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Abstract—We propose a robust hierarchical inverse dynamics
control scheme for redundant manipulators that guarantees both,
predefined-time convergence of regulation tasks and robustness
against model uncertainties/disturbances. Predefined-time con-
vergence of a robotic task means that the task error is regulated
to the origin at a desired preset time, independently of the initial
state of the robot. The strict hierarchy of tasks is ensured by
the so-called dynamic consistency, which avoids conflicts between
decoupled task constraints. Thus, it enables the robot with more
dexterity for reaching targets in its workspace while overcoming
obstacles and joint limits. Predefined-time convergence facilitates
the design of a time schedule to execute sequential and simultane-
ous tasks. All these features are supported by a stability analysis
and experiments with two torque-controlled mobile manipulators
in pick and place applications.

Index Terms—predefined-time convergence, super-twisting
control, hierarchical inverse dynamics, torque-controlled robots.

I. INTRODUCTION

Robots have become essential to perform specific tasks in
industrial facilities. Commonly, some tasks require fixed base
robotic manipulators while others demand mobile platforms
for object transportation. To make progress towards general
purpose assignments, mobile manipulators with kinematic
redundancy represent a better choice. In addition, the per-
formance and compliance of robot motions can be directly
handled with torque-controlled mobile manipulators.

Among the existing robot control schemes that accommo-
date these properties, the operation space formulation (OSF)
is doubtless the most studied robot control framework [1].
By means of OSF it is possible to ensure dynamic consis-
tency between a primary task and secondary robot posture
objectives [2], [3]. Its extension to multiple hierarchical tasks
has been suggested in [4]. However, model uncertanties and
disturbances significantly degrade the performance of OSF in
real robotic platforms [5].

In addition, industrial applications demand the execution of
robotic tasks in a desired time, which benefits the planning
and repeatability of a given mission. For some years now
finite and fixed-time stability have been studied to control
dynamical systems aiming to accomplish some time con-
straints, for instance in [6] for single systems and in [7], [8]
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for multi-agent systems. Such properties only provide upper
bounds of the settling time for certain regions of the initial
state, and it is often not easy to have a direct relationship
between the control gains and the convergence time. There are
recent efforts to propose feedback controllers able to guarantee
constant convergence time independently of initial conditions,
for instance, [9], [10] for single systems, [11] for multi-agent
systems and [12] for robot manipulators. This property is
called predefined-time convergence, and it allows the user
to specify a priori the settling time of a task error as a
parameter of the control law. Different from finite and fixed-
time convergence, the predefined-time convergence allows the
regulation of the closed-loop state trajectories exactly in a
preset time, independently of the initial state of the system.

A. Contributions

In this paper we deal with all the problems referred
above, i.e. model uncertainties/disturbances in OSF, a recursive
formulation that ensures dynamic consistency of hierarchi-
cal tasks, decoupled closed-loop system, the corresponding
stability analysis, and experimental validation with torque-
controlled mobile manipulators. Furthermore, we introduce
a new player of great importance in industrial applications,
which is the strict time scheduling of tasks execution.

This work significantly extend our preliminary results in
simulation presented in [13]. Here, we provide a formal anal-
ysis of the problem to derive a new robust hierarchical inverse
dynamics (RHID) capable to ensure the accomplishment of
sequential and simultaneous tasks in a predefined time. We
use a super-twisting control approach to provide the required
robustness against robot model uncertainties and disturbances.
From the recursive shared null-space projectors, we deduce
some properties to verify the dynamic consistency of the tasks,
and we exploit them to simplify the multi-task closed-loop
system where terms due to model uncertainty appear. The
analysis of projector properties, and the robustness of the
super-twisting control, allow us to prove convergence of task
errors at a predefined time, independently of the initial robot
state and despite of the execution of several non-conflicting
tasks. In addition, we present four experiments using kinematic
redundant torque-controlled mobile manipulators. In all the
cases, the robots are asked to reach a desired pose for their
end-effectors in the workspace subject to collision avoidance
and joint limits. A particular interesting experiment shows
the ability of the proposed scheme to incorporate a desire
schedule for executing tasks in a pick-and-place application.
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The experimental scenario is depicted in Fig. 1, where two
mobile manipulators perform the collaborative mission of
transporting an object, exchanging it at a meeting point, and
placing the object in a bin, all in a desired (predefined) time
while handling the hierarchy of tasks when required.

B. Related work
1) Hierarchical task space control: Since the OSF was

introduced in [1], several improvements guided by the robotics
community have been proposed to fully exploit the kinematic
redundancy of robotic systems. In [14], the control problem
is reformulated in terms of efficient convex quadratic pro-
grams to tackle the case of general actuation constraints, i.e.
control bounds, underactuation/overactuation. The inclusion of
hierarchical inequality constraints in quadratic programs was
previously studied in [15]. In [16], the activation of inequalities
is carefully handled to ensure the continuity of the input
signals.

On the other hand, the undesired effects due to model
uncertainties of the robotic system have been studied with a
real platform in [5]. Particular attention has been given to the
weighting matrix in the generalized inversion. It is verified
that the control performance degrades if the inertia matrix is
chosen as the weighting matrix. This is more evident in case of
fast robot movements due to inaccuracies of the inertia matrix
estimation. The analysis is extended in [3], which provides
more information on the use of either successive or augmented
null-space projectors. Similar to the first-order kinematic case
[17], the augmented methods [18] are less restrictive, but more
computationally demanding unless recursive algorithms come
to play [19]. In this direction, there exist some efforts to cope
with model uncertainties/disturbances within the OSF, such
as [20] where a time-delay estimation scheme is applied. A
different approach based on nonlinear optimization is sug-
gested in [21], where the generalized torque is considered
as a random variable to introduce chance constraints. Thus,
the uncertainty is encapsulated in the generalized torque.
Although this optimization-based method provides robustness
to constraint satisfaction, a constrained nonlinear optimization
problem has to be solved at each instant of time. It is then
suggested to apply sequential quadratic programming, which
is clearly more demanding in terms of computation time than
solving a quadratic program.

Different from the first-order kinematic case [17], the sta-
bility analysis of OSF with multiple hierarchical tasks had
not been carefully studied until [22] and [23] for the ideal
case (i.e. without model uncertainties/disturbances). The main
difficulty relies on the inherent coupling between hierarchical
tasks in the closed-loop system. In [22], it is proposed a
change of coordinates to shape the operational inertia ma-
trix as a block-diagonal matrix. This allows to perform the
stability analysis of a multi-task compliance controller based
on passivity and semi-definite Lyapunov functions. Recently,
this control scheme has been extended to cope with trajectory
tracking and contact impedance in the context of physical
interaction tasks [24]. Although a rigorous proof of asymptotic
stability is provided, the robustness against model uncertain-
ties/disturbances has not been explicitly considered. Thus, the

theoretical results assume the ideal case where the closed-
loop system nicely decouples hierarchical tasks by means of
dynamic consistency. There exist learning based methods for
OSF [25], which also have some robustness since the model
is learned by an inverse problem, but, to our knowledge, they
focus on a single task, and it is not clear how convergence
time constraints can be incorporated. Moreover, learning based
approaches are computationally costly.

2) Predefined-time convergence and robust control: There
exist other robot manipulator control schemes than OSF,
which overcome inaccuracies and external disturbances [26],
[27], [28]. In the first work, the design of an observer-based
controller to achieve exponential trajectory tracking subject
to both uncertain dynamics and kinematics is presented. In
[27], [28], a super-twisting controller is used, which is known
for being a robust continuous second order sliding mode
control [29]. In particular, a nested super-twisting algorithm
for uncertain robotic manipulators is proposed in [27], such
that robustness against matched and unmatched perturbations,
and continuity of the control signals are provided. A super-
twisting algorithm with time delay estimation is designed in
[28], which is based on input/output feedback linearization for
uncertain robot manipulators. To the authors’ knowledge, the
robustness properties of controllers, like the super-twisting,
have not been explored before in the OSF.

Related to the state of the art on predefined-time control,
our work extends the applicability of existing approaches [9],
[12] by considering several tasks in a hierarchical scheme.
Moreover, in contrast to [12], our approach is also valid for
mobile manipulators and guarantees accurate regulation under
bounded model uncertainties and disturbances. The proposed
control law is well-conditioned all the time, which marks
a difference from no robust approaches [10] and [11]. A
drawback of [10] is that it uses a time-scaling of the state by
means of a time function that grows unbounded as reaching
the convergence time.

