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Bosque 1001, 45019, Zapopan, Jalisco, México
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Abstract

This work addresses the problem of distributedly controlling the position of

a group of Unmanned Aerial Vehicles (UAVs), that are considered as holo-

nomic three-dimensional agents, to achieve a desired formation while collisions

are avoided. We propose a generic control scheme computed by the adaptive

convex combination of two control laws dealing with two, possibly conflicting,

tasks, which are formation control and obstacle avoidance. The main contribu-

tions of the paper are threefold: First, the whole proposed scheme is distributed

by nature, since the formation control is formulated as a consensus problem

of virtual agents and the collision avoidance strategy is reactive, valid for un-

known environments. Second, two control protocols are proposed to guarantee

convergence to the desired formation in finite or predefined time; in the last

case, the formation is achieved in a constant time independently of the initial

UAVs positions. And finally, the control scheme generates continuous control

signals in spite of activation and deactivation of the obstacle avoidance task,

and stability is proved even in the transition of tasks. The effectiveness of the

proposed approach is shown through realistic simulations and real experiments
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Preprint submitted to Journal of LATEX Templates January 20, 2022



for a group of quadrotors.

Keywords: Formation control, consensus, multi-agent system, task-based

control, unmanned aerial vehicles (UAVs)

1. Introduction

The coordination and control of Multi-Agent Systems (MAS) have attracted

the attention of the research community in the last years (see for instance [1],

[2], [3], [4]), due to the potential of a MAS to face complex tasks that a single

agent is not able to handle. Distributed control approaches applied to a MAS5

require a communication network allowing to share information with a subset

of agents (neighbors). In this context, several interesting problems and appli-

cations have been addressed in the literature, for instance, synchronization of

complex networks ([5]), distributed resource allocation ([6]), consensus ([7]) and

formation control of multiple agents ([8]). In this paper, we address the dis-10

tributed formation control problem to drive a MAS of aerial vehicles to achieve

a desired formation under time constraints, while avoiding collisions with each

other and with static obstacles in the environment.

In the literature, one way to address the distributed formation control of

a MAS has been as a consensus problem ([8]), where the prescribed relative15

positions are reached by exchanging only local information ([7, 9]). Linear con-

sensus protocols with asymptotic convergence to a common agreement state

were proposed in [7] and [9]. The authors demonstrated that the second small-

est eigenvalue of the graph Laplacian (algebraic connectivity) determines the

convergence rate of the MAS. Thus, the convergence to the agreement state in20

linear protocols is exponential and the settling time cannot be preset to fulfill

a time constraint if required by an application.

In order to deal with time constraints in consensus applications, finite-time

consensus protocols have been proposed, for instance in [10]. Nevertheless, the

convergence time is an unbounded function of the initial disagreement among25

the agents. In fixed-time consensus protocols, the convergence time is uni-
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formly bounded by a constant independently of the initial conditions; for ex-

ample [11, 12, 13, 14]. However, such upper bound is often overestimated or

even unknown. Thus, the design of protocols satisfying time constraints is chal-

lenging based on such results. To address these problems, consensus protocols30

with predefined-time convergence have been recently proposed in [15, 16, 17]

for first-order systems and in [18] for second-order systems. Predefined-time

convergence means that the settling time can be preset as required by the ap-

plication and up to our knowledge, it has not been used before for formation

control.35

During the formation control, the agents may collide with each other and

also with obstacles of the environment. Thus, a collision avoidance strategy

must be used to guarantee the attainment of the formation task ([19]). The

potential fields approach for collision avoidance has been exploited in MAS

formation control, for instance in [20] and [21]. In the first work, a centralized40

algorithm based on potential fields is proposed for the obstacle avoidance task.

In that approach the environment must be known. The second work presented

a distributed scheme for formation control and collision avoidance for a team

of wheeled leaders and followers, with the agents constrained to move following

arcs of circle. A scheme for collision-free formation for a MAS of nonholomic45

robots without a leader and achieving consensus in orientation was proposed

in [22]. In both last works, the collision avoidance strategy changes abruptly

the trajectory of the agents and introduces discontinuities in their velocities. A

variety of strategies have been proposed to address the formation control with

obstacle avoidance for aerial vehicles. A method based on the artificial potential50

field approach and binary maps for Unmanned Aerial Vehicles (UAVs) modeled

in 2D is proposed in [23]; the algorithm is centralized and requires parallel

computation. A fuzzy logic behavior-based approach where each UAV evaluates

the surrounding points to select the direction for step motion is proposed in [24];

broadcast of positions and velocities to use global coordinates is required. In55

[25] obstacle avoidance and formation reconfiguration is tackled using interfered

fluid dynamical systems that consider the kinematic model and constraints of the
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agents in known environments; receding horizon control is used to adjust some

control parameters. The previous works for UAVs do not present a stability

analysis of the control system. A nonlinear controller based on the potential60

field method is proposed in [26] to simultaneously perform trajectory tracking,

formation keeping and collision avoidance; stability is proved but it has the

limitation of requiring a broadcast transmission of position data.

In the robotics community, the task-function approach has been widely used

to address control problems involving several contradictory objectives, captured65

by hierarchically organized tasks ([27]). This approach is used in [28, 29] as

a centralized strategy to achieve robot formation controlling two tasks: the

average of the agent’s state and the variance of the states into desired values.

These works were extended in [30] and [31] to include an obstacle avoidance

task for 3D autonomous vehicles formation. A scheme based on null space of70

hierarchical tasks, where the tasks are control of a triangular formation using a

centralized geometric method and collision avoidance, is presented in [30]. The

scheme presented in [31] is based on null space behavioral with consensus for

the formation and potential fields for the collision avoidance. Nevertheless, the

first work is only applicable for groups of three agents while in the second work,75

based on potential fields, it has the requirement that the environment must

be known. Furthermore, as in most of the previously mentioned works, the

computed control inputs present discontinuities due to the switching schemes

between the formation control and the evasion action.

In this paper, we tackle the two-tasks problem of distributed formation con-80

trol with collision avoidance in the framework of hierarchical task-based control,

which allows a theoretical stability analysis. The formation control is addressed

as a consensus problem of virtual agents, related to the position of the real agents

by a displacement vector, such that if the virtual agents reach consensus, then

the real agents reach a desired formation in a distributed fashion. The collision85

avoidance becomes the task with higher priority when an obstacle gets closer

than a given security distance, which can be other agent or a fixed obstacle in

the environment. The collision avoidance control only requires local informa-
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tion and thus, the proposed method is valid for unknown environments. In this

work, the agents of the MAS are UAVs modeled as holonomic systems moving90

in 3D, specifically quadrotors, and for that, we have considered an ellipsoidal

safety region to avoid disturbances caused by the turbulence of other agents.

We introduce in the hierarchical task-based scheme that the UAVs achieve for-

mation in a desired constant time independently of the initial conditions, based

on predefined-time consensus ([16]). Besides the guarantee of constrained con-95

vergence time and the distributed nature of the proposed approach, the main

difference and challenge with respect to existing protocols is that the switching

between two control laws is treated by using a smooth transition, in such a way

that the proposed control scheme is a convex combination of two control laws

that generates continuous control inputs. Moreover, it is not needed to know a100

map of the environment and the obstacle avoidance strategy can be applied for

irregular obstacles.

