
Humanoid Navigation using a Visual Memory with Obstacle

Avoidance?

Josafat Delfin1, Héctor M. Becerra2 and Gustavo Arechavaleta1

1Robotics and Advanced Manufacturing Group, Centro de Investigación y de Estudios Avanzados del IPN
(CINVESTAV), Saltillo, Coah. Mexico. E-mail:(josafat.delfin,garechav)@cinvestav.edu.mx

2Computer Science Department, Centro de Investigación en Matemáticas (CIMAT), C/ Jalisco S/N, Col.
Valenciana. C.P. 36023, Guanajuato, Gto., Mexico. E-mail: hector.becerra@cimat.mx

Abstract

We present a complete humanoid navigation scheme based on a topological map known as
visual memory (VM), which is composed by a set of key images acquired offline by means of
a supervised teaching phase (human-guided). Our autonomous navigation scheme integrates
the humanoid localization in the VM, a visual path planner and a path follower with obstacle
avoidance. We propose a pure vision-based localization algorithm that takes advantage of
the topological structure of the VM to find the key image that best fits the current image in
terms of common visual information. In addition, the visual path planner benefits obstacle-
free paths. The VM is updated when a new obstacle is detected with an RGB-D camera
mounted on the humanoid’s head. The visual path following and obstacle avoidance problems
are formulated in a unified sensor-based framework in which, a hierarchy of tasks is defined,
and the transitions of consecutive and hierarchical tasks are performed smoothly to avoid
instability of the humanoid. An extensive experimental evaluation using the NAO platform
shows the good performance of the navigation scheme.

Keywords: Visual navigation, humanoid robots, visual memory, obstacle avoidance

1. INTRODUCTION

One of the main objectives to be reached by a humanoid is to mimic human navigation
strategies. An important feature of the human brain is the ability to visually memorize key
scenes of previously visited places for facilitating a subsequent navigation in the same place
[1]. The idea of using a sequence of key images for robot navigation was early introduced in
[2], where the visual memory (VM) was called view-sequenced route representation. A VM
is a topological map that represents an environment by a set of key images [3, 4], which are
typically organized as a directed graph where each node is a key image and the edges provide
information of a relation between key images. Once this representation of the environment
is known, the problems of robot localization, path planning and autonomous navigation can
be solved.

Visual servo control schemes are built upon the sensor-based control approach, taking
advantage of the rich information of images acquired by a vision system to command the

?The first two authors were supported in part by CONACYT [grant 220796].

Preprint submitted to Robotics and Autonomous Systems August 26, 2018

motion of a robot. However, the scope of visual-servo controllers is limited to positioning
tasks where the visual scene is partially observed from the initial and target locations [5, 6, 7].
This is due to the field-of-view constraint of typical vision systems [8]. This local behavior
appears in any of the two classical approaches of visual servoing: the position-based scheme
(PBVS), where the estimation of some 3D pose parameters is needed; and the image-based
scheme (IBVS), where direct feedback of image features is used [9]. The extension suggested
in [2, 10] takes advantage of a sequence of target images (VM), which share visual information
between each pair of consecutive images, and the image acquired at the initial location shares
information with one of the target images. In this manner, the robot enlarges its workspace
as the images associated to the initial and final locations do not need to share information.
This strategy has been mainly exploited for navigation of wheeled mobile robots [2, 4, 11, 12].

In this paper, we propose a humanoid navigation strategy based on a VM, which encloses
robot localization, visual path planning and path following with obstacle avoidance. From
a minimum number of detected point features, the proposed strategy computes continuous
velocities that can be applied in indoor environments with natural scenes, like corridors,
uncluttered or cluttered environments.

This paper is an incremental work with respect to our previous results in [13] and [14].
In the first reference, we have proposed a visual path following scheme for humanoid robots
that is generic in the sense that it can be used for different types of visual servo controllers.
In the second reference, we have extended the scheme by solving the initial humanoid lo-
calization problem in the VM to plan a visual path when the VM has several forks and/or
cycles. As extensions to those works, in this paper we propose an enhanced pure vision-
based localization algorithm that first finds a neighborhood of key images around the image
currently observed by the robot, to later perform a local search for the key image that best
fits the current image in terms of common visual information. In addition, we incorporate
a versatile obstacle avoidance strategy that is aided by depth information from an RGB-D
camera mounted on the robot’s head. The strategy deals with static obstacles that appear
during the autonomous navigation, and that were not present during the teaching phase to
generate the VM. Besides, the unexpected obstacles are localized in the VM, and they are
taken into account for subsequent navigation tasks.

The main contribution of this work is a novel vision-based navigation scheme for hu-
manoids formulated in a unifying framework of consecutive and hierarchical tasks (visual
servoing and obstacle avoidance tasks), for which, the transitions between tasks are per-
formed using smooth functions to keep the balance of the humanoid platform. The generation
of continuous velocities that are given to the walking pattern generator (WPG) is partic-
ularly important for visual control of humanoids [7]. Task transitions occur when a new
target image is given, or when an obstacle is detected for stepping over or circumvent it while
maintaining the visual target in sight during the navigation. The mobility of the humanoid
robot is exploited to walk laterally when it is needed as well as to step over obstacles. Thus,
no motion constraints are imposed to the robot. An extensive experimental evaluation using
the NAO platform shows the good performance of the navigation scheme.

Our proposal aims to use 2D information as much as possible, such that the only available
information for navigation is a set of key images and the current view. The generation of the
VM is done offline, i.e., the key images to form the VM are acquired and selected by means
of a supervised teaching phase (human-guided). Depth information is just a complement to

2

facilitate the obstacle avoidance task. We have left as future work the detection of obstacles
relying only on monocular vision. The main advantage of using 2D information instead of 3D
is the reduction of computational requirements, which are poor in commercial and small-sized
humanoid platforms like NAO, since there is no need of generating and updating a complex
spatial map. For instance, in the proposed localization method no extra information is
needed, like odometry or sensor fusion.