The organization of the remaining sections is as follows.
In Section II, we briefly describe related works on finite
and predefined-time convergence for second order systems.
Then, Section III presents the hierarchical inverse dynamics
formulation. In Section IV, we describe the proposed RHID
scheme, and we provide the stability analysis of the closed-
loop system. In Section V we give a detailed description of
the tasks we used in the RHID. The experimental validation
with different scenarios are presented in Section VI. Finally,
we provide some concluding remarks in Section VII.

II. PREDEFINED-TIME CONVERGENCE

Providing guaranties that a controlled system will converge
in a certain bounded time has been an intense field of research
in the last decade. Such time constraints have been integrated
in the control of redundant robots in works like [30], [31],
[32], [33], [34]. Finite-time stability means that the trajectories
of a system converge to an equilibrium point in finite time.
For uncertain robotic manipulators, this has been applied for
instance in [30], [31]. In particular, these works propose a
class of continuous robust controllers based on a non-singular
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Fig. 1: Experimental scenario: Two omnidirectional mobile
manipulators perform a collaborative pick and place task.

terminal sliding mode control. In addition, adaptive techniques
and integral sliding mode control have been suggested to
achieve finite-time control of uncertain robot manipulators
[32], [33]. Fixed-time stability demands uniform boundedness
of the settling time for a globally finite-time stable system,
such that convergence of the closed-loop system is guaranteed
before an estimated bound on the settling time, independently
of the initial conditions [35]. A fixed-time inverse dynamics
control for trajectory tracking of robot manipulators is pro-
posed in [34] by using bi-limit homogeneity technique.

Few works have addressed the problem to guarantee conver-
gence in a predefined time, for instance [9], [10], [12], [11].
As described in the previous section, we have considered the
extension of [9] as the best option, since the other referred
approaches have practical issues. In [9], continuous time-
dependent polynomial functions, called time base generators
(TBGs), which reduce to zero in a specified time, are used
as reference trajectories in a tracking scheme together with
a robust controller. It guarantees convergence of the state
in predefined-time, even for bounded matched disturbances.
Such robust scheme is exploited in this work to guarantee
that hierarchical robotic tasks, controlled at dynamic level, are
performed in a desired time.

In the rest of this section, we briefly summarize the defini-
tion of TBG functions. Consider the double integrator system
ë(t) = u(t), which is of interest for dynamic control of
robotic tasks. According to [9], to achieve predefined-time
convergence, the control input u(t) must be designed to track
desired profiles for e(t) and ė(t). Two TBGs are required to
set such profiles, which are defined as follows:

hj(t) =

{
g(t) · cj if t ∈ [0, tf ]
0 otherwise (1)

where j ∈ {1, 2}, g(t) = [tr tr−1 . . . t 1] is the time basis
vector with r ≥ 5 and cj is a vector of coefficients. The
functions hj(t) are continuous and smooth such that ḣj(t)
and ḧj(t) exist. The desired profiles evolution of the state
trajectories in terms of the TBGs h1(t), and h2(t) are:

e(t) = e(0)h1(t) + ė(0)h2(t),

ė(t) = e(0)ḣ1(t) + ė(0)ḣ2(t). (2)

Thus, for time t = 0, the TBG functions must accomplish
h1(0) = ḣ2(0) = 1 from the first equation, and h2(0) =
ḣ1(0) = 0 from the second equation in (2). Besides, ḣ1(t) =
ḣ2(t) = 0 for t ≥ tf .

A straightforward method to compute hj(t) and its first and
second time derivatives consists of solving the following linear
system to find the coefficients cj for r = 5:[

c1 c2
]

=

[
G(0)
G(tf )

]−1 [
I
0

]
(3)

where cj ∈ R6 is the vector of coefficients,

G(t) =

g(t)
ġ(t)
g̈(t)


is the time basis matrix, I ∈ R3×2 is an identity matrix and 0 ∈
R3×2 a matrix of zeros. It is, however, possible to allow more
flexibility during the computation of coefficients by setting r >
5 as it has been suggested in [9]. In that case, pseudoinversion
can be used in (3) to compute the coefficients of the TBGs.

III. TASK-SPACE INVERSE DYNAMICS FORMULATION

The robot inverse dynamics problem involves the computa-
tion of the robot’s equations of motion. For this purpose, we
use the d’Alembert-Lagrange formulation:

A(q)q̈ + b(q, q̇) = τ (4)

where {q, q̇, q̈} ∈ Rn are the joint position, velocity and ac-
celeration, respectively. A(q) ∈ Rn×n denotes the symmetric
positive definite inertial matrix, the vector of nonlinear terms
is:

b(q, q̇) , C(q, q̇)q̇ + g(q) ∈ Rn (5)

where C(q, q̇) ∈ Rn×n contains the Coriolis and centrifugal
terms, g(q) ∈ Rn represents the gravity and τ ∈ Rn is the
vector of generalized input torques.

A. Task definition
A task is simply an error function in terms of the robot’s

configuration together with the corresponding differential map-
ping between the task and configuration coordinates associated
to the robotic system [36]:

e = x(q)− xd ∈ Rm (6)

where x(q) is obtained by means of forward kinematics, xd is
a constant vector of desired values of the task, and therefore

ė = ẋ = Jq̇ with J =
∂e

∂q
∈ Rm×n the task Jacobian. We

assume that (6) is twice differentiable with respect to time:

ë = Jq̈ + J̇ q̇. (7)

By solving for q̈ in (4) and plugging it in (7) yields:

ë = Qτ + µ (8)

where Q = JA−1 ∈ Rm×n and µ = −Qb+ J̇ q̇ ∈ Rm is the
task’s drift. The task-based inverse dynamics is obtained by
solving for τ in (8) as follows:

τ = Q#A (u− µ) ∈ Rn (9)

where

Q#A = AQT
[
QAQT

]−1
= JT

[
JA−1JT

]−1 ∈ Rn×m
(10)

is the weighted generalized inversion of JA−1, and u is an
auxiliary vector of control inputs to be designed.
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B. Definition of hierarchical tasks

The hierarchical inverse dynamics is a powerful control
framework to exploit the kinematic redundancy of torque-
controlled robotic systems [1], which can be subject to rigid
contacts and underactuation constraints [4], [15] as well as
actuation redundancy [14]. The main idea is to define a set
of p tasks to be executed simultaneously. This is possible
because the dimension of the task space is less than that of
the configuration space, i.e. m < n. To overcome possible
conflicts among tasks, a hierarchy between them is imposed
such that (9) becomes:

τ =

p∑
i=1

τi ∈ Rn, (11)

τi = Q
#A

i

(
ui −Qi

i−1∑
k=0

τk − µi

)
∈ Rn, (12)

Ni = Ni−1 −Q
#A

i Qi ∈ Rn×n (13)

where Qi = QiNi−1 ∈ Rmi×n, Q
#A

i = AQ
T

i

[
QiAQ

T

i

]−1
∈

Rn×mi , τ0 = 0 and N0 = In. Notice that Ni is the null-space
projector of Qi.

The recursion in (12) is the inverse dynamics formulation
of the kinematics one that was introduced in [18], where
the contribution of higher hierarchical tasks is taken into
account to solve the current task. In [18], the shared null-
space projector is calculated with the so-called augmented
Jacobian, which stacks the associated task Jacobians of higher
hierarchy. However, the recursive update of the null-space
projector (13), that was proposed in [19], is faster than the
augmented Jacobian method.

C. Properties of null-space projectors

Based on the dynamically consistent property of null-space
projectors introduced in [2], and recently studied in [3], we
deduced the following set of properties that turn to be useful
to proof the stability of the proposed control law described in
Section IV. In particular, it is possible to verify that

NiNj =

{
Nj if j ≥ i
Ni if j < i

(14)

QiNj =

{
Qi if i > j

0 if i ≤ j
(15)

NjQ
#A

i =

{
Q

#A

i if i > j

0 if i ≤ j
(16)

where (16) mainly relies on the fact that

NiAN
T
i = ANT

i (17)

It can also be deduced:

QiQ
#A

j =

{
I if i = j

0 if i 6= j
(18)

However, note that

QiQ
#A

j =


I if i = j

0 if i < j

QiQ
#A

j if i > j

(19)

The proof of (14)-(19) is given in Appendix A.

IV. ROBUST HIERARCHICAL INVERSE DYNAMICS WITH
PREDEFINED-TIME CONVERGENCE

The objective now is to use the TBG as reference profiles in
a tracking control law to drive the task errors of a hierarchical
inverse dynamics scheme to converge in a predefined-time. In
particular, we take advantage of both the TBG together with
a super-twisting control (STC), which is capable to cope with
matched uncertainties/disturbances [37].