We have formulated an adequate task function for the formation control

problem and it has been combined with the obstacle avoidance task in a hier-

archical distributed control approach with its corresponding stability analysis.105

Thus, the main contributions of this work with respect to the existing literature

are the following: a) The whole scheme is distributed by nature; the computa-

tion of the UAVs velocities depends only on information from its neighbors and

the obstacle avoidance strategy is reactive, valid for unknown environments with

irregular obstacles. b) Two alternative control protocols are proposed and inte-110

grated in the hierarchical task-based scheme such that formation is guaranteed

to be achieved in finite or predefined time. In the finite-time case the formation

is achieved in a bounded time that depends on the control gains used and the

initial conditions, whereas in the predefined-time case the formation is achieved

in a constant time independently of those factors. The predefined-time control115

law presents a convenient behavior, in particular for UAVs, since the generated

control inputs have null initial value, evolve in a smooth way and return to zero

at the convergence time. This property of the control law yields that the energy

consumption in a real application is less than with existing fixed-time protocols
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due to the lower control effort to achieve the desired formation. c) The proposed120

scheme provides continuity of the control inputs when both tasks are activated

or deactivated, which is important for velocity control of quadrotors that re-

quires smooth signals. To illustrate the effectiveness of the proposed approach,

simulations are presented using a dynamic simulator and real experiments are

conducted with a group of quadrotors.125

This work is structured as follows. Section 2 recalls some definitions and

results from graph theory. The task-based control scheme is also introduced

in this section. In Section 3, the problem of formation control for UAVs with

obstacle avoidance is formulated and solved using two different formation con-

trol laws. Section 4 evaluates the performance of the proposed approach in130

simulation and Section 5 presents results of real experiments with a group of

quadrotors. Finally, the main conclusions of this work are presented in Section

6.

2. Preliminaries

2.1. Graph and Consensus Theory135

In this section, some notations and preliminaries about graph and consensus

theory are presented, an interested reader can consult literature as [32] and [7]

for a deeper insight in the field. This paper focuses only on undirected graphs.

In a network of agents, consensus means to reach an agreement on a certain

quantity of interest that depends on the state of all agents ([7]). A model of a140

network is typically a graph G, which consists of a vertex set V(G) and an edge

set E(G). An edge is denoted by ij and j ∼ i denotes that the vertex i and vertex

j are neighbors, i.e., there exists an edge ij. The set Ni(G) = {j : ji ∈ E(G)}

represents the neighbors of vertex i in the graph G. The adjacency matrix

A = [aij ] ∈ RN×N of a graph with N vertices is a square matrix with entries145

aij corresponding to the weight of the edge ij; when i is not adjacent to j then

aij = 0. Through this work it is assumed that aij = aji, i.e. only undirected

and balanced graphs are considered. The Laplacian matrix of G is L(G) = ∆−A
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where ∆ = diag(d1, · · · , dN ) with di =
∑N

j=1 aij . A sequence of distinct vertices

starting with i and ending with j such that consecutive vertices are adjacent is150

called a path from i to j. A graph G is connected if there is a path between any

two vertices, otherwise it is disconnected. If the graph G is connected, then the

eigenvalue λ1(L) = 0 has algebraic multiplicity one associated to the eigenvector

1 = [1 · · · 1]T , i.e., kerL(G) = {χ : χ1 = . . . = χN}. For undirected graphs the

Laplacian matrix L is positive semidefinite and symmetric.155

In this work, we will consider a MAS composed of N agents with decoupled

single-integrator dynamics, connected with each other through a network, the

agent’s dynamics is given by

χ̇i(t) = ui, i ∈ {1, . . . , N}, (1)

where χi, ui(t) ∈ Rn are the state and the control input of agent i, respectively.

In particular, we will consider a network of UAVs, where the decoupled three

dimensional position of each UAV is the state χi and its translational velocities

are the control input vector ui ([33]). The network dynamics for agents (1) can

be written in vector form as

χ̇(t) = u(t), (2)

where χ(t) = [χ1(t), . . . , χN (t)]T ∈ RnN is the state vector and u(t) = [u1(t), . . . , uN (t)]T ∈

RnN is the control inputs vector of the network. The consensus error of agent

i with respect to its neighbors is defined as ([7])

eci(t) =
∑
j∈Ni

aij(χj(t)− χi(t)), i ∈ {1, . . . , N}, (3)

such that consensus is achieved if this error is equal to zero for all the agents,

i.e., χi = χj for all i,j ∈ E(G), i 6= j. The individual consensus error (3) can be

expressed in matrix form as

ec(t) = [ec1(t), ec2(t), . . . , ecN (t)]T = −(L⊗ In)χ(t) ∈ RnN , (4)

where L ⊗ In represents the Kronecker product between L and the identity

matrix of size n.
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2.2. Task-based control approach

Let us consider one agent of the form (1) with state vector q ∈ Rn. Any

task to be performed by the agent is defined by a differential mapping, denoted

by x(q), between a task space and the state space. To reach a desired value xd

for the task, an error function is defined as

e(q) = x(q)− xd, (5)

where e(q), x(q) and xd ∈ Rm, with m the dimension of the task space. The

time-derivative of (5) is given by

ė = J(q)q̇, (6)

being J(q) ∈ Rm×n a Jacobian matrix. According to (1), q̇ is equal to the vector

of control inputs, and to solve for q̇, the Moore-Penrose pseudoinverse of the

Jacobian matrix can be used as defined in [34]

q̇ = J(q)+ė, (7)

where J(q)+ = J(q)T (J(q)J(q)T )−1 ∈ Rn×m. This approach is valid if the

dimension of the task space is less than or equal to the dimension of the state160

space of the system ([34]), i.e. according to our notation, it must be accom-

plished that m ≤ n. In the case of study presented in this work for UAVs

moving in 3D, the degrees of freedom of each UAV are equal to 3 (n = 3), and

the dimension of the tasks to be solved are 1 for obstacle avoidance (m = 1)

and 3 for agents’ formation (m = 3). Then, both task can be combined under165

the task-based control approach.

In (7), the error dynamics is a design choice that assigns a desired dynamics

of the error function in order to guarantee its convergence, for instance

ė = −λe, (8)

with λ > 0, which yields exponential convergence of the task function to its

desired value. Thus, the vector of control inputs is given by

q̇ = −λJ(q)+e(q). (9)
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2.3. Hierarchical task-based formulation

In the context that a single system or a MAS must perform several tasks

simultaneously, a trade-off between all the tasks must be established, since the

completion of higher priority tasks must be guaranteed, while others could be170

partially performed.

A solution to this problem was introduced in [27] as a hierarchical task-based

approach and it has been applied to robotic systems ([28, 35, 36]). This approach

assigns a fixed priority to each task and the one with the highest priority is

named the priority task. The solution of the priority task is always used in the175

computation of the control input. The solutions of the other tasks are projected

into the null space of the priority task avoiding contradictory solutions. Thus,

lower priority tasks do not influence the solution of the priority task.