The rest of the paper is structured as follows: Section 2 presents a brief account of related
work. Section 3 presents an overview of the whole navigation strategy. Section 4 details the
structure of the graph that represents the VM. Section 5 describes the proposed localization
algorithm and the path planning stage. Section 6 presents the proposed visual path following
scheme with smooth transitions of visual tasks. Section 7 describes the obstacle avoidance
strategies. Section 8 presents the experimental evaluation of the stages of the method and
its integration. Finally, Section 9 gives some concluding remarks and ideas of future work.

2. Related work

The use of VM has made possible to overcome the local behavior of visual servo control
schemes. The navigation based on a VM has been mainly used for wheeled mobile robots.
For instance, a local Euclidean reconstruction is used in [4] to avoid building a complete
map. Geometric reconstruction is used in [11] to predict the feature positions, and it allows
recovery of features tracking failures. An image-based scheme reported in [12] makes use of
direct feedback from a visual geometric constraint. In [15], the integration of a laser range
finder in the visual navigation helps to avoid unexpected obstacles. Different from other
robots, humanoids are able to perform several tasks at the same time [16], which represents
one of their main advantages.

Vision-based control of humanoid robots is an interesting and challenging problem due to
the inherent dynamic balance and the undesired sway motion introduced by bipedal locomo-
tion [5, 6]. Solutions to the visual servoing problem for local positioning of humanoid robots
have been reported in [5, 6, 7]. These control schemes exploit the reactive WPG proposed in
[17], which provides automatic generation of foot placements from desired values of linear and
angular velocities of the robot’s center of mass (CoM). In [5] and [7], a visual servoing scheme
gives the velocity reference for the CoM as the main input to the WPG. Such schemes are
considered decoupled approaches since the visual controller is independent of the WPG. In
contrast, a coupled approach has been proposed in [6], where visual constraints are directly
introduced in the WPG.

The extension of visual servo controllers to deal with humanoid navigation in indoor en-
vironments has important applications in service robotics for surveillance and assistance. In
the literature, a camera onboard the robot has been used to achieve vision-based naviga-
tion, which requires a larger displacement than the local visual servoing task [10, 18, 19].
A landmark-based navigation approach that integrates motion planning through geometric
primitives and visual servoing tasks is described in [20]. Although the motion planner returns
obstacle-free paths, the locomotion model is not capable to step over obstacles. A trajectory
tracking control in the Cartesian space, based on vision aided by odometry, is proposed in
[18]. The estimation of the humanoid’s spatial location considers data fusion from different
sensors, similarly than in [21].

3

Pure vision-based humanoid navigation strategies have also been proposed [10, 22, 19].
In particular, [22] suggests the use of landmarks like 2D bar codes while [19] proposes the
use of vanishing points. Both schemes consider environments with corridors. The extension
of the view-sequenced route representation for humanoid navigation is reported in [10]. The
evaluation is also carried out in a corridor with no initial localization and the controller is
based on template correlation to decide basic motion actions. Thus, our proposed scheme
can be used in less restrictive indoor environments with natural scenes unlike the referred
works [10, 22, 19]. Moreover, our method considers the holonomic nature of humanoid robots,
in contrast to previous works [20, 18, 19], which constraint the robot motion as a unicycle
model.

An important issue for humanoid navigation is the ability of avoiding obstacles. In struc-
tured indoor scenarios, the scheme reported in [23] uses line-based scene analysis and feature
tracking to step over or walk around obstacles. Vision aided by range sensors has also been
used for humanoid navigation with obstacle avoidance in [24]. In that work, obstacles are
identified by means of laser data and that information is then used to train visual classifiers
that are later applied to the images during autonomous navigation. Some works focus on the
generation of stable dynamic movements in scenarios with obstacles by stepping over them
[25, 26]. These works were conceived for human-sized humanoid platforms, like the HRP-2
robot, and a priori knowledge of obstacles dimensions. Recently, an extended version of the
WPG of [17] has been introduced in [27], which considers the feet orientation, and it is applied
for obstacle avoidance using the HRP-2 robot. However, the underlying nonlinear model pre-
dictive control must solve a nonlinear program with a time horizon, which is computationally
expensive. Our navigation strategy proposes a simpler method for obstacle avoidance than
the ones used in previous works, focusing in an adequate management of hierarchical tasks.
Monocular vision aided by data from encoders has been suggested in [28]. The scheme uses
optical flow to make a representation of maze-like environments with obstacles to identify the
free space. In [29], the humanoid navigation in a cluttered environment has been addressed,
considering an application where the robot transports a load. The navigation scheme relies
on a 3D representation of the environment obtained using SLAM, from which, collision-free
trajectories are computed.

To the authors knowledge, the humanoid navigation based on VM has not been previously
extended to deal with obstacle avoidance in indoor environments regardless the characteristics
of the work space, i.e., uncluttered, cluttered or corridor-like indoor environments.