Definition 4.1 (Problem definition): Given a robot model of
the form (4) and one or p tasks defined as in (6), design
a control law τ = Υ(e1, ..., ep, t) such that the task error
functions e1, ..., ep converge all of them to zero in a predefined
finite time tf from any initial condition when there are not
conflicts between hierarchical tasks. In case of conflicts, the
error convergence of lower hierarchical tasks is subject to the
error convergence of tasks with higher hierarchy. Moreover,
convergence is achieved even in the presence of uncertainty
in the parameters of the robot model and external disturbances.

Remark 4.2: We assume, as in the literature on predefined-
time convergence, that the specified desired settling time is
physically feasible. Thus, the minimum time that the system is
able to execute for a given task, in some particular conditions,
is not in the scope of the problem definition.

A. Uncertainty bounds in the parameters of the robot model

Since the inertia matrix A is positive definite, it is assumed:

Amin ≤ ‖A−1‖ ≤ Amax <∞, ∀q ∈ Rn (20)

where Amin and Amax are two positive constants. Also there
exists a constant 0 < α < 1 such that (see [38]),

‖A−1Ã− I‖ ≤ α (21)

where model uncertainties of the robotic system are contained
in Ã ∈ Rn×n. Hence, in task space we have:

M = JA−1JT
[
JÃ−1JT

]−1
= QQ̃#A

‖M‖ =
∥∥∥QQ̃#A

∥∥∥ ≤Mmax (22)

where Mmax is a positive constant upper bound. Notice that
in the ideal case in which Ã = A, we have M = Im.
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B. Single task formulation

Let us define a vector of tracking error as

ε = e− ed(t) ∈ Rm, (23)

where
ed(t) = h1(t)e(0) + h2(t)ė(0) ∈ Rm. (24)

with e = x(q)− xd and ė = ẋ according to (6).
Theorem 4.3: Consider the TBG functions (1) with tf as

the desired convergence time for the dynamics (8) and esti-
mated values of A and µ as Ã and µ̃, respectively. There exist
gains {k1, k2, k3} ∈ R such that the continuous time-varying
STC

τ = Q̃#A(u− µ̃) ∈ Rn, (25)

with

u = ëd(t)− k3ε̇− k1Ssign(s) + v ∈ Rm,
v̇ = −k2sign(s) ∈ Rm, (26)

and s = k3ε + ε̇ ∈ Rm, S = diag(|s1|1/2, ..., |sm|1/2),
achieves global asymptotic stability of the tracking error (23),
and therefore predefined-time convergence for the system (8)
to the origin is attained. Thus, the task specified by (6) is
achieved at time tf .

Proof: Given the definition of the tracking error, we have
ε̈ = ë−ëd(t), where ë is given by (8). The model uncertainties
of the robotic system are contained in Ã ∈ Rn×n and b̃ ∈
Rn, with A fulfilling (21). As a consequence, the task-space
dynamics is also subject to these model uncertainties, and the
control law compensates the uncertain drift of the task in (25),
where µ̃ is given by:

µ̃ = −Q̃b̃+ J̇ q̇. (27)

Therefore, under the presence of parametric uncertainties,
we have that M 6= Im, which fulfills the bounding condition
(22). Moreover, the closed-loop dynamics of the tracking error
has the form

ε̈ = Mu+ γ, (28)
= −k1MSsign(s) +Mv − k3Mε̇+Mëd(t) + γ

where γ = µ−Mµ̃− ëd(t). We assume that the model uncer-
tainties are such that the matrix M remains close to diagonal.
This is justified since algorithms of parameter identification
are accurate enough, given uncertainties lower than 15% even
for an inertial matrix only composed by diagonal constant
coefficients [20].

In that case, the sliding surface dynamics is given by

ṡ = k3ε̇+ ε̈, (29)

and substituting (28) into (29) we have:

ṡ = −k1MSsign(s) +Mv + Γ,

v̇ = −k2sign(s), (30)

where

Γ = k3ε̇− k3Mε̇+ µ−Mµ̃− ëd(t) +Mëd(t) (31)

is a bounded perturbation.

In the ideal case in which Ã = A and µ̃ = µ, we have that
Q̃ = Q and µ̃ = µ. Therefore M = Im and Γ = 0. Then, the
closed-loop dynamics of the tracking error is given by

ε̈ = u− ëd(t), (32)

The sliding surface dynamics is then simplified as

ṡ = −k1Ssign(s) + v

v̇ = −k2sign(s) (33)

This corresponds to the typical super-twisting dynamics,
which is known to achieve convergence in finite-time to the
origin [37], i.e. (s, v) = (0, 0), provided that k1 > 0 and
k2 > 0. Then, the dynamics of the tracking error (28) is
constrained to s = ṡ = 0, and consequently ε̇ = −k3ε. It
implies the global asymptotic stability of the tracking error
(28). Consequently, the state of the system (8) tracks the TBG
references and, it is driven to the origin (e, ė) = (0, 0) in the
predefined time tf .

In the case of considering the parametric uncertainty in the
robot model, we take into account the perturbation Γ 6= 0 and
the matrix M 6= Im. Using the change of variable % = Mv+Γ,
we have:

ṡ = −k1MSsign(s) + %

%̇ = −k2Msign(s) + Γ̇ (34)

The matrix M can be seen as a scaling of the control gains.
Moreover, it can be replaced by its upper bound value MmaxI2
in the worst case. For an appropriate choice of those k1 and k2,
the global convergence in finite time of (34) to the origin, i.e.
(s, %) = (0, 0), is ensured in the presence of continuously and
smooth bounded entries of the disturbance vector, i.e. |Γi| < `
and |Γ̇i| < η for i = 1, ...,m and some constants ` > 0 and
η > 0, as it has been proved in [37], [39]. Particularly, the
gains can be set as k2 > η and k1 > 1.41

√
k2 + η, according

to [39], to guarantee global convergence to the origin of (34)
in a characterized finite time.

Therefore, the tracking error dynamics is constrained to
evolve on the sliding surface, and the same conclusion as in
the ideal case holds: the state of the system (8) tracks the TBG
references, and it is driven to the origin (e, ė) = (0, 0) in the
predefined time tf .

Remark 4.4: The super-twisting control is well known for
its robustness property, and it mitigates the chattering problem,
since it does not require high closed-loop frequency, at being
a second order sliding mode approach [40].

C. Hierarchical tasks

The convergence in predefined-time of several task func-
tions is also addressed by tracking time-varying references
given by TBG signals.

Let us consider p different tasks specified as in (6) where
their second order dynamics are given by (8). The correspond-
ing error to track the TBG references are defined as (23).

In the following theorem, we extend the previous robust
control law for predefined-time convergence to the hierarchical
task-based scheme (11).



6

Theorem 4.5: Consider the TBG functions (1) with tf the
desired convergence time for the dynamics (8) and estimated
values of A and µ as Ã and µ̃, respectively. There exist positive
gains {ki1 , ki2 , ki3} ∈ R such that the hierarchical task-based
control law

τ =

p∑
i=1

τi ∈ Rn, (35)

τi = Q̃
#A

i (ui − α̃i) ∈ Rn, (36)

Ñi = Ñi−1 − Q̃
#A

i Q̃i ∈ Rn×n

with τ0 = 0 and Ñ0 = In, where Q̃i = Q̃iÑi−1 ∈ Rmi×n,
α̃i = Q̃i

∑i−1
k=0 τk − µ̃i ∈ Rmi , µ̃i = Q̃ih− J̇iq̇ ∈ Rmi and

ui = ëdi (t)− ki3 ε̇i − ki1Sisign(si) + vi ∈ Rmi ,

v̇i = −ki2sign(si) ∈ Rmi , (37)

and si = ki3εi + ε̇i ∈ Rmi , Si = diag(|si1 |1/2, ..., |smi |1/2),
achieves global asymptotic stability of each tracking error (23),
and therefore predefined-time convergence for each system (8)
to the origin is attained. Thus, the tasks specified by (6) are
all simultaneously achieved in time tf .