Following [35], the null space of the i-th task, considered the priority task,

is computed as

Ni = In − J+
i (q)Ji(q), (10)

where Ni ∈ Rn×n. For instance, considering two tasks x1 and x2, where x1 has

the highest priority, the total control action is computed as ([28, 35])

q̇ = q̇1 +N1q̇2, (11)

where q̇ ∈ Rn is the control input of the system, q̇1 = λ1J1(q)+e1(q) ∈ Rn is the

input computed from x1 and q̇2 = λ2J2(q)+e2(q) ∈ Rn is the input computed

from x2. When only one task is active, a control input of the form (9) is

applied. Otherwise, when a second task is activated, the control law changes to

(11) and discontinuities appear in the control inputs due to the instantaneous

switching between control laws when the tasks are activated or deactivated.

This undesired effect can be avoided using the following control law ([36])

q̇ = q̇′1 + q̇1|2, (12)
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with

q̇′1 = J+
1 ė
′
1,

q̇1|2 = (J2N1)+(ė2 − J2J
+
1 ė
′
1),

ė′1 = h(t)ė1 + (1− h(t))J1J
+
2 ė2,

where ėi assigns the desired dynamics (8) and h(t) is a smooth scalar time-180

dependent function varying continuously from 0 to 1. It can be verified that

the single control law (9) for the secondary task is obtained from (12) when

h(t) = 0. This allows that the highest priority task starts to have effect in a

smooth way and it is fully considered when h(t) = 1. This approach provides a

continuous solution for q̇ and it will be used in this work.185

3. A solution to the problem of formation with collision avoidance

In this section we propose a solution to the following problem.

Definition 3.1. Let A = {A1, ..., AN} be a set of N < ∞ mobile agents, in

particular UAVs, and F be the required formation of the agents given by a

vector of relative distances of each agent with respect to an arbitrary common190

reference frame, and let us consider that there also exists a set of obstacles in the

environment. The agents themselves can be obstacles for each other or there may

be fixed obstacles in the environment. The formation with obstacle avoidance

problem (FOAP) consists in finding control inputs yielding a trajectory for each

agent such that the formation is reached and the trajectories avoid the obstacles.195

The following assumptions are considered:

• Each agent has omnidirectional sensing capability and focuses to avoid

only the nearest obstacle, i.e., one obstacle is considered at each time-

instant,

• the communication link between agents is modeled by a Laplacian matrix200

for the whole MAS,
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• the agents, together with the communication links, describe a connected

graph (as defined in Section 2),

• each agent only has access to the position of their neighbors through the

communication link for formation control purposes, and the position of205

the agents that are not neighbors is obtained from the omnidirectional

sensor for collision avoidance purposes.

According to the FOAP definition, two tasks are needed, one to reach the

desired formation and the other to avoid collisions. Since the agents must be

driven to reach the formation avoiding any obstacle, then the priority task210

(herein named local task) is the collision avoidance, which is performed by each

agent independently, and the secondary task (herein named global task) is the

formation based on consensus of the agents’ states.

The following notation is used during the solution of FOAP: Let Ai ∈ A, then

xi1 and xi2 are the local and global tasks associated to Ai. Also, qi = [xi, yi, zi],215

q̇i = [ẋi, ẏi, żi] are the position and velocity of the UAV Ai, and qio ∈ R3 is the

position of the nearest obstacle to agent Ai.

3.1. Local task (collision avoidance)

Every agent Ai must avoid collisions with obstacles (other agents or fixed

obstacles) and to do that, the agents must always maintain a security distance

(R) to the obstacles. In order to meet this objective, the task xi1 = ρ(qi) is

defined as the relative distance from the UAV position qi to the position qio of

the nearest fixed obstacle as

ρ(qi) = ‖qi − qio‖ ∈ R. (13)

Notice that the distance ρ(qi) can be measured with a sensor onboard the UAV

Ai and thus, the global position of the obstacle is not required. Thus, the

following error function is defined

eoi = ρ(qi)−R ∈ R. (14)
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The error dynamics is

ėoi =
(qi − qio)T

‖qi − qio‖
q̇i ∈ R. (15)

In the case that the obstacle to be avoided is another UAV, we consider a

different measure of relative distance as a security region (ρ(qi)) modeled as a

prolate ellipsoid in order to increase the separation distance in the vertical axis

and keep the transverse distance, reducing the effect of the turbulence generated

by the UAV’s propellers. This provides a larger separation of the UAVs when

one is below another. So, the relative distance from the agent Ai to the agent

Aj is

ρ(qi) =

√
(xi − xj)2

a2
+

(yi − yj)2

b2
+

(zi − zj)2

c2
− 1, (16)

where a, b, c ∈ R are the lengths of the semi-axes of the ellipsoid that represents220

the relative safety distance of each UAV and qio = [xj , yj , zj ]
T is the position of

the nearest obstacle to the UAV. In this work, the parameters a, b represent the

size of the 3D UAV, while parameter c represents the safety distance from the

top of agent Ai to the bottom of agent Aj to avoid the turbulence generated by

Ai over Aj . According to (16), the error dynamics is225

ėoi =
(E(qi − qio))T

ρ(qi)
q̇i ∈ R, (17)

where

E =


1
a2 0 0

0 1
b2 0

0 0 1
c2

 .
Depending on the nearest obstacle, the error dynamics can be (15) when the

obstacle is fixed or (17) when the obstacle is another UAV. This strategy assumes

that as both UAVs in potential collision will realize the same strategy, they will

made quasistatic motion during the collision avoidance. In general, the error

dynamics is represented by

ėoi = Joi(q)q̇i. (18)

12



Establishing desired dynamics for (18) as ėoi = −λeoi and solving for q̇i, the

following equation is obtained

q̇i = −λJ+
oi(q)eoi . (19)

3.2. Global task (agents’ formation)

As mentioned in the Introduction Section, the formation problem is ad-

dressed in this work as a consensus problem to formulate a distributed solution.

Consider a set of N UAVs connected through a communication network such

that they exchange information with each other. We will assume single integra-

tor dynamics of each axis of motion for each UAV ([33])

q̇i = ui(t) i ∈ 1, ..., N, (20)

where qi ∈ Rn is the vector of the i-th UAV’s position and ui ∈ Rn is the

control input given by its linear velocities. Agents’ formation can be achieved

by consensus of a virtual network. For instance, in [22], agents’ formation is

specified as a set of fixed translation vectors vi ∈ Rn with respect to an arbitrary

common reference frame, thus the position qi of the i-th agent is related to the

position qvi of the virtual agent by

qvi = qi + vi, (21)

where qvi ∈ Rn, i ∈ 1, ..., N . Notice that the network of virtual agents has

the same Laplacian matrix than the original network and the virtual agent’s

dynamics is given by

q̇vi = q̇i = ui(t). (22)

The consensus error for the virtual agent i with respect to its neighbors is

evi =
∑
j∈Ni

(aij(qvj − qvi)) ∈ Rn, (23)

and the consensus error vector is

ev = [ev1 , ev2 , ..., evN ] = −(L⊗ In)qv(t) ∈ RnN . (24)
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Applying adequate control inputs to the systems (20) in terms of (24), the vir-

tual agents will reach consensus and consequently the real agents will reach

the desired formation specified by the vectors vi. It is worth noting that the

consensus error of each agent in (23) only depends on the position of its neigh-230

bors. Thus, each agent will compute independently its control law in terms

of this local consensus, which represents a distributed setup. In the following

subsections, we propose control laws to accomplish this global task.