3. OUTLINE OF THE NAVIGATION STRATEGY

The autonomous navigation framework presented in this work can be divided in four
stages: 1) visual memory building, 2) robot localization and path planning, 3) path following
and 4) obstacle localization and graph updating. Fig. 1 presents an outline of the complete
navigation strategy. In the context of this work, a VM is a directed graph G = {I, E},
where each node encodes an image of a set I = {I1, I2, . . . , Im} of m key images and E =
{E1, E2, . . . , Ep} is the set of p edges where each of them has an associated weight that links
a pair of nodes. Recall that we assume that the VM generation is done offline by means
of a supervised teaching phase (human-guided). The automatic selection of key images
for building such VM represents a problem by itself, and it is not addressed in this work.
However, we point out that some methods for keyframes selection have been proposed in the

4

Current image

Localization and planning in VM

Visual path following

Target image

Obstacle avoidance

𝑥
𝑧

𝑦

{𝒄}

𝑥

𝑧
𝑦

{𝒓}

𝑥

𝑧

𝑦
{𝒐}

𝑥

𝑧

𝑦 {𝒔𝒐}

Image in the VM that best
fits the current image

Figure 1: Outline of the navigation strategy. Once the VM is available, the robot must localize itself
in the VM by finding the image that best fits the current image. Then the visual path to the target image
is found by a path planner. The robot navigates autonomously by following the visual path while avoiding
static obstacles detected with a range sensor, which were absent during the teaching phase. The notation {·}
stands for the reference frame of the robot r, camera c, obstacle o and range sensor so.

literature related to the field of visual SLAM [30] or video content analysis [31]. The aim
of these methods is to ensure a minimum of common visual information between selected
images. In this work, we assume that the VM is given as input of the navigation strategy,
provided that the keyframes in the VM have enough overlapping of visual features.

The robot localization, which is the second stage of the strategy, consists of finding the
key image denoted by I∗1 in the VM that best fits the current image I in terms of common
visual information. Once I and I∗1 are linked, then a key image that belongs to the VM is
given as the target I∗n. The visual path planning is carried out to find the shortest visual
path I∗ in G from I∗1 to I∗n in terms of weights of the edges.

In the path following phase, the robot performs an autonomous navigation to follow the
resulting visual path. A visual control scheme guides the humanoid along the sequence of
key images until the robot achieves the desired location. The last step of the navigation
strategy is the VM updating, which consists of modifying the weights attached to the edges
of G whenever the robot encounters new static obstacles during the visual path following. In
particular, if an obstacle is found while the robot is following the piece of visual path from
Ii to Ii+1, the weight at the corresponding edge Ei is increased. Thus, the number No of
detected obstacles and their location in the VM are memorized. This allows the robot to
avoid costly paths with obstacles in a future navigation.

The main steps of the proposed humanoid navigation framework are presented in Algo-
rithm 1, where each function is described in detail in the subsequent sections.

5

Algorithm 1: visualNavigation allows the autonomous navigation of the robot.

Input: Graph of key images G = {I, E}, target image I∗n
Output: Autonomous visual navigation

1 I = captureCurrentImage
2 I∗1 = localizeRobot(I, I)
3 I∗ = getShortestPath(I∗1 , I∗n,G)
4 (navigation, No, Ei) = pathFollower(I, I∗, G)
5 if No > 0 then
6 G = graphUpdating(No, Ei,G)

7 return

4. STRUCTURE OF THE VISUAL MEMORY

As aforementioned, a VM is a graph G = {I, E} where the nodes I encode key images
obtained during a teaching phase. It is worth noting that the graph is not always linear, the
VM could have several branches and loops. In this section, we complement the description
of the graph’s structure by defining the weights of the edges between nodes.

The weight attached to an edge represents the cost of traveling from the current node to
one of the adjacent nodes, and it is denoted by Ei. We define the weight of an edge in terms
of the number of matched interest points and the amount of rotation between neighboring
key images as follows:

Ei = α(1− s∗i) + βθu
∗
i , (1)

where s∗i and θu
∗
i are the normalized number of matches and the normalized rotation with

respect to the vertical axis (perpendicular to the motion plane) between neighboring key
images respectively, α and β are weights to favor one of the terms if desired. The cost related
to the number of matches (1 − s∗i) means that, the more matches there are between nodes,
the lower the cost will be. The cost related to the rotation means that, the more rotation
there are between nodes the higher the cost will be.

In previous works [3, 4], the weights of the edges are unitary, i.e., the cost of a visual path
is given by counting the number of key images in the route, and an edge exists if a minimum
number of point correspondences is achieved to relate neighboring nodes. In this work, the
term related to rotation θu

∗
i is included to deal with environments where the richness of point

features s∗i is low but sufficient, and the rotation can become more important to determine
the cost of a route.

Thus, we estimate the relative rotation θu∗i between neighboring key images Ii and Ii+1,
which have associated camera reference frames Ci and Ci+1, respectively. An option to recover
the whole relative pose (with translation up to scale) between the frames Ci and Ci+1 is by
means of the decomposition of a geometric constraint, for instance, the homography matrix
[32]. To estimate the homography matrix H∗i , only the key images Ii and Ii+1 are needed.
The relative transformation between Ci and Ci+1 is encoded in the Euclidean homography as
[33]:

H∗i = R∗i +
t∗i
d∗i

n∗i , (2)

where R∗i and t∗i are the rotation matrix and translation vector expressed in Ci+1, d
∗
i is the

distance from Ci+1 to a plane π, and n∗i is the unitary vector expressed in Ci+1 normal to

6

π. According to (2), it is possible to decompose H∗i to obtain t∗i up to scale and R∗i . The
rotation matrix R∗i can then be parametrized by the axis/angle θu∗i . The second element of
the vector θu∗i , related to the rotation around the y−axis of the camera (perpendicular to the
motion plane), provides the required rotation between neighboring key images. In addition,
such angular component is used to compute the angular velocity, which corresponds to one
of the inputs of the WPG. The other two inputs are longitudinal and lateral velocities as it
will be explained in Section 6.