Proof: The stability proof is first shown for three tasks,
then it is generalized for p tasks. In the three tasks case, (35)
takes the following form:

τ = τ1 + τ2 + τ3 ∈ Rn (38)

where

τ1 = Q̃
#A

1 (u1 − α̃1)

τ2 = Q̃
#A

2 (u2 − α̃2)

τ3 = Q̃
#A

3 (u3 − α̃3)

with

α̃1 = −µ̃1

α̃2 = Q̃2τ1 − µ̃2

α̃3 = Q̃3(τ1 + τ2)− µ̃3

The second order dynamics of the tracking errors (23) can
be written as:

ε̈1 = Q1 (τ1 + τ2 + τ3) + α1 − ëd1(t) ∈ Rm1 (39)
ε̈2 = Q2 (τ2 + τ3) + α2 − ëd2(t) ∈ Rm2 (40)
ε̈3 = Q3τ3 + α3 − ëd3(t) ∈ Rm3 (41)

where

α1 = −µ1

α2 = Q2τ1 − µ2

α3 = Q3(τ1 + τ2)− µ3

The computation of (39), (40) and (41) can be expressed in
matrix form as:ε̈1ε̈2

ε̈3

 =

M1 C12 C13

0 M2 C23

0 0 M3

u1u2
u3

+

γ1γ2
γ3

 (42)

where M1,M2 and M3 are defined as in (22). The upper trian-

gular terms in (42) stands for C12 = Q1Q̃
#A

2 , C13 = Q1Q̃
#A

3

and C23 = Q2Q̃
#A

3 with

γ1 = α1 −M1α̃1 − C12α̃2 − C13α̃3 − ëd1(t)

γ2 = α2 −M2α̃2 − C23α̃3 − ëd2(t)

γ3 = α3 −M3α̃3 − ëd3(t) (43)

In the ideal case, in which Ã = A and µ̃ = µ, we have that
Q̃i = Qi and α̃i = αi. On the one hand, the matrices Mi:

Mi = QiQ
#A

i = Imi
for i = 1, . . . , 3. (44)

Note that from (19), the upper triangular terms become:

Cij = QiQ
#A

j = 0mi×mj
for i < j and {i, j} ∈ {1, 2, 3}

(45)
Consequently, the tracking error dynamics is reduced to the

following three decoupled second order systems:ε̈1ε̈2
ε̈3

 =

 Im1
0m1×m2

0m1×m3

0m2×m1 Im2 0m2×m3

0m3×m1 0m3×m2 Im3

u1u2
u3

−
ëd1(t)
ëd2(t)
ëd3(t)


(46)

The second order dynamics of each tracking error is then
similar to (32), which has been proved in Theorem 1 to con-
verge globally asymptotically to the origin. Therefore, by using
the control inputs defined in (37), each decoupled tracking
error dynamics (46) achieves global asymptotic stability and
predefined-time convergence for each system (8) to the origin
is attained.

In the non-ideal case, in which we consider parametric
uncertainty in the robot model, the second order dynamics
in (42) must be analyzed with all its terms. At this stage, the
second order dynamics is generalized to p hierarchical tasks
since its structure is preserved:


ε̈1
ε̈2
...
ε̈p

 =


M1 C12 · · · C1p

0 M2

...
...

. . .
0 · · · Mp



u1
u2
...
up

+


γ1
γ2
...
γp

 (47)

with γi = αi −Miα̃i −
(∑p

j=i+1 Cijα̃j

)
− ëdi (t).

First, we need to prove that as matrix Ã tends to A, then

Mi = QiQ̃
#A

i ≈ Imi×mi
, for i = 1, . . . , p (48)

Cij = QiQ̃
#A

j ≈ 0mi×mj , if i < j. (49)

Recall the definitions Qi := JiA
−1, Qi := QiNi−1 and

Q#A

i := AQTi (QiAQ
T
i )−1. Now, let us prove (48) as follows:

QiQ̃
#A

i = JiA
−1ÃQ̃

T

i

[
Q̃iÃQ̃

T

i

]−1
= JiA

−1Ã
[
Q̃iÑi−1

]T [
Q̃iÑi−1Ã

[
Q̃iÑi−1

]T]−1
= JiA

−1ÃÑT
i−1Ã

−TJTi

[
JiÃ

−1Ñi−1ÃÑ
T
i−1Ã

−TJTi

]−1
(50)
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By applying the property Ñi−1ÃÑ
T
i−1 = ÃÑT

i−1 given in
(17), it is deduced that:

QiQ̃
#A

i = JiA
−1ÃÑT

i−1Ã
−TJTi

[
JiÃ

−1ÃÑT
i−1Ã

−TJTi

]−1
= JiA

−1ÃÑT
i−1Ã

−TJTi

[
JiÑ

T
i−1Ã

−TJTi

]−1
:= Mi

(51)

It can be seen in the underlined terms that as Ã tends to A,

Mi = QiQ̃
#A

i tends to Imi×mi , since A−1Ã ≈ In.
To prove (49), we proceed as follows:

QiQ̃
#A

j = QiÃQ̃
T

j

[
Q̃jÃQ̃

T

j

]−1
= QiÃ

[
Q̃jÑj−1

]T [
Q̃jÑj−1Ã

[
Q̃jÑj−1

]T]−1
= QiÃÑ

T
j−1Q̃

T
j

[
Q̃jÑj−1ÃÑ

T
j−1Q̃

T
j

]−1
By applying the property (17) and ÃÑT

j−1 = Ñj−1Ã, we
have:

QiQ̃
#A

j = QiÑj−1ÃQ̃
T
j

[
Q̃jÑj−1ÃQ̃

T
j

]−1
(52)

From (103), proved in Appendix A, QiNi = 0 holds in the
ideal case. Therefore, the underlined product QiÑj−1 is the
one that could nullify (52), and it is analyzed. Since i < j,
then given the property (14), and more generally (101), we
rewrite

QiÑj−1 = QiÑiÑi+1...Ñj−2Ñj−1 (53)

= Qi

[
Ñi−1 − Q̃

#A

i Q̃i

]
Ñi+1...Ñj−2Ñj−1

=

[
QiÑi−1 −QiQ̃

#A

i Q̃i

]
Ñi+1...Ñj−2Ñj−1 (54)

Using (51), i.e., QiQ̃
#A

i = Mi, and knowing that Mi tends
to Imi×mi

as well as QiÑi−1 tends to Q̃i as Ã tends to A,

we have that QiQ̃
#A

j tends to a null matrix as Ã tends to A.
Thus, for bounded uncertainties in matrix A, we will have

bounded no-null terms Cij , and (47) can be written as

ε̈i = Miui + Γi for i = 1, . . . , p (55)

with

Γi =

 p∑
j=i+1

Cijuj

+ γi (56)

Each dynamics in (55) is similar to (28) in the perturbed
case. Therefore, similarly as in Theorem 4.1, it is concluded
that the state of the systems (8) tracks the TBG references, and
they are driven to the origin (ei, ėi) = (0, 0) in the predefined
time tf .

V. THE STRUCTURE OF HIERARCHICAL TASKS

In hierarchical inverse dynamics schemes, the relation be-
tween the expected motion behavior of the robot and the
corresponding number of hierarchical tasks heavily relies on
user experience. However, there exist some tasks that are
commonly considered regardless of the type of kinematically
redundant robot. For instance, positioning tasks to regulate the
robot’s end-effector to a desired position and orientation. Also,
joint limits satisfaction and obstacle avoidance are important.
Although these constraints are naturally defined as a set of
inequalities, the proposed scheme handles them by means of
smooth transition functions as it is explained below.

A. Joint limits task

The task for the upper limit of the j-th joint coordinate is:

elj = q∗j − qj ∈ R (57)

where q∗j = q̄j − β is the difference between the upper joint
limit q̄j and an activation buffer β. In this case, the second
order task dynamics is:

ëlj = Qljτlj + µlj (58)

where Qlj = JljA
−1 and µlj = −Qlj b with

Jlj =
[
α1 · · · αj · · · αn

]
∈ Rn, (59)

the element αj = 1 if qj ≥ q∗j , i.e. the joint limit is an active
constraint, otherwise αj = 0. The remaining row elements
αi = 0 for i = 1, . . . , n and i 6= j. The control law for a
single joint limit task j is computed as follows:

τlj = Q
#A

lj

(
u′lj − µlj

)
(60)

where Qlj = QljN0 with N0 = In, and u′lj corresponds to the
intermediate value of the j-th joint limit, as suggested in the
smooth task transition strategies described in [41] to overcome
abrupt activation and deactivation of joint limits. In particular,
the intermediate value is computed as:

u′lj = f(q)ulj + (1− f(q))Qljτl[\j] (61)

with the auxiliary control input ulj obtained from (37), where
no predefined-time convergence trajectory needs to be spec-
ified, i.e., edlj (t) = ėdlj (t) = ëdlj (t) = 0. f(q) ∈ [0, 1] is a
generic smooth transition function and τl[\j] denotes a control
law similar to (60) for all active tasks different from the jth-
task. It is computed as:

τl[\j] = Q
#A

l[\j]

(
ul[\j] − µl[\j]

)
where Ql[\j] = Ql[\j]N0,

Ql[\j] =



Ql1
...

Qlj−1

Qlj+1

...
Qln


, ul[\j] =



ulj
...

ulj−1

ulj+1

...
uln


, and µl[\j] =



µlj
...