3.2.1. Finite-time control law

The following control protocol is proposed to solve the consensus of the235

virtual agents and consequently the real agents will reach the desired formation:

u(t) = q̇v = kbeve
1
2 = k


bev1e

1
2

...

bevN e
1
2

 ∈ RnN , (25)

where

bevie1/2 =
[
bevi(x)e1/2, bevi(y)e1/2, bevi(z)e1/2

]T
∈ Rn, (26)

considering that b•e 1
2 = | • | 12 sign(•). The next proposition states that the pro-

posed control law achieves consensus (hence also the desired formation) in finite

time.240

Proposition 3.1. Consider a MAS modeled as a connected undirected graph G

and the vector of consensus error ev given in (24). Then, there exists a control

gain k ∈ R+ such that the following nonlinear distributed control protocol

ui(t) = q̇vi = kbevie
1
2 ∈ Rn, (27)

achieves finite-time convergence to zero of the consensus error vector (24) and

consequently consensus of the state of the virtual agents’ system (22), from any

initial state qv(0).
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Proof. Considering the consensus error dynamics of the virtual agents

ėv = −kLΦ(ev), (28)

where Φ(ev) is given by

Φ(ev) =


bev1e

1
2

...

bevN e
1
2

 , (29)

and let

V (e) =

N∑
i=1

|evi | (30)

be a candidate Lyapunov function for (28), which is positive definite but not

continuously differentiable for all ev. However, since (30) is Lipschitz contin-

uous, the global stability of (28) is obtained if V̇ is negative definite almost

everywhere [37, p. 207], which will be demonstrated in the sequel. To this

aim, let S(ev) = [sign(ev1) · · · sign(evN )]
T

and notice that if evi 6= 0 then

the i-th element of S(ev)TL is either zero or it has the same sign as evi . Then,

S(ev)TLΦ(ev) = S(ev)TW (t)Φ(ev) whereW (t) = diag(w1(t), . . . , wN (t)), wi(t) ≥

0. Then

V̇ = −S(ev)TLΦ(ev) = −k
N∑
i=1

wi(t)|evi |
1
2 . (31)

Notice that, with evi 6= 0, wi(t) is zero iff ∀j ∈ Ni(G), sign(evi) = sign(evj ).245

Moreover, since ev = (L ⊗ In)qv = 0 then along the evolution of the system

it holds that 1Ne
T
v =

∑
evi = 0 and therefore, unless ev = 0 there always

exists a evi 6= 0 with wi(t) 6= 0, i.e. a node with nonzero consensus error such

that ∃j ∈ Ni(G), sign(evi) 6= sign(evj ). Thus, the origin of (28) is globally

asymptotically stable. As we have ev = (L ⊗ In)qv = 0 then qv1 = . . . = qvn
250

and consensus is achieved.

Since (28) is globally asymptotically stable and for all λ > 0, Φ(ev) =

λ−(d+1)Φ(λev) with d = − 1
2 (i.e. the vector field is homogeneous with negative

degree with respect to the standard dilation), finite-time stability follows from

[38, Theorem 7.1]. Thus, consensus is achieved in finite-time.255
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3.2.2. Predefined-time control law

In this section, we present an alternative control law that unlike the one of

(27), it is able to drive the MAS to the desired formation in a specified time.

The control law is based on the tracking of a reference given by a time base

generator (TBG), which is a parametric time signal that converges to zero in a260

specified time, as defined in [16].

Theorem 3.2 ([16]). Consider a MAS modeled as a connected undirected

graph. Let kf ∈ R+ be a constant gain, tf a predefined-convergence time,

and a TBG function hp(t) fulfilling the conditions hp(0) = 1, hp(t ≥ tf ) = 0,

ḣp(0) = 0 and ḣp(t ≥ tf ) = 0. Then, the time-varying linear control protocol

ui(t) = q̇vi = −ḣp(t)evi(0) + kf (evi(t)− hp(t)evi(0)) ∈ Rn, (32)

with evi(t) given by (23) and evi(0) computed from the initial state qv(0),

achieves predefined-time convergence to zero of the consensus error vector (24)

and consequently consensus of the state of the virtual agents’ system (22), from

any initial state qv(0).265

Proof. See the proof of Theorem 7 in [16] for the complete procedure. A notion

of the proof is as follows: the control law (32) can be written in vector notation

as

u(t) = q̇v = −ḣp(t)ev(0) + kfξ(t) ∈ RnN , (33)

where

ξ(t) = ev(t)− hp(t)ev(0) ∈ RnN (34)

is the tracking error of the consensus error trajectory (ev) with respect to the

desired trajectory given by the TBG (hp(t)ev(0)). The vector of control inputs

u(t) introduced in (22) (expressed in vector notation) is then used to prove the

convergence of the tracking error to zero. Since tracking of the TBG reference

is guaranteed, ev(t) follows the profile hp(t)ev(0). This profile initiates in ev(0)270

(hp(t) = 1) and continuously converges to zero at time tf (hp(t ≥ tf ) = 0).

Therefore, predefined-time convergence to zero of the consensus error ev = (L⊗
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In)qv = 0 is achieved. Then, the state of the virtual agents reaches qv1 = . . . =

qvn at time tf .

The result presented in [7] ensures that the consensus of the virtual agents

for both control laws (27) and (32) is the average of the initial conditions of the

agents if the Laplacian matrix L comes from a strongly connected graph, i.e.

lim
t→∞

qvi(x)(t) = αx ∈ R, (35)

with

αx =

∑
i γiqvi(x)(0)∑

i γi
, (36)

where γi is the i-th element of the left eigenvector γ of L, qvi(x) is the position275

of the virtual agent i in the x-axis and αx represents the average of the initial

conditions of the virtual agents in the x-axis. Similar expressions can be formu-

lated for the other coordinates and then, the consensus vector for the 3D MAS

is given by

q̄v =


αx

αy

αz

 , (37)

where αy and αz ∈ R are the average of the initial conditions of the virtual agents

for the y-axis and z-axis, respectively. The fact that we know that consensus

is achieved for the virtual agents’ state, allows in the hierarchical task-based

approach the definition of the secondary task as xi2 = qvi (the position of the

virtual agents) and the error of this task as

ec = qv − (1N ⊗ q∗v) ∈ RnN , (38)

with q∗v ∈ Rn being a constant vector that in the particular case in which only

a consensus task is realized q∗v = q̄v. Thus, the corresponding time-derivative of

the consensus task is given by

ėc = Jc(q)q̇v (39)
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where Jc(q) = In ⊗ Jci(q). Since Jci(q) = In, because the right-hand side term280

of (38) is constant, then Jc(q) = InN ∈ RnN×nN and it is the Jacobian matrix

of the consensus task. In the sequel, we will remove the explicit dependence of

the Jacobians from q. Recall that according to (22), q̇v = q̇.