In this work, we rely on the homography model to assign the weights of the edges in the
graph, to localize the robot and to formulate the visual control scheme. The homography, as
a geometric constraint between images, allows the process of points matching to be robust.
This projective model is actually general, since it can be computed for three-dimensional
non-planar scenes [32]. Besides, the homography model does not have the issue of being bad
conditioned with short baseline, as other geometric constraints like the epipolar geometry
[33]. In the scheme of [32], there is no need of verifying the existence of a dominant plane in
the scene but a virtual plane is defined by selecting three non-collinear point features in the
image. A practical suggestion is to select automatically the three points that maximize the
area of the corresponding triangle in both images. Differently from the common homography
matrix estimation, the scheme based on a virtual plane needs at least eight points (three
reference points and five supplementary) to estimate the model.

Although the homography model is a good option for extracting the required information
directly from images in all stages of the proposed approach, the navigation scheme could
handle other geometric constraints such as the fundamental matrix. However, the epipolar
geometry is ill-conditioned with short baseline and planar scenes, but a model selection
between the homography and fundamental matrices could be formulated as in [34].

5. VISUAL LOCALIZATION AND PLANNING

Once the VM is available with the structure described in the previous section, and before
starting the autonomous navigation, the robot must localize itself by comparing its current
view with the set of memorized key images. Next, given a target image, a path planning
stage is needed to find the sequence of key images connecting the image resulting from the
localization and the target image. In both stages, we take advantage of the homography
estimation for planar and non-planar scenes [32] based on the formulation of a virtual plane.

We propose Algorithm 2 to perform the required appearance-based robot localization.
To avoid an exhaustive comparison between the current image I and each key image in the
VM, we propose a strategy to find a reduced neighborhood of key images surrounding I.
This process is performed in line 1, function findNodesNeighborhood. The underlying
algorithmic strategy uses the divide-and-conquer paradigm [35]. First, the current image is
compared with each of the “Intersection” nodes, i.e. the nodes where the branches of the
graph intersect. Then, each branch of the graph is divided in two to identify the node at the
middle of the branch which is compared with I, and in the next iteration each half of the
branch is divided again. Thus, the worst case happens when the algorithm iterates until the
current image has been eventually compared to all existing nodes in the graph. The search
stops when at least one of the comparisons get a number of matches greater than µ. This
minimum number of matches (µ = 8) guarantees the computation of the homography [32].
Once the search terminates, a neighborhood of m̂ nodes surrounding this node is selected,

7

Algorithm 2: localizeRobot finds the most similar key image I∗1 in the graph with

respect to the current image I.

Input: Graph of key images G = {I, E}, current image I, target image I∗n
Output: Most similar key image I∗1

1 Î = findNodesNeighborhood(I , G) // size(̂I) = m̂
2 for j ← 1 to m̂ do

3 matches = match(I, Î[j])
4 if matches > µ then
5 Hj = computeHomography(matches)
6 (Rj , tj) = decomposeHomography(Hj)
7 t±j = computeDirection(tj)
8 ‖ tj ‖ = computeDistance(tj)
9 D[j] = saveImageData(t±j , ‖ tj ‖)

10 I+ = selectForwardImages(D)
11 I− = selectBackwardImages(D)
12 if size(I+) > 0 then
13 I∗1 = selectMostSimilar(I+)

14 else
15 I∗1 = selectMostSimilar(I−)

16 return I∗1
17 Function selectMostSimilar(Iµ)
18 (I∗±1, I∗±2) = selectTwoCandidates(Iµ)
19 if (I∗±1, I∗±2) belong to same branch then
20 matches = match(I∗±1, I∗±2, I)
21 {H1,H2} = parametersFixedPlane(matches)
22 {‖ t1 ‖, ‖ t2 ‖} = computeDistance({H1,H2})
23 I∗1 = selectTheClosest({‖ t1 ‖, ‖ t2 ‖})

24 else
25 {I1, I2} = getShortestPath(I∗±1, I∗±2, I∗,G)
26 {l1, l2} = computePathLength({I1, I2})
27 I∗1 = getImageWithShortestPath({l1, l2})

28 return I∗1

and they are collected in a vector Î of selected key images. The next step consists of finding
the most similar key image to I among the reduced set Î. For this, match finds the matched
features between the current image and all key images in Î.

The resulting matches allow the computation of the homography matrix and its decompo-
sition in lines 5-6. Consequently, the estimation of the rotation and translation up to scale is
obtained. Then, we classify the key images in two groups according to the resultant direction
of the estimated translation vector t that is expressed in the current camera reference frame,
which can be forward I+ or backward I− with respect to the current image location. From
the third component of t denoted by tz, which is pointing towards the motion direction (see
{c} reference frame in Fig. 1), we assign a value in line 7 as t± = +1 if tz > 0 or t± = −1 if
tz < 0.

8

Figure 2: Fixed virtual plane. The green circles (marked with number) are selected and main-
tained as features to form the same virtual plane. Left. The first candidate image I∗±1. Center.
The second candidate image I∗±2. Right. The current image I.

Although the vector t is scaled, its norm ‖ t ‖ in line 8 gives a notion of distance between
key images if the homography computation considers that the distance d∗i to the plane is
constant (see equation (2)). The direction and distance parameters are saved in a vector D
in line 9, from which the forward I+ and backward I− groups of images are obtained (lines
10-11). Using the set I+, the function selectMostSimilar finds (if exists) the most similar
key image to the current one in terms of matched points. If there are no forward images, the
algorithm selects the closest image among the backward set I−. Clearly, we prefer to localize
the robot even if the most similar key image is behind the current location.