µlj−1

µlj+1

...
µln


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B. Obstacle avoidance task

Similar to joint limits, if the robot approaches the obstacles,
the corresponding equality constraint is activated. In particular,
each obstacle is embedded within a spherical shell of radii dm
and dM , with dm < dM . Thus, the obstacle avoidance task is
defined as

eci =


di,j − dM
di,j+1 − dM

...
di,r − dM

 ∈ Rr (62)

with di,j = ‖ci−cj‖ the distance from a control point attached
to the robot ci(q) ∈ R3, and the nearest point over the j-th
obstacle cj ∈ R3. Assuming cj is constant, the time derivative
of (62) becomes

ėci = LTi Jci q̇ ∈ Rr (63)

where Jci =
∂ci

∂q
∈ R3×n is the linear velocity Jacobian and

Li =
[
li,j li,j+1 . . . li,r

]
∈ R3×r with

li,j =
ci − cj
‖ci − cj‖

∈ R3 (64)

and its time derivative:

l̇i,j =
(
lTijJci q̇

) ci − cj
‖ci − cj‖2

− Jci q̇
‖ci − cj‖
‖ci − cj‖2

∈ R3 (65)

is needed to construct L̇i =
[
l̇i,j l̇i,j+1 . . . l̇i,r

]
∈ R3×r

in order to compute the time derivative of (63):

ëci = LTi Jci q̈ +
[
LTi J̇ci + L̇Ti Jci

]
q̇ ∈ Rr (66)

By solving for q̈ in (4) and plugging it in (66) gives the error
dynamics of the obstacle avoidance task:

ëci = Qciτci + µci ∈ Rr (67)

where Qci = LTi JciA
−1 ∈ Rr×n, and µci = −Qcih +[

LTi J̇ci + L̇Ti Jci

]
q̇ ∈ Rr. Thus, the control law becomes:

τci = Q
#A

ci

(
u′ci − µci

)
(68)

where Qci = QciNl with Nl as the null-space projector
of joint limits task. Given that the rank of Qci depends on
how many obstacle avoidance tasks are activated, i.e. r, the
auxiliary control u′ci ∈ Rr contains the intermediate values
u′ci,j ∈ R which are computed as

u′ci,j = f(di,j)uci,j + (1− f(di,j))Qci,jτci,[\j] (69)

where Qci,j = lTi,jJciA
−1 ∈ Rn, f(di,j) ∈ [0, 1] is a smooth

transition function, and

τci,[\j] = Q
#A

ci,[\j]
(uci,[\j] − µci,[\j]) (70)

where Qci,[\j] = LTi,[\j]JciA
−1Nl ∈ R(r−1)×n, uci,[\j] ∈

Rr−1 and µci,[\j] ∈ Rr−1. Similar to the joint limits task, the
auxiliary control uci,j is computed as (37) without specifying
a predefined-time convergence trajectory.

C. Position and orientation tasks

Regarding the orientation task, we parametrized the end-
effector’s orientation with unit quaternions to avoid singulari-
ties. Thus, the task error with respect to the orientation of the
robot’s end-effector is:

eξ = ξd1ξ[2:4] − ξ1ξd[2:4] + ξ̂d[2:4]ξ[2:4] (71)

where ξd = [ξd1 ξd2 ξd3 ξd4 ]T ∈ S3 is the desired robot’s end-
effector orientation expressed in terms of a unit quaternion,
ξ(q) = [ξ1 ξ2 ξ3 ξ4]T ∈ S3 is the current robot’s end-effector
orientation, and

ξ̂d[2:4] =

 0 −ξd4 ξd3
ξd4 0 −ξd2
−ξd3 ξd2 0

 (72)

is the 3 by 3 skew-symmetric matrix operator. The second-
order system for the orientation task becomes:

ëξ = Qξτξ + µξ (73)

and thus, the orientation control is:

τξ = Q
#A

ξ (uξ − µξ) (74)

where uξ is obtained from (37), and Qξ = JξA
−1, Qξ =

QξNc with Nc as the null-space projector of the obstacle
avoidance task, µξ = −Qξb + J̇ξ q̇ with Jξ as the end-
effector’s orientation Jacobian, and µξ is the drift of angular
accelerations at the end-effector.

The position task is defined by the error between the current
p and desired pd end-effector positions:

ep = p(q)− pd ∈ R3 (75)

The second order system of this task becomes:

ëp = Qpτp + µp (76)

and thus, the position control is:

τp = Q
#A

p (up − µp) (77)

where up is obtained from (37), and Qp = JpA
−1, Qp =

QpNξ with Nξ as the null-space projector of the orientation
task, µp = −Qpb + J̇pq̇, with Jp the end-effector’s position
Jacobian, and µp the drift of linear accelerations at the robot’s
end-effector. It can be now observed that the hierarchical
structure is imposed as el � ec � eξ � ep where a � b
means that a is at a higher hierarchical level than b.

Remark 5.1: Notice that we propose a reactive method to
avoid collisions of the robot for unknown environments; the
method does not require a path planning stage. Due to the
hierarchical structure of the tasks, it could happen that tasks
with higher hierarchy may prevent the full accomplishment of
secondary tasks, meaning that a task error may converge to a
vicinity of the origin, respecting the desired predefined time
as its settling time.
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Robot
- Encoders
- Markers
- Motors

Controls
τ = τl + τc + τξ + τp

τl = Q̃
#A

l (u′l − α̃l)

τc = Q̃
#A

c (u′c − α̃c)

τξ = Q̃
#A

ξ (uξ − α̃ξ)

τp = Q̃
#A

p (up − α̃p)
α̃i = Q̃i

∑i−1
k=0 τk + µ̃i

Acceleration kinematics
J(q), J̇(q, q̇), eξ(q), ėξ(q̇), ėp(q̇)

Dynamic model
Q̃i = Ji(q)Ã(q)−1

Q̃i = Q̃iÑi−1
µ̃i = Q̃ib̃(q, q̇)− J̇iq̇

Auxiliary controls
ul = STC(q, q̇)
uc = STC(ec, ėc)
up = TBGSTC(t, ep, ėp)
uξ = TBGSTC(t, eξ, ėξ)

Optitrack
Roboti
Objectj

External PC;
ep(pi, pdj )
ec(ci, cj)

Client
Robot computer

thread 2:
computation of dynamics and control

Server

ui

q, q̇

Markers position

Q̃i, µ̃i

eξ, ėc, ėξ, ėp

Ji, J̇i

Robot computer thread 1:
Sockets communication

ep, ec

τ

ROS
communication
ci, cj , pi, pdj

Fig. 2: Communication scheme: the green box represents
the robot’s onboard computation over two threads. The red
box represents the external computer where the task errors are
evaluated.

VI. EXPERIMENTS

We implemented the torque-mode hierarchical control law
(35), using the robust predefined-time controller (37) for regu-
lation tasks, on mobile manipulators KUKA youBot composed
by eight degrees of freedom. The computation was carried
out on the robots onboard computer Mini-ITX, with an Intel
AtomTM Dual Core D510 (1M Cache, 2 x 1.66 GHz), RAM
Memory 2 GB single-channel DDR2 667 MHz. Its operating
system is Ubuntu 12.04 LTS. Each arm has a payload of
0.5 Kg. Communication with actuators and encoders is via
EtherCAT at 1 ms cycle, through which we can send torque
commands and read joint positions and velocities. The whole
control scheme was implemented in ANSI C++, and the
routines related to numerical linear algebra used Eigen 3.1.1.

We used an optical tracking system (Optitrack) with twelve
cameras placed around the workspace to get the position
coordinates of the robot end-effector, its mobile base as well
as the target and obstacles positions with respect to the same
workspace reference frame. The Optitrack worked at 120 fps.
which allowed to compute the task errors (62), (75) and (71).

We created a centralized communication network using an
external computer with Ubuntu 14.04 LTS (Trusty) as the cen-
tral hub, which communicated with the Optitrack using ROS
Indigo Igloo. We used socket programming in a client/server
model to communicate the robots built-in computers (clients)
with the central hub (server). As depicted in Fig. 2, the server
received spatial coordinates from the Optitrack, and the task
errors were sent to the robots. Each robot computed its own
control law (35) to be sent to the motors as shown in Fig. 3.

Note that the control law is model-based, which implies
the computation of the robot’s equations of motion (4). In
particular, we applied the spatial Newton-Euler algorithm to
efficiently evaluate the non-linear terms encoded in b(q, q̇),
and the inertia matrix A(q) is obtained with the Composite-
Rigid-Body algorithm [42]. We used the manufacturer’s phys-

ical parameters, which are found in youbot website1. These
parameters are typically an estimation of the real ones. Thus,
the model considered for control design is uncertain.

