prototyping environment based on OpenRAVE [8]. The
inverse kinematics included in Pymanoid and used here is
based on a quadratic programming formulation [10]. In the
simulations described in this section, we have used the Japan
Virtual Robotics Challenge (JRVC-1) humanoid robot [8].
The initial pose of the CoM in the motion plane is always

1https://github.com/stephane-caron/pymanoid

Noé G. Aldana-Murillo et al.: Preprint submitted to Elsevier Page 20 of 25



Humanoid Locomotion from Visual Constraints

Figure 21: Samples of images taken from the robot camera (top row) and from an external camera (bottom row) during the
experiment of pose regulation using a dynamic simulator for the footsteps shown in Fig. 22(a).
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Figure 22: Simulation (350 iterations) of a homography-based locomotion experiment (Section 5.1) using a dynamic simulator.
The desired pose is qr = (4m, 2m, 30 deg). Top row: using the raw homography matrix. Bottom row: using the rectified
homography matrix. Left column: footsteps and paths of the robot CoM and ZMP in the x, y plane. Right column: evolution of
the homography matrix elements.

taken as q0 = (0m, 0m, 0 deg), while the final pose qr varies.
In the reported results, the termination condition is given by
a maximal number of iterations of 350. The weights in the
objective function are kept constant as � = 1e−4, 
 = 10,
� = 0.025, �R = 0.06, �R = 100 and 
R = 100. The weights
on the visual features are �1 = 1.0, �2 = 1.0, �3 = 3.0,
�4 = 0.5, �5 = 1.0, �6 = 1.0.

The linear approach for homography-based visual pre-
dictive control, described in Sections 4.1 and 5.1, is evalu-
ated here for a visual servoing experiment with a single refer-
ence image. The images captured by the robot camera have
a resolution of 640 × 480 pixels and are processed using the
OpenCV library. We use ORB descriptors [28] as image fea-
tures. RANSAC is applied to match robustly all the points
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Figure 23: Simulation (350 iterations) of a homography-based locomotion experiment (Section 5.1) using a dynamic simulator
and with partial occlusions. The desired pose is qr = (4m, 2m, 30 deg). Left column: footsteps and paths of the robot CoM and
ZMP in the x, y plane. Right column: evolution of the homography matrix elements.

(a) (b)

Figure 24: Reference and current images for the experiment with partial occlusion. Left column: reference image. Right column:
current image in the third iteration.

between the current image and the reference one.
Fig. 21 shows the setup of the experiments in the

dynamic simulator, through samples of images taken by
the robot camera and by an external camera, respectively.
We have included a video as supplementary material to
show the experiments reported in this section. The gait
pattern corresponding to the experiment of Fig. 21 is shown
in Fig. 22(a), where the robot has to reach the desired
pose qr = (4m, 2m, 30 deg). We can see that the robot
reaches the desired position quite accurately, both in position
and orientation. As seen in Fig. 22(b), the element ℎ12
is different from zero due to sway motion (see the video
attachment to observe this effect). To mitigate this effect,
we compensate the rotations in roll and yaw in the estimated
homography, such that the rectified homography does not
include those motions, as assumed in the model of Eq. 27.
The homography is rectified as in Montijano et al. [23]:

Hr
l = R�iR�iK

−1r
kK, (42)

where the roll
(

�i
)

and yaw
(

�i
)

angles are obtained from
the decomposition of the raw homography as estimated from
point matches. In Fig. 22(d), we can observe that the
element ℎ12 of the rectified homography is almost zero
through the experiment. Note in Fig. 22 that, even without
rectifying the homography, the visual control allows the
robot to reach the desired pose, showing robustness of the
scheme against no modeling effects. Thus, in the next
experiment, no rectification of the homography is done.

In Fig. 23, we present the results of an experiment similar
to the previous one, but with an obstacle partially occluding
the features from the reference image. The obstacle is
placed at the position (3.5m, 0.8m) in the world. Fig. 24
shows the reference image and the current image at the third
iteration. The green shape depicts the viewpoint shared by
both cameras. It can be seen that the obstacle occludes a part
of this shared area. The robot reaches the desired position in
spite of the partial occlusion, showing the robustness of the
approach and the advantage of using locomotion based on
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Figure 25: Simulation (300 iterations) of a homography-based locomotion experiment (Section 5.1) using a dynamic simulator.
The desired pose is qr = (5m, 1m, 15 deg). Top row: using the background image of the Fig. 22(a) . Bottom row: using a less
textured image as a background. Left column: footsteps and paths of the robot CoM and ZMP in the x, y plane. Right column:
evolution of the homography matrix elements.