The function selectMostSimilar (lines 17-28) selects two candidate images (I∗±1, I∗±2),
i.e., the two images with the highest number of point matches. Then, the algorithm verifies
if both candidates belong to the same branch of the graph G. If it is the case, the algorithm
selects the most similar key image using the relative distance ‖ t ‖ from a new homography
decomposition. This process computes again H and t for the candidate images with respect
to the current image, but now the virtual plane used for the homography estimation is fixed
(lines 21-22). Thus, the estimated distances are consistent. This process is illustrated in Fig.
2. It consists in matching point features between the three images I, I∗±1 and I∗±2. From the
matched features, we select the three points which maximize the surface of the corresponding
triangle in the three images [32]. Once the new distances {‖ t1 ‖, ‖ t2 ‖} are obtained, the
closest candidate image I∗1 to the current one is selected (line 23), i.e., the image with smaller
‖ t ‖.

If the candidate images do not belong to the same branch of the graph, the algorithm
selects the most similar key image aided by a path planner that finds the shortest path
from the two candidates (I∗±1, I∗±2) to the target image I∗n (lines 25-27). This consideration is
needed to discard a localization that might derive in a long path in the navigation stage. The
paths associated to the candidate images are denoted I1, I2 and their corresponding lengths
are l1, l2. The solution I∗1 of the localization is the candidate image associated to the path
with the minimum length, which is obtained by a function getShortestPath. The length
of a path is the sum of the values of its edges as defined in (1).

Once the robot is localized, i.e., I∗1 and I∗n are known, the next stage is the visual path
planning, which consists of finding the set of key images I∗ = {I∗1 , I∗2 , . . . , I∗n−1, I∗n} that links
the starting and the desired key images of the VM. Thus, I∗ is the path of minimum length
in G that connects the nodes I∗1 and I∗n and it is obtained by a function getShortestPath.

The localization problem addressed in this work can be seen as an image retrieval task.

9

Several methods have been suggested in the literature for this purpose. For instance, methods
based on bag of visual words [36], [37], [38], inverted multi-indexing [39], and nearest neighbor
algorithms [40]. These sophisticated techniques can be useful to reduce the computational
complexity of the appearance-based localization for very large visual memories, i.e., when
thousands of images have to be analyzed. For datasets of around one hundred of images (as
the examples in this paper), the proposed method represents a simple ad-hoc approach with
very good performance in suitable computational time. Notice that the localization stage is
carried out offline, and it is not necessary to have the results very fast.

We consider that all image retrieval methods are prone to provide false-positive detections,
of course, also our proposed method, although it was not the case according to the realized
experimental evaluation reported in Section 8. We think that a way to reduce the occurrence
of false-positive detections could be the use of a local voting scheme considering only a set
of neighbors of a candidate image, since more information is better to improve the response
with the cost of increasing computation. Therefore, we kept the method as simple as possible
but enough to achieve good performance in the localization task.

6. VISUAL PATH FOLLOWING

A visual path is composed by successive key images from the VM, i.e. I∗ = {I∗1 , ..., I∗k , ..., I∗n}
where k denotes the kth key image in I∗. Thus, the path following problem consists of gen-
erating the CoM reference velocity to the WPG that regulates the error between the current
and the corresponding key images along the visual path. The input of the problem is then
the sequence of key images extracted from the VM, and the output is the humanoid walking
to track the visual path.

6.1. The sequence of visual tasks

Let us define a visual error as:

ek = s− s∗k ∈ R6,

where s and s∗k are the current and desired visual features, respectively. For a given k, the
regulation problem can be treated as a visual servoing task. Here, we propose to solve each
visual task by means of a position-based visual servoing (PBVS), however, the problem can
be also solved using an image-based visual servo (IBVS) controller as demonstrated in [13].
The choice of a PBVS is due to maintain the same approach in the whole scheme, as the
localization stage is based on the estimation of translation and rotation.

The visual features for the PBVS are expressed as:

s = (t, θu) ∈ R6, (3)

where t is the translation up to scale between the reference frame C associated to the current
camera pose and the kth key image frame C∗k . The rotation between those reference frames
is represented by θu where the axis/angle parametrization is employed. We consider that
the translation and rotation are expressed with respect to C∗k . Therefore s∗k = 0 and ek = s,
which is obtained by homography decomposition. We impose an exponential behavior of the
error dynamics as:

ėk = −λek with λ > 0. (4)

10

Visual
Control

Eq. (5) or (6)

 Target Image

Transformation
between

Camera-CoM

WPG [17]

Inverse
kinematics [35]

 Robot
• Perform gait
• Capture new image

+

-

Desired
Joint

Configuration

Current Joint
Configuration

 Current Image

*

kI ke

Figure 3: Visual control scheme for humanoids.

Since the translational and rotational velocities are decoupled, the camera twist is com-
puted as in [9]:

νc =

[
vc
ωc

]
=

[
−λt
−λθu

]
∈ R6. (5)

If the camera pose is accurately estimated, the control law (5) yields to an exponentially
stable error dynamics (4).

The resulting camera twist (5) could be used as the input to the WPG according to
Fig. 3, with the aim of driving the humanoid robot to the location associated to I∗k in I∗.
However, the abrupt change from k to k+1 key images causes discontinuous velocity signals.
In addition, it is assumed that the humanoid robot walks on a flat surface which implies that
three components of νc are useless. Both issues are treated in the next sections.

6.2. Smooth transitions between key images

The abrupt increment in the error function in (3), when the next key image is given
as new target, generates discontinuous camera twists [11, 12]. Since the camera velocity
signals are the input reference to guide the humanoid locomotion, it is important to cope
with such an undesired behavior. To deal with that, we propose a controller that achieves
smooth transitions when the next visual servoing task becomes active. The main ingredient
is a time dependent function h(t) that varies from h0 to 1 within a predefined transition
interval. These functions penalize large errors at the beginning of each visual servoing task.
The proposed control law written in terms of the PBVS becomes:

νc =

[
−λh (t) t
−λh (t) θu

]
∈ R6. (6)

An adequate profile for the transition function h(t) can be obtained by means of the following
computation:

h(t) =

{
h0 + 1

2 (1− h0)
(

1− cos
(
π(t−t0)
tf−t0

))
, t0 ≤ t ≤ tf ,

1, t > tf ,

where t0 and tf are the initial and final times of the transition function, respectively, and
h0 is a minimum value from which h(t) increases smoothly up to the unity. Therefore, after
tf , the maximum value of the control gain λ is applied. The minimum value of h(t) allows
the robot to achieve a continuous motion, i.e., the robot does not stop at each target while

11

the discontinuities in the velocities are significantly reduced. The duration of the transition
function tf − t0 has to be defined adequately to ensure that the maximum control gain is
applied at least during some time at each visual task.