A. Mobile manipulator model

The configuration of the experimental platform is given by

q =

[
qb
qm

]
∈ SE(2)× T5 (78)

where qb ∈ SE(2) corresponds to the position and orientation
coordinates of the vehicle, and qm ∈ T5 is the manipulator’s
joint coordinates. The KUKA youBot is an omni-directional
mobile manipulator, with a mobile base actuated by four
mecanum-wheels. It has indeed nine actuators. Thus, the
following assumptions have been considered to determine
the relationship between actuators/torques and generalized
forces/torques:

- A horizontal flat surface is considered as the floor.
- The wheels are always in contact with the floor, and they

do not slip.
- The contact forces at the wheels match the gravity force

acting on the mobile base.
- The driving and sliding torques of the wheels, and the

contact forces at the wheels, are the only acting forces.

The generalized torques τ are related with the actuated torques
τa, containing the wheel’s and manipulator torques τb ∈ R4

and τm ∈ R5, respectively, by means of the following torque
distribution transformation:

τa =

[
τb
τm

]
=

[
J+
b 0
0 I5

]
τ ∈ R9 (79)

where

J+
b =


r
4 − r4 − r

4(`+d)
r
4

r
4

r
4(`+d)

r
4 − r4

r
4(`+d)

r
4

r
4 − r

4(`+d)

 (80)

depends on the vehicle’s parameters as depicted in Fig. 3.
Proposition 6.1: The equations of motion in (4) as well as

the control laws (25) and (35) hold for mobile manipulators
under the given assumptions together with (79).

Proof: See Appendix B.

B. Experimental Results

The proposed robust control scheme with predefined-time
convergence was evaluated through five experiments to test
its performance under different operation regimes. Four tasks
described in Section V have been considered in the ex-
perimental evaluation according to the following hierarchy:
el � ec � eξ � ep.

1http://www.youbot-store.com/developers/kuka-youbot-kinematics-
dynamics-and-3d-model-81
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(a) Top view (b) Side view

Fig. 3: The mobile manipulator. Left: torque distribution of
the mobile platform. Right: kinematic structure of the mobile
manipulator.

1) Experiment 1: Fast regulation task: The robustness of
the controller was verified in three different cases of regulation
tasks for the end-effector, which included short and long
robot displacements to be completed in 5 s. The three initial
conditions, in distance to the goal, are 1.6m, 3.1m and 2.2m.
The control gains were kp1 = kξ1 = 8, kp2 = kξ2 = 4,
kp3 = 30 and kξ3 = 35. It is important to note that these
control gains did not vary regardless of the initial conditions.
Also, note that joint limits did not require to be accomplished
at a given time (i.e. they are handled as inequality constraints).
The gains for the joint limits task were klj1 = 1, klj2 = 0.1
and klj3 = 25 for each joint j and, they were the same for the
rest of experiments.

In Figs. 4.(a) - 4.(f) are shown the errors convergence of the
end-effector pose coordinates at the predefined time of 5 s in
the three different cases. It is observed that the position and
orientation errors converged with good precision, even in the
case of large displacements and fast motions.

Figs. 4.(g) - 4.(i) show the sliding surfaces associated to the
end-effector pose coordinates, which reached values close to
zero around the predefined-time. Figs. 4.(j) - 4.(l) show the
smooth activation of joint limits.

2) Experiment 2: Regulation task with two static obstacles:
We verified the controller performance for executing a regu-
lation task that consists of reaching an object. The robot had
to navigate through a longer distance than in Experiment 1
while avoiding static obstacles. The reaching task must be
completed at a predefined time of 20 s. In this case, the control
gains were kp1 = kξ1 = 8, kp2 = kξ2 = 4, kp3 = 25
and kξ3 = 30. Also, note that the obstacle avoidance did not
require to be accomplished at a given time. The gains for the
obstacle avoidance task were kc1 = 5, kc2 = 0.5 and kc3 = 15
for the end effector, and for the mobile base were kc1 = 3,
kc2 = 0.2 and kc3 = 10. Obstacle avoidance control gains
were the same for the rest of the experiments.

Figs. 5.(a)-5.(b) show the position and orientation errors of
the end-effector, which converged at the desired time, despite
having to avoid the obstacles. As depicted in Fig. 5.(c), evasion
control signals of the form (68) become active when the
robot approached obstacles, which appeared at 6 s and 12 s,
respectively.

3) Experiment 3: Regulation task with one moving obstacle:
In this experiment the robot was asked to reach the same target
position and orientation for its end-effector than in the previous
experiment, but an intrusive moving obstacle deliberately
disturbed the robot. Thus, repulsive control signals handled
such situation. It is important to point out that the control
gains and the predefined time to accomplish the reaching task
were the same as those in Experiment 2.

Despite the moving obstacle, the robot was able to reach
its desired set-point in the predefined time of 20 s as depicted
in Figs. 6.(a)-6.(b). It can be observed in Fig. 6.(c) that the
evasion auxiliary control signals generated by the obstacle
disturbed the robot twice.

4) Experiment 4: Comparison with hierarchical-quadratic-
programming based controller: We have performed two exper-
iments to show the difference between hierarchical-quadratic-
programming (HQP), and the proposed control scheme. In
both cases, we asked the robot to reach a desired position with
its end-effector while avoiding joint limits. The formulation of
the HQP follows the method suggested in [15]. The first level
in the hierarchical structure has been assigned to the robot’s
equations of motion and joint limits as equality and inequality
constraints, respectively. In the second hierarchical level, the
reaching task is performed. Each quadratic program has been
solved on the robot’s computer with the qpOASES solver.

The desired end-effector position in the perpendicular axis
with respect to the floor implied that joint q5 reached the
security threshold of its mechanical limit. According to Figs
7.(a)-7.(b), it is observed that HQP is not robust to model
uncertainties since the position error does not converge to
zero. It can also be observed that joint q5 reached the security
threshold towards the limit very quickly due to the exponential
behavior of the error convergence. On the other hand, as
it is shown in Figs. 7.(c)-7.(d), with the proposed control
scheme the end-effector reached the desired position in a
predefined time of 6 s by performing smooth displacements
with its mobile base while its arm is reconfigured. It is also
observed that the same joint q5 reached the security threshold.
Although both controllers were asked to regulate the same
position task for the end-effector, the error dynamics differ
since HQP imposed an exponential convergence instead of the
TBGs in (2).

5) Experiment 5: Collaborative pick and place mission:
This is a more complex experiment with two robots involved.
A finite state machine was designed to coordinate the stack of
hierarchical tasks that each robot executed to fulfill a pick and
place mission. The workspace was separated in two cells. Each
robot was enclosed in different cells by static obstacles. The
main challenge was that the pick and place mission required to
grasp an object placed in one cell and drop it over the adjacent
cell as it is depicted in Figs.1 and 8. Thus, a meeting point
was defined for the robots to exchange a common object. Each
robot performed its own finite state machine. The collaborative
mission followed a strict time schedule depicted in Fig. 9.
Each of the tasks was a regulation one with predefined time
convergence. In between tasks there is an idle time wait for
the grippers to be opened and closed.

Figs. 10.(a)-10.(b) and 10.(d)-10.(e) show end-effector er-
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(b) Case 2: Position error.
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(c) Case 3: Position error.

Time (s)

0 1 2 3 4 5 6

E
rr

or

-1

-0.5

0

0.5

1
eξ1 eξ2 eξ3

(d) Case 1: Orientation error.
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(e) Case 2: Orientation error.
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(f) Case 3: Orientation error.
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(g) Case 1: Evolution of sliding surface.
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(h) Case 2: Evolution of sliding surface.
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(i) Case 3: Evolution of sliding surface.
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(j) Case 1: Active joint limit.
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(k) Case 2: Active joint limit.
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(l) Case 3: Active joint limit.

Fig. 4: Comparison of three cases, each with different initial conditions, of regulation tasks for a predefined time of
5 s. (a), (b) and (c) show the end-effector position errors, (d), (e) and (f), show the end-effector orientation error, both with
a convergence at 5 s (dotted green vertical line). Despite model uncertainties, fast motion and active joint limits, the task is
achieved with good precision at predefined time. (g), (h) and (i) show the sliding surfaces of the controlled coordinates. (j),
(k) and (l) show the active joint limits.
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(a) End-effector position errors.
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(b) End-effector orientation errors.
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(c) Evasion auxiliary control signals.