3.3. Hierarchical combination of global and local tasks

Following [36], the control law for each agent combining the obstacle avoid-

ance as primary (local) task, denoted by subscript o, and UAVs formation as

secondary (global) task, denoted by subscript c, is given by

q̇i = q̇′oi + q̇o|ci , (40)

where:285

q̇′oi = J+
oi ė
′
oi ,

q̇o|ci = (JciNoi)
+(ėci − JciJ+

oi ė
′
oi),

ė′oi = h(t)ėoi + (1− h(t))JoiJ
+
ci ėci ,

and 0 ≤ h(t) ≤ 1 is a smooth scalar function. The transition function h(t)

is activated increasing from 0 to 1 when an obstacle is detected within the

safety distance. While the obstacle is within the safety distance, the value of

h(t) = 1 and when the obstacle leaves the safety distance the function h(t) is

deactivated decreasing from 1 to 0. The transition function uses a finite-time290

for activation and deactivation, i.e., the time to carry out the obstacle avoidance

task is bounded. Thus, the smoothness of q̇i is achieved thanks to the use of

the transition function.

In the following theorem, we will prove the stability of the control law in-

cluding both collision avoidance and formation control tasks. In the following295

proof, both tasks errors will be expressed in vector form to treat the MAS as a

single system, but keep in mind the distributed individual computation of the

agents control law (40). Besides, we will specify the form of the two tasks vector

dynamics ėo and ėc in closed-loop for the two alternatives of formation control

protocols.300
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Theorem 3.3. Consider a MAS of N UAVs modeled as n-order systems as

in (20), with a connected undirected communication topology. For this kind

of MAS, the control law q̇ =
[
q̇T1 , q̇

T
2 , · · · q̇TN

]T
with q̇i as in (40) guarantees

convergence to zero of the consensus error ec (38) in finite-time if (25) is used

or in predefined-time if (33) is used, and also convergence to zero of the obstacle305

avoidance error (eo) in spite that both tasks are active with a transition function

0 ≤ h(t) ≤ 1. The terms of (40) are

ėo = −λeo ∈ RN , with eo = [eo1 , eo2 , · · · eoN ]
T

and eoi ∈ R as in (14),

Jci = In, according to (39),

(JcNo)+ =


(Jc1No1)+ 0 · · · 0

0 (Jc2No2)+ · · · 0
...

...
. . .

...

0 0 · · · (JcNNoN )+

 ,

J+
o =


J+
o1 0 · · · 0

0 J+
o2 · · · 0

...
...

. . .
...

0 0 · · · J+
oN

 , No =


No1 0 · · · 0

0 No2 · · · 0
...

...
. . .

...

0 0 · · · NoN

 ,

where Joi ∈ Rn×1 is given by (18), Noi = In − J+
oiJoi ∈ Rn×n, and the term

ėc is given by (25) to achieve consensus in finite-time or (33) for consensus in

predefined-time.310

Proof. The proof will be presented for each control law (25) and (33).

• Finite-time control law (25). In this case, let us propose the following

extended error as

e′ =

ec
eo

 . (41)

Then, consider the Lyapunov candidate function

V =
1

2
e′T e′, (42)
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with time derivative

V̇ = e′T ė′. (43)

To compute V̇ , we first need the open-loop dynamics of ėc and ėo for the

whole network. On the one hand, the dynamics ėc are given by (39). On the315

other hand, expanding the obstacle task error for the N agents, we get

ėo = Joq̇ =


Jo1 0 · · · 0

0 Jo2 · · · 0
...

...
. . .

...

0 0 · · · JoN

 q̇, (44)

where Jo ∈ RN×nN . Now we have:

V̇ =
[
eTc eTo

]Jc
Jo

 q̇. (45)

Introducing the hierarchical task-based control protocol (40), then

V̇ =
[
eTc eTo

]
Γ, (46)

where

Γ =

Γ1

Γ2

 =

Jc(J+
o ė
′
1) + Jc((JcNo)+(ėc − JceJ+

o ė
′
1))

Jo(J+
o ė
′
1) + Jo((JcNo)+(ėc − JcJ+

o ė
′
1))

 .
Expanding the expressions using ė′1 as in (40), we have

Γ1 = JcJ
+
o

[
h(t)ėo + (1− h(t))JoJ

+
c ėc

]
+ Jc(JcNo)+

{
ėc − JcJ+

o

[
h(t)ėo + (1− h(t))JoJ

+
c ėc

]}
, (47)

Γ2 = JoJ
+
o

[
h(t)ėo + (1− h(t))JoJ

+
c ėc

]
+ Jo(JcNo)+

{
ėc − JcJ+

o

[
h(t)ėo + (1− h(t))JoJ

+
c ėc

]}
. (48)

According to the properties JoJ
+
o = IN , JoNo = 0N×nN , No = NT

o , and320

NoNo = No, the following holds

Jo(JcNo)+ = JoN
T
o (NoN

T
o )−1 = JoNo(NoN

T
o )−1 = 0N×nN , (49)

(JcNo)+ = (JcNo)T ((JcNo)(JcNo)T )−1 = No(NoN
T
o )−1 = InN . (50)
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Thus, Γ1 and Γ2 are simplified as follows:

Γ1 = ėc, (51)

Γ2 = (1− h(t))Joėc + h(t)ėo.

In these expressions, we need to introduce the closed-loop dynamics ėo =

−λeo for collision avoidance and ėc = kbeve
1
2 from (25) for formation control.

For the last one, since325

|evi(x)|1/2sign(evi(x)) =
|evi(x)|
|evi(x)|1/2

sign(evi(x)) =
evi(x)

|evi(x)|1/2
,

and similarly for the y- and z-axes. According to (26), we have that bevie
1
2 =

∆(evi)evi , where

∆(evi) = diag
{
|evi(x)|−1/2, |evi(y)|−1/2, |evi(z)|−1/2

}
∈ Rn×n. (52)

Now, considering all the agents Ai

∆ := ∆(ev) = diag {∆(ev1), . . . ,∆(evN )} ∈ RnN×nN . (53)

Furthermore, according to the properties of the Laplacian matrix, from (24) and

(38), we have

ev = −(L⊗ In)ec, (54)

therefore

ėc = −k∆(L⊗ In)ec. (55)

Introducing (55) and ėo = −λeo in (51), the time derivative of the Lyapunov

function is

V̇ = −
[
eTc eTo

]
M

ec
eo

 , (56)

where

M =

 k∆(L⊗ In) 0N×N

k(1− h(t))Jo∆(L⊗ In) λh(t)IN

 . (57)

The eigenvalues of matrix M depend on the constants values k > 0, λ > 0,

and on h(t) and matrices L and ∆. The matrix L represents a connected and330
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balanced graph, it has an eigenvalue λ1(L) = 0 with an associated eigenvector

1 = [1 · · · 1]
T

such that L1T = 0 for each coordinate (x, y, z) of the consensus

error, which implies that ec1 = · · · = ecN . Moreover, if the matrix ∆L is not

balanced, but L has a right eigenvector γ associated with λ1(L) = 0 that satisfies

Lγ = 0, therefore ∆Lγ = 0 with γ = [γ1, . . . , γN ] and γ1 = · · · = γN . Then ec =335

γ, which means that consensus is achieved. Since λ > 0 and 0 ≤ h(t) ≤ 1, then

the matrix M is positive semidefinite. Thus, V̇ < 0 for t < tf and V̇ = 0 when

consensus is achieved and one obstacle is present with h(t) > 0. Furthermore,

eo converges asymptotically when an obstacle is present and ec converges to a

consensus value. Moreover, by the control law (25) the consensus is achieved in340

a finite time according to Proposition 3.1, i.e. that limt→tf ke
T
c ∆(L⊗In)ec = 0,

where tf is a finite convergence time. Besides, if ec = γ then ev = 0 by (54),

and since ev = −(L ⊗ In)qv = 0, then qv1 = . . . = qvn and consensus of the

virtual agents positions is achieved, hence the formation of the real UAVs.