The underlying computation of (3) involves the point features pj of the current image I
that are matched with the points p∗j of the corresponding key image I∗k while the humanoid is
walking. The matched points are used to compute the control law (6) from the homography
decomposition. The switching to the next key image k + 1 occurs when the mean squared
error between the corresponding point features ε remains below a threshold Tε over a finite
number of iterations:

εk =
1

l

l∑
j=1

∥∥pj − p∗j
∥∥ < Tε, (7)

where l is the number of corresponding point features for the kth visual task. The same steps
are repeated for successive key images in I∗ until the final target image I∗n is reached.

Finally, to generate the locomotion from the visual control, we use a WPG that considers
automatic footstep placements [17]. In particular, the WPG solves a linear model predictive
control problem, and its input is the CoM reference velocity ẋr. The output is used to
generate the motion coordination and the gait by means of an inverse kinematics method
[41]. To obtain the reference velocity ẋr, the camera twist is expressed in the robot’s CoM
reference frame as described in [14].

7. OBSTACLE AVOIDANCE

The proposed strategy for avoiding unexpected static obstacles is based on the same
task function approach that we have applied to define the sequence of visual tasks. Most
of the time, the visual task is the only active task to guide the humanoid walking unless
an obstacle is detected. If this occurs, an obstacle avoidance task is smoothly activated
as the primary task while the hierarchy of the visual task decreases to become secondary
by projecting it onto the null-space of the primary task Jacobian. Depending on the size
(width) of the obstacle measured by means of a range sensor mounted on the humanoid’s
head, the controller decides which obstacle avoidance task should be executed. The coarse
approximation of the width and height of detected obstacles are the criteria for the humanoid
to circumvent or to step over the obstacle. Actually, we assume that all the paths containing
an obstacle are feasible while obstacles are avoided by using one of the two options. The
peripheral avoidance deforms the trajectory of the CoM without affecting the visual task.
On the other hand, if the robot decides to step over the obstacle then the controller smoothly
drives the CoM velocity to zero to reconfigure the humanoid’s posture for stepping over the
obstacle. To perform such complex motion, several motion tasks become active. The set of
active motion tasks are solved by the same hierarchical inverse kinematics method employed
to generate the motion coordination for walking. It is important to note that during the
obstacle avoidance the visual reference must remain in sight. Once the obstacle avoidance is
accomplished, the visual task is smoothly switched to be the primary task, and consequently
it generates the necessary CoM reference velocity to reactivate the WPG.

The summary of computations required to guide the humanoid robot through the visual
path while avoiding obstacles is given in Algorithm 3. Note that the output of this algorithm
corresponds to the number of detected obstacles No and the edges Eo where such obstacles

12

Algorithm 3: pathFollower allows the humanoid robot to autonomously follow a visual

path.

Input: Visual path I∗ = {I∗1 , I∗2 , . . . , I∗n−1, I∗n}, current image I
Output: Humanoid walking along the visual path

1 k ← 1 // index of key images in the visual path
2 No ← 0 // count the number of obstacles
3 while k ≤ n do
4 I∗ ← I∗[k]
5 matches = match(I∗, I)
6 H = computeHomography(matches)
7 ek = visualTaskComputation(H)
8 if an obstacle is detected and eo ≤ 0 then
9 if the obstacle is new then

10 No + +
11 Eo ∪ getEdgeFromVM(G, k)

12 Lo = getObstacleSize()
13 if Lo > A then
14 inactivateWPG() // h(t) varies from 1 to 0

15 else
16 activateAvoidance() // ht(t) varies from 0 to 1

17 else
18 activateWPG() // h(t) varies from 0 to 1
19 inactivateAvoidance() // ht(t) varies from 1 to 0

20 νc = computeCameraTwist(ek) // Eq. (15)
21 if h(t) == 0 and eo ≤ 0 then
22 stepOverObstacle(xo, ek, MotionTasks)

23 robotGait = WPG(νc)
24 εk = meanSquaredErrorComputation(I∗, I)
25 I = captureNewImage
26 if εk < Tε then
27 k + +

28 stopHumanoid()
29 return No, Eo

were found. The obstacle width Lo measured by the humanoid’s range sensor is compared
to a given value A for deciding which obstacle avoidance behavior should be executed. Thin
obstacles are surrounded while obstacles wider than A are passed over. In the first case,
the distance from the robot to the obstacle do and the difference eo of do with respect to a
security distance are used in the algorithm. More details of the variables and functions of
the algorithm are explained in the next subsections.

If an obstacle completely obstructs the path, an additional strategy would be needed. For
instance, the humanoid could use its visual memory (VM) for replanning a new path from
reachable neighbor nodes with respect to its current location. Thus, the connectivity of the
graph representing the VM and its number of branches are very important. In this work,

13

however, we have assumed assume that obstacles can be avoided.