Fig. 5: Regulation task at a predefined time of 20 s with two static obstacles.

rors of both robots, the vertical dotted red and green lines
denote the beginning of a task and its convergence time,
respectively. From the convergence time to the new task
elapse the idle times. Figs. 10.(c) and 10.(f) show the evasion
auxiliary control signals affecting both robots along their
tasks execution. Notice that at the end of the last task, the
controls counteracted the repulsive evasion control signals,
such that they remained in steady state. In addition, Figs.
10.(g) and 10.(h) show the sliding surfaces, where most of the
pose coordinates converged at predefined time, excepting an
orientation coordinate whose error was diminished with more

effort due to task conflicts with position coordinates, and the
presence of a near obstacle at the end.

VII. CONCLUSIONS

We have proposed a robust hierarchical inverse dynamics
(RHID) scheme that achieves predefined-time convergence of
reaching tasks. The model dependency of the RHID requires
robustness, which, in our proposal, is provided by a super-
twisting control approach, as the controller unavoidably deals
with robot model uncertainties and disturbances. We derived
the stability proof for the multi-task closed-loop system includ-
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(a) End-effector position errors.
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(b) End-effector orientation errors.
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(c) Evasion auxiliary control signals.

Fig. 6: Regulation task at a predefined time of 20 s while avoiding a moving obstacle.
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(a) End-effector position errors.
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(b) Joint limits.
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(c) End-effector position errors.
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(d) Joint limits.

Fig. 7: Comparison between hierarchical-quadratic-programming (HQP) based control and the proposed controller. (a)
and (b) profiles belong to the HQP while (c) and (d) profiles belong to the proposed control scheme.

(a) Obstacle avoidance (b) Reaching the object

(c) Exchanging the object (d) Droping the object

Fig. 8: Main execution snapshots of the experiment: (a)
Robot 1 evaded an obstacle, (b) Robot 1 reached the object,
(c) Robot 1 exchanged the object with Robot 2, (d) Robot 2
dropped the object in the container

ing the super-twisting controller, and considering uncertainty
in the robot parameters and disturbances. Some properties
of dynamically-consistent null-space projectors were deduced
and exploited along the proof, such that it became possible
to simplify the multi-task closed-loop system in the non-
ideal case (i.e. under model uncertainties), which, written in
matrix form, leaves a predictable upper-triangular form for
any number of hierarchical tasks. This also allowed us to
guarantee convergence of task errors at a predefined time,
defined as a parameter of the control scheme, independently
of the initial robot state and despite of the execution of several
non-conflicting tasks. The effectiveness of the proposed RHID
scheme has been evaluated by means of experiments using
torque-controlled 8-DoF mobile manipulators. We assigned the
robots several tasks that demanded high control performance.
In particular, for picking and placing objects in the environ-

Object
exchange at
t = 55 s

Robot
1

Robot
2

Task A
td = 12 s

State 1

t0 = 0 s

Task B
td = 3 s

State 2

t0 = 14 s

Task C
td = 3 s

State 3

t0 = 20 s.

Task D
td = 12 s

State 4

t0 = 25 s.

Task E
td = 18 s

State 5

t0 = 37 s.

Task F
td = 26 s.

State 1

t0 = 0 s

Task G
td = 2 s.

State 2

t0 = 36 s

Task H
td = 3 s.

State 3

t0 = 41 s

Task I
td = 3 s.

State 4

t0 = 47 s

Task J
td = 6 s.

State 5

t0 = 50 s

Task K
td = 12 s.

State 6

t0 = 56 s

Task L
td = 3 s.

State 7

t0 = 71 s

Goal
t = 74 s.

Fig. 9: Finite state machine with a time parametrized task
schedule for each robot. Robot 1: in A the robot approached
the object to be grasped, in B the end-effector reached the
object, in C the object was lifted, in D the object is transported
towards the meeting point, in E the grippers released the object
while Robot 2 was holding the object. Robot 2: in F the robot
moved close to the meeting point, in G the end-effector pose
was corrected if necessary, in H the end-effector aligned with
Robot 1, in I the robot reached the object, in J the object is
grasped before being released by Robot 1, in K the object is
transported to the container. Finally in L the end-effector pose
was corrected, and the object is dropped into the container. The
total execution time was t = 74 s. The desired time for the
tasks is given by td, which denotes the convergence time for
all task in the stack, excepting E, J and L, where the grippers
were activated at some td without a motion task. The initial
time for each task is given by t0, which considers the times
of previous tasks and idle times tw.

ment. Regulation tasks were defined to reach desired positions
and orientations for the robot’s end-effector while avoiding
obstacles and joint limits. The obstacle avoidance task was for-
mulated at acceleration level, such that we obtained repulsive
accelerations that served as auxiliary control signals. Currently,
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(a) Robot 1 end-effector position errors.
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(b) Robot 1 end-effector orientation errors.
Time (s)

0 10 20 30 40 50 60

A
ux

ili
ar

y 
co

nt
ro

l o
f e

va
si

on
 (m

/s
2 )

-60

-40

-20

0

20

40

60 ucxp
ucyp

uczp
ucxb

ucyb

(c) Robot 1 evasion auxiliary control signals.
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(d) Robot 2 end-effector position errors.
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(e) Robot 2 end-effector orientation errors.
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(f) Robot 2 evasion auxiliary control signals.
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(g) Robot 1 evolution of sliding surface.
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(h) Robot 2 evolution of sliding surface.

Fig. 10: Collaborative robots to pick and place a common object with strict time schedule.

we are improving the computational time to obtain the control
law by making use of Cholesky and QR factorizations. We are
also extending the RHID to handle contact tasks.

APPENDIX A

We provide the proof of the set of properties stated in
(14)-(19), that follow the dynamic consistency of null-space
projectors introduced in [2].

Proof: It is straightforward to prove that

QiQ
#A

i = QiAQ
T

i

[
QiAQ

T

i

]−1
= I (81)

always holds for any i = {1, . . . , p}, which corresponds to
(18) when i = j. Also, it is trivial to proof that Ni is
idempotent when i = 1:

N1N1 =
(
N0 −Q

#A

1 Q1

)(
N0 −Q

#A

1 Q1

)
= N0 −Q

#A

1 Q1 (82)

where N0 = I . Therefore, it can be verified that Q1N0 = Q1,
N0Q

#A

1 = Q
#A

1 and N1N0 = N0N1 = N1. By using (81), it
is easy to prove that N1 is dynamically consistent with respect
to Q1 and Q

#A

1 :

Q1N1 = Q1N0 −Q1Q
#A

1 Q1 = Q1 −Q1 = 0 (83)

N1Q
#A

1 = N0Q
#A

1 −Q#A

1 Q1Q
#A

1

= Q
#A

1 −Q#A

1 = 0 (84)

Knowing that N1 is idempotent, it can be verified that

N1AN
T
1 = ANT

1 as follows:

N1AN
T
1 =

(
N0 −Q

#A

1 Q1

)
A

(
NT

0 −Q
T

1Q
#T

A

1

)
=

(
ANT

0 −AQ
T

1Q
#T

A

1

)(
NT

0 −Q
T

1Q
#T

A

1

)
= ANT

1 N
T
1 = ANT

1

(85)

where ANT
1 = N1A. From (82) and (85), it is deduced

Q2N1 = Q2 and N1Q
#A

2 = Q
#A

2 :

Q2N1 = Q2N1N1 = Q2N1 = Q2 (86)

N1Q
#A

2 = N1AQ
T

2

[
Q2AQ

T

2

]−1
= Q

#A

2 (87)

where N1AQ
T

2 = N1AN
T
1 Q

T
2 = ANT

1 Q
T

2 = AQ
T

2 . From
(81), (82), (86) and (87), it is then verified that N2 is
dynamically consistent with respect to Q2 and Q

#A

2

Q2N2 = Q2N1 −Q2Q
#A

2 Q2 = Q2 −Q2 = 0 (88)

N2Q
#A

2 = N1Q
#A

2 −Q#A

2 Q2Q
#A

2

= Q
#A

2 −Q#A

2 = 0 (89)

Also, it can be verified that N2 is idempotent:

N2N2 = N1N1 −Q
#A

2 Q2N1 −N1Q
#A

2 Q2 (90)

+Q
#A

2 Q2N1Q
#A

2 Q2

= N1 −Q
#A

2 Q2 = N2

Then, the following holds

N1N2 = N0N1 −Q
#A

1 Q1N1 −N0Q
#A

2 Q2 (91)

+Q
#A

1 Q1Q
#A

2 Q2

= N1 −Q
#A

2 Q2 = N2
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and

N2N1 = N1N0 −N1Q
#A

1 Q1 −Q
#A

2 Q2N0 (92)

+Q
#A

2 Q2Q
#A

1 Q1

= N1 −Q
#A

2 Q2 = N2

where Q1Q
#A

2 = Q1N1Q
#A

2 and Q2Q
#A

1 = Q2N1Q
#A

1 = 0,
which obeys (18).