• Predefined-time control law (33). In this case, let us consider the following

extended error

e′ =

 ξ
eo

 , (58)

where ξ is defined in (34) as ξ(t) = ev(t) − hp(t)ev(0). Let us use the same345

Lyapunov candidate function (42). In this case, its time derivative is given by:

V̇ = e′T ė′ =
[
ξT eTo

] ξ̇
ėo

 . (59)

Given the definition of ξ and according to (54) and (38), where ev = −(L⊗

In)ec = −(L ⊗ In)qv, the time derivative of the tracking error between the

consensus error and the TBG reference is as follows

ξ̇ = ėv(t)− ḣp(t)ev(0) = −(L⊗ In)q̇ + ḣp(t)ev(0). (60)

Substituting (60) and (44) in (59), we have350

V̇ =
[
ξT eTo

]−(L⊗ In)

Jo

 q̇ + ḣp(t)ξT ev(0). (61)
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Introducing the hierarchical task-based control protocol (40), then

V̇ =
[
ξT eTo

]
Γp + ḣp(t)ξT ev(0), (62)

where

Γp =

Γp1

Γp2

 =

−(L⊗ In)(J+
o ė
′
1)− (L⊗ In)((JcNo)+(ėc − JcJ+

o ė
′
1))

Jo(J+
o ė
′
1) + Jo((JcNo)+(ėc − JcJ+

o ė
′
1))

 . (63)

By a similar procedure as in the finite-time approach and using the properties

of (49), the simplified matrix Γp is

Γp =

Γp1

Γp2

 =

 (L⊗ In)ėc

(1− h(t))Joėc + h(t)ėo

 . (64)

Using in these expressions the closed-loop dynamics ėo = −λeo for collision355

avoidance and ėc = −ḣp(t)ev(0) + kfξ (33) for consensus of the virtual agents,

(61) can be written as

V̇ = −
[
ξT eTo

]
Mp

 ξ
eo

+ δp(t), (65)

where

Mp =

 kf (L⊗ In) 0N×N

(1− h(t))kfJo(L⊗ In) λh(t)IN

 , (66)

δp(t) = ḣp(t)
(
ξT (ev(0)− (L⊗ In)ev(0))− (1− h(t))eTo Jo(L⊗ In)ev(0)

)
.

On the one hand, the term δp(t) can be seen as a disturbance that becomes null

after time tf , due that it depends on the time derivative of the function hp(t)

that fulfills ḣp(0) = 0 and ḣp(t ≥ tf ) = 0. On the other hand, the eigenvalues360

of matrix Mp depend on the constants values kf > 0, λ > 0, and on h(t) and

matrix L. The matrix L represents a connected and balanced graph, it has an

eigenvalue λ1(L) = 0 with an associated eigenvector 1 = [1 · · · 1]
T

such that

L1T = 0, for each coordinate (x, y, z) of the consensus error, which implies that

ξ1 = · · · = ξn. We consider that ev(0) is known and consequently the initial365

tracking error is zero (since hp(0) = 1). It is proved in [16] that there exists kf
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such that the tracking error converges to the origin although the initial value of

ev(0) was uncertain. This implies that ev tracks the reference hp(t)ev(0). Thus

ev converges to the origin at the predefined time tf at which hp(t) becomes null

and then consensus is achieved. Since λ > 0 and 0 ≤ h(t) ≤ 1, the matrix Mp370

is positive semidefinite and thus, V̇ < 0 for t < tf and V̇ = 0 when consensus

is achieved and one obstacle is present with h(t) > 0. Furthermore, the eo

converges asymptotically when there is an obstacle and ev converges to the origin

around the predefined time using the control law (33). The predefined time to

achieve consensus of the virtual agents might be affected if the task to avoid the375

obstacles is activated when ev is near to the origin, but it is guaranteed that

the origin will be reached. Moreover, when ev = 0 and since ev = −(L⊗ In)qv,

then qv1 = · · · = qvn
and consensus of the virtual agents positions is achieved,

hence the formation of the real UAVs.

Remark 1. The previous theorem guarantees that the consensus error of the380

virtual agents converges to the origin and consequently the desired formation is

achieved in finite or predefined time in the absence of obstacles. In the presence

of a finite number of obstacles and obstacles with a finite size, the desired

formation is achieved in finite time in spite of the activation and deactivation

of the obstacle avoidance task for some agents. This is due that the predefined385

time in which the desired formation is achieved by the MAS might be affected

by the time to avoid obstacles if the collision avoidance task must be performed

close to achieve the final formation. Nevertheless, since the global position of the

formation is not prefixed, the agents adapt its trajectory to reach the formation

in finite time although they perform an obstacle avoidance task at the end.390

Remark 2. As stated at the beginning of Section 3, it is assumed that each

agent has omnidirectional sensing capability and focuses to avoid only the near-

est obstacle. Thus, the obstacles can be of irregular shapes and when an obstacle

is detected by a UAV, the distance to the nearest point over the obstacle is ob-

tained and the obstacle avoidance task is activated. The UAV performs a motion395

according to the control law combining the formation and obstacle avoidance
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goals, and then, the nearest point to the obstacle is updated at each iteration

until the obstacle is not detected. In this way, the proposed approach is valid

to avoid obstacles with irregular shapes.

Remark 3. Notice that if we consider dynamic networks switching among con-400

nected graphs, the dynamics of the network becomes a switched system. In [14],

using an approach to find a common Lyapunov function [39] independent of the

communication topology, it was shown that the protocol (27) is a finite-time con-

sensus algorithm for dynamic networks. A similar analysis may be done for the

predefined-time control law (32) and both proposed protocols work for chang-405

ing communication topology. However, the time-varying topology introduces

an undesired effect of discontinuities in the control inputs when the consensus

error changes due to the topology. Since our interest is to provide a reference

signal to be tracked by the UAVs, it is required to ensure continuous velocities.

In the case of dynamic networks, continuous control signals can be generated410

by using dynamic extension, i.e. increasing the order of the integrator chain.

This extension is considered as future work.