7.1. Obstacle localization and graph updating

The localization of an unexpected static obstacle in the VM is important for subsequent
navigation tasks. The strategy consists of updating the cost to go from Ii−1 to Ii where
the obstacle is detected. Therefore, the cost encoded in the edge Ei that links both images
increases as:

Ei = WEi, (8)

where W is a high value of weight assigned to the edge. In the case that the humanoid does
not detect an obstacle that was previously labeled at Ei, the initial cost is recovered. Clearly,
the new cost affects the paths that contain Ei. By means of the graph updating mechanism,
next queries in the VM will return less costly visual paths, i.e. as straight as possible and
without obstacles if possible. This simple strategy is a way to take into account previous
experiences of the robotics system to exploit them in future navigation tasks [42].

7.2. Peripheral avoidance

The task function to circumvent an obstacle is defined as:

eo = do − ds ∈ R, (9)

where
do = ||xr − xo||, (10)

with ds being the security distance around the obstacle. The vectors xr = [xr yr]
T ∈ R2 and

xo = [xo yo]
T ∈ R2 correspond to the relative robot and obstacle positions with respect to

the current frame C. By differentiating the task error (9) with respect to the vector xr −xo,
we obtain its gradient:

go =

(
xr − xo
do

)T
∈ R1×2. (11)

Then, by defining a common reference frame to express the obstacle avoidance and the visual
tasks, e.g. the corresponding key image frame C∗k , we obtain:

ėo = Joνc, (12)

where Jo represents the obstacle avoidance Jacobian:

Jo =
(
go 01×4

)
∈ R1×6 (13)

and its corresponding null-space projector is given by:

Qo = I − JTo Jo ∈ R6×6. (14)

By activating the task (12) at the first hierarchical level, an abrupt change in the reference
velocity of the robot’s CoM occurs (see [43] and [7]). This is a well-known problem in the
visual control community where some solutions have been suggested, e.g. in [44] and [15].

14

In particular, we adopted the intermediate value strategy introduced in [45]. By handling
smooth task transitions, the camera twist is computed as:

νc = h(t)
(
ν ′o + ν ′v|o

)
, (15)

ν ′o = JTo ė
′
o,

ν ′v|o = Qo (−λvs− ν ′o) ,

where

ė′o = −λoht(t)eo − (1− ht(t))Joλvs (16)

encodes the intermediate desired values. The twist to circumvent the obstacle is ν ′o, and ν ′v|o
is the resulting twist for achieving the visual task without perturbing the execution of the
obstacle avoidance task. The gains λo and λv are related to the obstacle and visual tasks,
respectively. The smooth transition function ht(t) varies within the interval 0 ≤ ht(t) ≤ 1.
Thus, ht(t) = 0 implies that eo > 0, and the obstacle avoidance task is not active. Otherwise,
eo ≤ 0, and the function ht(t) smoothly increases up to its maximum value while the obstacle
avoidance task becomes active. The stability proof of the control law (15) is reported in [7].

7.3. Step over the obstacle

This obstacle avoidance behavior is achieved by solving several hierarchical quadratic
programs (HQP) at kinematic level. Each HQP is formulated as in [46]:

min
q̇i,wi

1
2
‖ wi ‖2

s.t. bli ≤ J iq̇i −wi ≤ bui
b
l

i ≤ J i−1q̇i ≤ b
u

i

(17)

where q̇ ∈ Rn is the humanoid’s joint velocity vector, w ∈ Rm is a vector of slack variables
used to relax the infeasible constraints at hierarchical level i, J i is the task Jacobian, bli and
bui represent the corresponding lower and upper bounds, respectively. Note that the solution
of higher hierarchical tasks is maintained by adding them in:

J i =

(
J i−1
J i

)
, bi(q) =

(
bi−1
J iq̇

∗
i +w∗i

)
(18)

where q̇∗i is the optimal solution at i. The active inequalities at i are also added to (18). It
is important to mention that a dedicated HQP can be employed to dramatically reduce the
computational cost [41].

The step over behavior corresponds to a quasi-static motion since the projection of the
humanoid’s CoM on the floor is constrained to move inside the support polygon defined
by the boundary of the contact area. In other words, the center of pressure criterion is not
considered for this task. The whole-body motion is composed by a sequence of several ordered
arrays of hierarchical tasks. Each array contains the visual task at the lowest hierarchy.

In Algorithm 3, MotionTasks is an input to the step over obstacle strategy. In par-
ticular, it refers to the ordered array of hierarchical tasks to maintain the contact of the

15

humanoid feet on the floor, to generate the motion of the CoM inside the support polygon
for either single and double support stages, and to track the stepping trajectory. In addition,
several inequality constraints are also imposed for joint position and velocity limits as well as
for avoiding self collisions (e.g., the humanoid hands are constrained to move within a safe
region of the task space). Each motion task is expressed as a linear differential system to be
solved by means of (17).

8. EXPERIMENTAL EVALUATION

We implemented the proposed navigation scheme in a NAO humanoid robot. The top
camera of the NAO’s head was used as main sensor in the experiments and an RGB-D camera
was mounted on the robot to detect obstacles. We divided the experimental evaluation in
two parts, one related to the proposed appearance-based localization and the other related
to the integration of the whole humanoid navigation scheme, i.e., localization and planning,
path following with obstacle avoidance and graph updating.

For all the experimental evaluations the images captured by the humanoid were ob-
tained with a resolution of 640 × 480 pixels. The image features were acquired as fol-
lows: first, a corner detector based on [47] was used, which is implemented in the function
goodFeaturesToTrack of the OpenCV library. Then, we assigned a SURF descriptor [48]
to each detected point. To estimate the homography model, a robust matcher based on
RANSAC matched all the points between the current image and the corresponding key im-
age. This matching procedure was used in the localization and path following stages to
initialize the points to be tracked. The HLM function of ViSP library [49] was used to com-
pute the homography for planar and non-planar scenes [32]. All the poses of the robot
during the experiments were captured with an Optitrack System to obtain ground truth of
the navigation scheme.