Note that in order to prove that both N2 is idempotent and
its dynamic consistency, it was necessary to first prove that
N1 is idempotent, which implies that properties (86) and (87)
hold. Consequently (88), (89), (90), (91) and (92) also hold.
Similarly, for proving that N3 is idempotent and its dynamic
consistency, it must be first verified that N2 is idempotent.
Then, it holds that Q3N2 = Q3N2N2 = Q3N2 = Q3 and
N2Q

#A

3 = Q
#A

3 , since N2AN
T
2 = ANT

2 . Also, the dynamic
consistency of N3 with respect to Q3 is verified as in (88)
and (89). From (90) it is verified that N3 is idempotent. By
applying the same derivation in (91) and (92), it is deduced:

N2N3 = N3 and N3N2 = N3

Therefore, by applying the following equivalences:

N3N1 = (N3N2)N1 = N3 (N2N1) = N3N2 = N3 (93)
N1N3 = N1 (N2N3) = (N1N2)N3 = N2N3 = N3 (94)

a recursive procedure can be implemented to verify that null-
space projectors are idempotent together with their dynamic
consistency. Without loss of generality, we set (82), (83), (84),
and (85) as our base case, with i = 1 and N0 = I such that
N1N1 = N1 is verified directly. Then, the recursion is as
follows:

QiNi−1 = Qi (95)
Ni−1AN

T
i−1 = ANT

i−1 (96)

Ni−1Q
#A

i = Q
#A

i (97)
QiNi = 0 (98)

NiQ
#A

i = 0 (99)
NiNi = Ni (100)i−1∏

j<i

Nj

Ni

i−1∏
j<i

Nj

 = Ni (101)

for i = 2, 3, . . . , p. To state that (95), (96), (97) and (100) hold
for any i > 1, it is required to prove that Ni−1 is idempotent,
which is not a problem when starting from the base case. By
considering (93) and (94), it can be noted that both (100) and
(101) satisfy (14) for i = j and i 6= j, also that (98) and (99)
satisfy (15) and (16) respectively for i ≤ j. Consequently both
(95) and (98) are together analogous to (15), while both (97)
and (99) are together analogous to (16). In fact, it can be noted
that (15) and (16) are a consequence of (14), whereas (18) is a
consequence of (15) and (16). On the other hand, the particular
property (19) also corresponds to (81) when i = j because of
the following equivalence:

QiQ
#A

i = Qi

(
Ni−1Q

#A

i

)
= (QiNi−1)Q

#A

i = QiQ
#A

i (102)

Also note that (19) is also a consequence of (15) and (16)
when i < j, because of (102)

QiNi = QiNi−1 −QiQ
#A

i Qi = Qi −Qi = 0 (103)

However, the term QiQ
#A

j cannot be reduced for i > j as

Qi+1Q
#A

i = Qi+1

(
Ni−1Q

#A

i

)
since Qi+1Ni−1 6= Qi+1.

APPENDIX B
Under the assumptions stated in Proposition 6.1, it is proved

that a well defined J+
b exists. Next, it is proved that the

equations of motion of an omni-directional mobile manipulator
can be expressed as those of inertial robots in generalized co-
ordinates. As a consequence, the proposed control scheme can
be applied to inertial and omni-directional mobile manipulator.

Proof: Let us consider the operator that maps coordinates
from actuation to generalized spaces Jb : Ra → Rn as stated
in (80) of Proposition 6.1, such that

F b = Jbτb (104)fxfy
nz

 = Jb


τb1
τb2
τb3
τb4

 (105)

where τb are the torques of the wheels and F b represents the
generalized torques of the mobile base. On the other hand,
there are three acting forces for each wheel: the contact forces
fci , the driven-torques produced by the motors τxi

= τbi , and
the free-sliding-torques due to the roller τyi = τbi tan γ, where
γ is the angle of the free-sliding-motion direction. Therefore,
the acting wrench of each wheel becomes:

Fwi =
[
fxi

fyi fzi nxi
nyi nzi

]T
(106)

=
[
1
r τxi

1
r τyi fci 0 0 0

]T
(107)

where i ∈ {1, 2, 3, 4}. Now, from equations (106) and (107)
we define the following operators:

[
Jx1

Jx2
Jx3

Jx4

] 
τx1

τx2

τx3

τx4

 = Jxτx (108)

where Jxi contains the coordinate transformations to express
τxi , given in (107), in the mobile-base frame. The same is
performed with Jyi and τyi , also with Ci and fci to obtain
the mobile-base wrench as

Fb = Jxτx + Jyτy + Cfc ∈ R6 (109)

where Jx, Jy, C ∈ R6×4. Knowing that τx = τb and τy =
τb tan γ, we rearrange (109) as follows

Fb = Jxτb + Jy tan γτb + Cfc = (Jx + Jy tan γ) τb + Cfc

= Jτb + Cfc (110)

Notice that Jτb produces motion, and Cfc produces contact
forces only. Then, CT νb = 0, where νb ∈ R6 is the twist of
the mobile-base. The equations of motion of the mobile-base
are given by

Mν̇b + hb = Jτb + Cfc (111)
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with hb , ad∗νb(Mνb + g), where M ∈ R6×6 is the body
inertia matrix, ν̇b ∈ R6 is the body acceleration, g ∈ R6

is the gravity wrench which is counteracted by Cfc, and
ad∗ν : se(3)× se∗(3)→ se∗(3) is the dual linear mapping:

ad∗νb =

[
−ω̂b 0
−v̂b −ω̂b

]
(112)

where â ∈ so(3), ∀a ∈ R3, is the skew-symmetric matrix.
The reduced free part of (111) can be obtained as follows

Y = span(I − CC+) Z = span
(
CC+

)
(113)

where the rank of C, expressed as ρ(C), represents the
dimension of constrained motions, and the number of available
degrees of freedom is nb = 6 − ρ(C). Now, we define
X = [Y Z] where X ∈ R6×6 and ρ(X) = 6. It can be
verified that XXT = I6 and Y ∈ R6×nb , Z ∈ R6×ρ(C) span
the column-space of the unconstrained and constrained spaces,
respectively. By using X in (111), the equations of motion
become

XT (Mν̇b + hb) = XT (Jτb + Cfc)

XTMXXT ν̇b +XThb = XTJτb +XTCfc. (114)

From (114), the reduced free part of (111) is

Y TMY Y T ν̇b + Y T
(
MZZT ν̇b + hb

)
= Y T (Jτb + Cfc)(115)

From (113), ZT ν̇b = 0 and Y TC = 0 hold. Therefore, (115)
can be rewritten as

Y TMY Y T ν̇b + Y Thb = Y TJτb

Mν̇b + hb = Jbτb

F b = Jbτb (116)

where Y TMY , M ∈ Rnb×nb , Y T ν̇b , ν̇b ∈ Rnb , Y Thb ,
hb ∈ Rnb and Y TJ , Jb ∈ Rnb×4 where ρ(Jb) = nb , then
Jb is full rank, such that

τb = J+
b F b (117)

is well-defined. Notice that Y reduced (111) to the uncon-
strained space of the mobile-base, and Jb is then full-rank in
the unconstrained space.

Let us now consider the mobile-manipulator system such
that the acceleration mappings between the generalized and
actuation spaces are given by

q̈a =

[
JTb 0
0 I

]
q̈ (118)

= ST q̈.

It holds that τ = Sτa, τa = S+τ , and q̈ =
[
ST
]+
q̈a. By

applying the previous transformations in (4), it is deduced the
expression of the actuated torques as

τa =
[
STA−1S

]−1 (
q̈a + STA−1b

)
. (119)

Note that (119) represents the equations of motion in the
actuation space, where

[
STA−1S

]−1 ∈ Ra×a is the inertia
matrix in such space.

Since torques and accelerations can be mapped between
generalized and actuation spaces, we transform (119) back to
the generalized space as

S+τ =
[
STA−1S

]−1 (
ST q̈ + STA−1b

)
τ = S

[
STA−1S

]−1
ST
(
q̈ +A−1b

)
.

It happens that S
[
STA−1S

]−1
ST = A, which allows to get

τ = Aq̈ + b (120)

Notice that operators S and S+ make (119) and (120)
equivalent. The proposed control scheme works in generalized
coordinates with inertial and mobile manipulators. The gener-
alized torques are then transformed to the actuation space to
move the robot in torque-mode as stated in Section VI.A.
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