4. Simulation results

In this section, the proposed approach is evaluated in a virtual environment

using the dynamic simulator Gazebo with a group of UAVs and all the function-415

alities programmed in ROS. The goal is to achieve the formation of the agents

represented in Fig. 1 and at the same time avoiding collisions among agents

and fixed obstacles in the environment. As a simulation example, we consider

a seven-agent system (N = 7) in a network with undirected communication

topology described by the graph of Fig. 1a.420

In the simulation, we set aij = 1 and initial conditions qx(0) = [5, 3, 3, 5, 6, 7, 5]
T

,

qy(0) = [−1,−1, 7, 5, 1, 3, 2]
T

and qz(0) = [1.2, 1.2, 4, 1.5, 2, 2.5, 3]
T

for agents

1 to 7, respectively. There are 5 columns in the environment as fixed ob-

stacles in positions qo1 = [4, 6], qo2 = [6, 2], qo3 = [2, 0], qo4 = [2, 3] and

qo5 = [6, 7], and the security distance between obstacles and agents was set425
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(a) Connected graph used in the simulations

(b) Specified formation in the dynamic sim-

ulator Gazebo

Figure 1: Communication graph and desired formation of the UAVs.

to R = 0.5. The displacement vectors for the virtual agents from A1 to A5

are vi = [1.5 cos((72i)◦), 1.5 sin((72i)◦), 0] , i ∈ 1, ..., 5 with respect to the forma-

tion center for each agent respectively, and for virtual agents A6 and A7 are

v6 = [0, 0,−1] and v7 = [0, 0, 1]. In the implementation, the transition func-

tion is h(t) = 1
2

(
1− cos

(
π (t−t0)

(tf−t0)

))
, where t0 is set to the current time value430

(t0 = t) at the instant that a UAV crosses the security distance of an obstacle,

tf = t0 + td with td the duration of the transition function, in the implementa-

tion td = 0.2s, which represents the time that takes the UAV to carry out the

obstacle avoidance.

4.1. Finite-time convergence435

In this subsection, the results of the proposed scheme detailed in Theorem

3.3 are presented using the finite-time consensus control law (25) with k = 0.5.

The results of the dynamic simulation for the two tasks of the UAVs (consensus

to achieve a formation and obstacle avoidance) are presented in Figs. 2-5. Fig. 2

shows snapshots of the UAVs motion in the environment with obstacles from440

two different perspectives (isometric views in the first row, and upper views in

the second row). The images on the left correspond to the initial position of

the UAVs; the images at the center present an intermediate position during the

UAVs motion to get the formation, and the images on the right show that the

desired formation was effectively reached. It is worth noting that some of the445
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(a) Initial position (b) Intermediate position (c) Final position

(d) Upper view of initial posi-

tion

(e) Upper view of intermedi-

ate position

(f) Upper view of final posi-

tion

Figure 2: Snapshots of the UAVs motion in the simulation.

(a) Trajectory of the virtual agents (b) Consensus of agents in x-axis

(c) Consensus of agents in y-axis (d) Consensus of agents in z-axis

Figure 3: Finite-time convergence. Consensus of virtual agents with convergence in finite-

time around 5s.
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UAVs had to avoid obstacles during their motion (for instance, see A6 in Fig. 2e)

and this aspect will be clearer in the subsequent figures of this subsection.

(a) Isometric view

Obstacle

(b) Upper view

Figure 4: Finite-time convergence. Trajectory of the UAVs reaching formation and avoid-

ing obstacles.

Figure 5: Finite-time convergence. Control inputs (velocities) of the UAVs.

Fig. 3 shows the virtual agents motion to achieve consensus. The top-
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left subfigure (Fig. 3a) depicts the 3D trajectory of the virtual agents, i.e., the

evolution of each qvi . It can be seen that consensus in these variables is achieved450

by reaching a common value q∗v . The other subfigures show the evolution in

time of the virtual agents position for each coordinate with consensus values

q∗vx = 4.13 (Fig.3b), q∗vy = 2.56 (Fig. 3c) and q∗vz = 2.93 (Fig. 3d). Then,

consensus of the virtual agents is achieved in around 5 seconds using k = 0.5 as

control gain in the finite-time consensus control law (25). Faster convergence455

could be achieved using a larger control gain, however, the convergence time

would be different for other initial positions of the UAVs. Fig. 4 presents the

trajectories of the UAVs in 3D from their initial positions (marked with an

asterisk) and the obstacles position. It is clear in the upper view that some

UAVs execute evasions of the fixed obstacles (for instance A3 and A6) and they460

also avoid each other (for instance A1 and A2). The profiles of the control

inputs (velocities) of each agent are shown in Fig. 5. We can see that the

evasion actions yield changes on the velocities evolution, for instance, UAVs

A3 and A6 avoid a fixed obstacle around the time 0.5s and UAVs A1 and A2

avoid each other around the 1s time. Notice that the profiles of velocities are465

continuous all the time thanks to the use of the smooth transition function h(t).

4.2. Predefined-time convergence

This subsection is dedicated to present the performance of the scheme de-

tailed in Theorem 3.3 using the predefined-time consensus control law (33) with

kf = 20 and the TBG described by the function hp(t) = 2(t/tf )3− 3(t/tf )2 + 1,470

which fulfills the conditions of Theorem 3.2, i.e., hp(0) = 1, hp(tf ) = 0 and

ḣp(0) = ḣp(tf ) = 0. The predefined time to reach the formation was set to

tf = 4s. The results using the Gazebo simulator are presented in Figs. 6-8.

Fig. 6 shows the consensus for the trajectories of the virtual agents. Fig. 6a

shows the 3D trajectories of all the virtual agents. It can be seen that the475

trajectories converge to a common value q∗v and therefore, the UAVs reach the

desired formation according to the displacement vectors vi. The other subfig-

ures show the evolution of the virtual agents position in each coordinate with
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respect to time. The final value of each subfigure is the corresponding consensus

value q∗vx = 3.79 (Fig. 6b), q∗vy
= 2.10 (Fig. 6c) and q∗vz = 2.20 (Fig. 6d). The480

consensus value in each coordinate is reached at the predefined time tf = 4s,

then the UAVs achieve the specified formation in that time. In this case of

predefined-time convergence, we can set a feasible desired time constrained by

the physical limitations of the UAVs and that convergence time will be accom-

plished independently of the initial UAVs positions.485

(a) Trajectory of the virtual agents (b) Consensus of agents in x-axis

(c) Consensus of agents in y-axis (d) Consensus of agents in z-axis

Figure 6: Predefined-time convergence. Consensus of virtual agents with convergence in

predefined-time of 4s.

The trajectories followed by the UAVs in this experiment are presented in

Fig. 7. Fig. 7a shows the 3D trajectories of the UAVs from their arbitrary initial

positions to reach the specified formation at time tf . Fig. 7b shows the upper

view of the same trajectories, where it can be observed that some UAVs execute

evasion of fixed obstacles (for instance A3 and A6) while others also avoid each490

other (for instance A1 and A2). The evolution in time of the UAVs velocities

is shown in Fig. 8. It is worth noting that unlike the finite-time control law,

the predefined-time approach yields null UAVs velocities at the beginning (time
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(a) Isometric view of trajectories

Obstacle

(b) Superior view of trajectories

Figure 7: Predefined-time convergence. Trajectories of the UAVs reaching formation and

avoiding obstacles.

t = 0) and the velocities evolve in a smooth way as the time grows, to finally

return to zero at the specified time tf when the formation is achieved. The495

generation of smooth control inputs, without discontinuities at the initial time

as other control laws, is a good advantage of our predefined-time control law,

which is especially beneficial for UAVs. Besides, this behavior of the velocities

presented in Fig. 8 is helpful in order to save the energy of the UAVs despite

the finite-time convergence. We can also see that the collision avoidance task500

introduces smooth changes in the velocities profiles.