Figure 26: Image samples taken from the robot camera (top row) and from an external camera (bottom row) during the pose
regulation experiment with a new background image also illustrated in Fig. 25(a).

geometric constraints.
Finally, in Fig. 25, we present two experiments led to

evaluate the influence of the image texture to the visual
control. The bottom row shows the results of a locomotion
experiment with a background texture having much less
interest points than the one used in the upper row, as seen in
Fig. 26, where we depict onboard camera views and external
views of the scene. The average of matched points is 91 for
Fig. 25(c) and the mean of matched points for Fig. 25(a) is
135. As it can be seen, in spite of having much less interest
points, the goal position is still achieved with high precision.

6.5. Comparison to SLAM-based navigation
In this last Section, through a couple of comparative

experiments, we demonstrate the benefits of using an image-
driven navigation method instead of using navigation on a
metric map. For this purpose, in a first experiment illustrated
in Fig. 27, we compare two standard, trivial locomotion
experiments, where a given position qr has to be reached
by the robot. This experiment is led in two ways: First (left
side of Fig. 27), with the image-based algorithm described
in Section 5.1, which only uses the current and final images
to determine the control to execute; Second (right side of
Fig. 27), with a state of the art visual SLAM system [24] and
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Figure 27: Simulation (300 iterations) of a humanoid locomotion experiment using a dynamic simulator. The desired pose is
qr = (5m, 1m, 15 deg). Left column: using an image-based visual servoing control strategy with the raw homography matrix
(Section 5.1). Right column: using ORB-SLAM and a simple planning algorithm (Section 6.5). The footsteps and the path of
the robot CoM and ZMP in the x, y plane (camera position in the ORB-SLAM experiment) are respectively depicted in blue, red,
and blue. The SLAM camera pose estimate appears in green, which reaches close to the target pose not so the robot’s CoM.

Table 4
Computational times in miliseconds.

Homography+QPs Tracking+QPs Mapping
updates

72 65 423

a standard humanoid locomotion algorithm [15], where the
reference velocity is updated based on the relative position
to the goal. One can see that the precision reached in the
first case is higher; in the second case, estimation errors
lead to a poor positioning to the objective. Of course,
using maps have also advantages that are not illustrated in
this experiment: They allow high-level reasoning when the
planning aspect is critical (e.g., with obstacles).

Another benefit of using a visual servoing scheme is
lower computational times. In Table 4 (left), we give average
computational times for one process iteration of our method,
which includes the homography computation and the solver
call for the QP locomotion problem. On the last two
columns, the times are given for the SLAM-based approach:
Note that it includes two different sub-parts, one (at high
frequency) for iterations of the tracking/localization, similar
to the visual control approach, and one (at low frequency)
for map updates. The latter is quite slow and is clearly a
disadvantage vs. visual control-based approaches.

Finally, we have evaluated homographymatrix-based lo-
comotion and visual SLAM under modeling errors by intro-
ducing uncertain values in the camera intrinsic parameters
K. The errors were chosen randomly with 30% of standard
deviation for focal length errors and 25% for the principal
point errors. In Fig. 28, the histograms of the final position
errors in 50 experiments, for each approach, are presented.
As it can be seen, the final position errors, measured as a
distance to the target position, are significantly reduced by
using the homography approach.
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Figure 28: Distribution of the final CoM error to the desired
position, in meters. Top row: Under our homography approach
(Section 5.1). The mean is 0.1 and standard deviation is 0.048.
Bottom row: Visual SLAM approach (Section 6.5). The mean
is 0.809 and standard deviation is 0.279.

7. CONCLUSIONS
In this article, we have proposed a novel visual con-

trol approach for humanoid robots that uses visual errors
extracted from two-view visual constraints such as homo-
graphies and essential matrices in a Model Predictive Con-
trol scheme for visual walking pattern generation. We have
shown that this approach can simultaneously solve the visual
servoing tasks and thewalking pattern generation by only us-
ing visual information. The controls optimization is done in
a local reference frame, namely in the current CoM reference
frame, which differs frommost existing approaches. The op-
timization problem to solve for the controls has been formu-
lated in two ways: linear and nonlinear; the first one with the
advantage of lower computational cost and the second higher
accuracy of the regulation task. As with any visual-based
method (e.g., visual SLAM), the success of this approach
depends on the presence of textured scenes where feature
points can be extracted to estimate the visual constraints.
However, it has shown to be robust to losses of point fea-
tures (due to missed correspondences or occlusions) and to
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inaccuracies on camera parameters. The proposed approach
has been extended to the problem where the humanoid has
to follow a sequence of target images (visual path). As a
future work, we plan to evaluate the use of other geometric
constraints such as the trifocal tensor, as well as the use of
more degrees of freedom, in particular the head angles of the
robot.
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