4.3. Dealing with irregular unknown obstacles

This section is dedicated to show the performance of the scheme detailed in

Theorem 3.3 in environments with unknown obstacles with irregular shapes, in

particular using the predefined-time control law. The parameters hp(t), tf , kf505

are taken from the example presented in Section 4.2. The simulation setup

corresponds to 2 fixed obstacles and 5 UAVs moving in the x-y plane. Each UAV

obtains the relative position of the nearest point from the UAV to the obstacle

and when an obstacle is detected in the safety distance the task of obstacle

avoidance is activated. Fig. 9 shows the trajectories of each agent, where it can510

be seen that UAVs avoid the obstacles in the environment and reach the desired

formation. Fig. 10 shows the continuous control inputs (velocities) of each

UAV. Notice that they initiate in zero and return to zero when the formation

31



Figure 8: Predefined-time convergence. Control inputs (velocities) of the UAVs.

is achieved in 4 seconds. Fig. 11 shows the consensus of virtual agents, where

each agent achieves the consensus value at the predefined time.515

5. Results of real experiments

In this section, the validation of the control scheme is presented in a real en-

vironment with one obstacle and the formation specified for three UAVs Parrot

model Bebop 2. These UAVs have a preloaded inner controller that allows us

to specify velocity commands. Each UAV is connected via WiFi to a computer520

where the velocity commands are computed to reach a triangular formation.

The position of each UAV and the obstacle in the environment are obtained

from an Optitrack Motion Capture System. Due to limitations in the physical

space to make the experiments and to have an appropriate safety distance be-

tween UAVs, we put one of the quadrotors flying static in hover and the others525
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Figure 9: Predefined-time convergence with irregular obstacles. Trajectories of each

agent.
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Figure 10: Predefined-time convergence with irregular obstacles. Control inputs

(velocities) of the UAVs.

have to reach the formation around it autonomously.

5.1. Finite-time convergence

To validate the results of the proposed scheme in Theorem 3.3, experiments

were performed using the finite-time convergence control law (25) with k = 0.02.
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Figure 11: Predefined-time convergence with irregular obstacles. Consensus of virtual

agents with predefined-time convergence of 4s.

For the experiments with three UAVs Parrot Bebop 2, they are renamed as Ared,530

Ablue and Agreen. In this implementation, the UAV Ared flies static and the

others must reach the specified triangular formation according to it. Fig. 12

shows snapshots of one of the experiments. In particular, Fig. 12a shows the

initial conditions of each UAV and the position of the obstacle. Fig. 12b depicts

when the task of obstacle avoidance is activated and finally Fig. 12c shows the535

final position when the UAVs reach the specified formation.

Fig. 13 shows the trajectories followed by the three UAVs captured by the

Optitrack Motion Capture System. It can be seen in Fig. 13a how the UAVs

reach the specified formation from arbitrary initial conditions and, at the same

time, Agreen performs an obstacle avoidance action, which is more evident in Fig.540

13b. The computed control inputs by the proposed algorithm corresponding to

linear velocities of the UAVs are shown in Fig. 14, where around the time t = 4s,

the task of obstacle avoidance is activated.

5.2. Predefined-time convergence

In this subsection, the results of the implementation to validate the perfor-545

mance of the scheme detailed in Theorem 3.3 using the control law (33) for
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(a) Initial position (b) Intermediate position

(c) Final position

Figure 12: Snapshots of one experiment with the UAVs Parrot Bebop 2.
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(a) Isometric view of trajectories
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Figure 13: Finite-time convergence. Trajectories of the UAVs Parrot Bebop 2 reaching

formation and avoiding obstacles.

predefined-time convergence are presented. The value of the control gain used

in the implementation is k = 0.29, the TBG used is described by the function

hp(t) = 2(t/t)3 − 3(t/tf )2 + 1 and the predefined time is tf = 20. Due to the

dynamical features of the quadrotors and their own inner controller, the track-550

ing of the TBG function is not as accurate as in the simulations, which made

complicated the realization of experiments with obstacles in the constrained

available space. Therefore, we present the results of one experiment of forma-
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Figure 14: Finite-time convergence. Control inputs (velocities) of the UAVs Parrot Bebop

2 .

tion in predefined-time without obstacles in the environment and controlling in

the x− y plane.555

In this implementation, the UAV named Agreen flies static and the UAVs

Ared and Ablue must reach the formation in a predefined-time according to the

Agreen position. Fig. 15 presents the trajectories of the UAVS to achieve the

specified formation in the predefined time. The isometric view of the trajectories

is shown in Fig. 15a while an upper view is shown in Fig. 15b. The computed560

velocities given by the proposed algorithm for the controlled UAVs Ared and

Ablue are shown in Fig. 16. Notice in this figure that the control inputs present

oscillations, which may be due to the own inner controller of the UAVs. We

could not modify the time-response of the controller and its accuracy despise

small values in the velocity commands. Therefore, we use a stop condition given565

by a threshold of the consensus error norm, such that this is accomplished close

to the desired 20 seconds of convergence time, as shown in Fig. 17. This verifies

that the specified triangular formation has been successfully achieved.

A video of the simulation results and the real experiments, showing the per-

formance of the approach during the interaction of both formation and obstacle570

avoidance tasks, can be found in the following link:

https://youtu.be/loRUiCldnUo.
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Figure 15: Predefined-time convergence. Trajectories of the UAVs Parrot Bebop 2 reach-

ing formation and avoiding obstacles.
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Figure 16: Predefined-time convergence. Control inputs (velocities) of the UAVs Parrot

Bebop 2 .

6. Conclusions

This paper presented a distributed solution to the problem of position forma-

tion of a group of UAVs moving in a 3D environment while avoiding obstacles,575

using a hierarchical task-based scheme for this purpose. In this case, two tasks

are considered, the one with higher priority is devoted to avoid obstacles and

the one with lower priority to the UAVs formation. The solution interference

between both tasks is avoided in this scheme and a continuous time-dependent

transition function between tasks is used to maintain the continuity of the con-580

trol inputs (UAVs velocities). The formation control has been solved by two

novel control laws that can be used independently: the first proposed control

law allows the UAVs to achieve a specified formation in finite time, while the
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Figure 17: Predefined-time convergence. Consensus error in x-axis and y-axis.

second control law achieves a specified formation in a constant predefined time

in spite of the initial agents state. The convergence of the proposed solutions585

are proved theoretically and their effectiveness is shown in simulations and real

experiments with a group of quadrotors. As future work, we will address the

problem of trajectory tracking in formation, i.e. navigation of the whole UAVs

formation by tracking a reference given by a leader and a group of followers able

to avoid obstacles of the environment using local information. Besides, we will590

extend our results for varying topologies, ensuring continuity in the computed

velocities. We also plan to address these problems using onboard sensing to

directly obtain relative positions, for instance using vision (RGBD cameras) on

the UAVs.
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