8.1. Localization

In this section, we present an evaluation of the localization method detailed in Algorithm
2.

8.1.1. Boundary of the initialization around a key image

First, we made an evaluation of the boundaries around a key image where the robot can
be initialized, i.e., the region where the localization algorithm works effectively. For this
evaluation, we proposed two experimental settings for near and far scenes, respectively. To
obtain the working boundaries, we varied the robot placement (position and orientation)
with respect to a key image as shown in Fig. 4 to have what we call evaluation poses.

We defined two measurements for estimating the working boundary. One is the number
of points matched between the key image and the images taken at the evaluation poses. The
second measurement is the dispersion or distribution of the matched points in the image plane;
the greater the dispersion, the greater the probability of good localization and navigation.
To calculate a degree of dispersion, we build a symmetric matrix U that contains the set of
matched points, previously centered around their mean values (u, v). The eigenvalues of the
symmetric matrix UTU (calculated through its determinant) span a quadratic form whose

16

−1 −0.5 0 0.5 1

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

 x(m)

 y
(m

)

Key image

Evaluation Poses

−1 −0.5 0 0.5 1

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

 x(m)

 y
(m

)

Key image

Evaluation Poses

Figure 4: Boundary evaluation around a key image. The red triangles represent the poses of the robot
where the key image was taken. Above. The boundary and the key image for a near scene. Below. The
boundary and the key image for a far scene. The green triangles are some samples of the evaluation poses.
The blue cones represent the range of orientations for these samples, they varied −30◦, −15◦, 0◦, 15◦ and
30◦.

area with respect to the total number of pixels can be related to the dispersion d of the set
as follows:

d =
π
√
det(UTU)

4ucvc
. (19)

where (uc, vc) are the coordinates of the image center.
Due to the homography computation for non-planar scenes, we know that the localization

algorithm and the control law need at least µ > 8 matches to work effectively. Additionally,
we set a minimum dispersion d = 20 (defined experimentally) to estimate the working regions
shown in Fig. 4. The black arc represents the region where the robot can be correctly
initialized with respect to the key image. As expected, when the scene is far, the region
in which the robot can start to navigate is bigger than when the scene is near. Being
conservative, we concluded that, in general, the boundary of the region in which the robot is
adequately initialized corresponds to a semicircle of radius 0.75 meters behind a key image,
considering forward motion direction.

In these results and in general for the experimental evaluation, we request 1000 feature
points to the detector goodFeaturesToTrack with the additional requirement of having a
minimum distance of 31 pixeles between points (minDistance parameter of the function
goodFeaturesToTrack) for images of 640x480. According to our results, we consider that
this strategy for points detection has been enough to achieve a correct distribution of point
features and consequently to have a good boundary of the initialization. However, a strategy
like the one in [34] to force a uniform layout of points over the frames could also be used.

17

−1 0 1 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

 x(m)

 y
(m

)

 Key images

 Forward

 Backward

−1 0 1 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

 x(m)

 y
(m

)

 Key images

 Forward

 Backward

−1 0 1 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

 x(m)

 y
(m

)

 Key images

 Forward

 Backward

Figure 5: Results of localization in one branch. We used three visual paths: a straight line, a S-like
path and an elliptic path. The green triangles represent the robot’s poses where key images were taken. The
blue triangles represent the evaluation poses where the localization found forward images. The red pentagons
represent results of localization for backward images. All this information was captured with the Optitrack
System.

8.1.2. Localization in one branch

First, we present the evaluation of the localization Algorithm 2 for the case when there
is only one branch or visual path. Thus, the localization process is performed by the lines 19
to 23 in Algorithm 2, which selects the closest key image I∗1 to the current image I.

We applied Algorithm 2 to each path shown in Fig. 5, but performing exhaustive com-
parisons in the localization process (line 1 of Algorithm 2 is not used). The results are shown
in Table 1. We classified the results in two categories, the case when the closest key image
was found ahead the robot, denoted as “Forward” and the case when the closest key image
was found “Backward” the robot. We observed that the localization algorithm always found
a solution. In particular, the resulting images were forward in more than 80% of the trials.
Clearly, it is preferred to perform a forward navigation from the beginning of the autonomous
motion. However, in 16% of the cases the key images were found behind the robot.

Table 1: Evaluation of the localization for single paths.

Path Forward Backward
Line 18 1
“S” 16 3
Ellipse 19 6
Total (%) 53 (84) 10 (16)

8.1.3. Localization aided by planning

In these experiments, the localization was carried out with the graph depicted in Fig. 6.
In this case, the two candidate images (I∗±1, I∗±2) referred in line 18 of Algorithm 2 might be

18

−1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

 x(m)

 y
(m

)

 Key images

 Intersections

Figure 6: Navigation graph and examples of key images. The green triangles represent the pose of
the robot where each key image (node) was taken. The black pentagons are intersection nodes that connect
the branches of the graph. Some images that form the VM are shown at the right.

in the same branch or in different branches of the graph. The VM contains 89 key images (see
Fig. 6). Some branches of the VM are connected by “Intersection” nodes. For the planning
algorithm, we decided to use the Dijkstra’s algorithm in getShortestPath to obtain the
minimum length path.

The localization requires the homography matrix decomposition to obtain the scaled
translation vector t. An efficient algorithm to decompose H is suggested in [50]. Such
kind of decomposition generates two geometrically valid solutions where only one of them
is physically admissible. The correct solution can be selected by taking the normal vector
whose third value (nz) is the largest. Although the vector t is scaled, it gives the direction
and a notion of distance of the key images with respect to the current image if the virtual
plane is fixed as described in Section 5.

In Fig. 7 we present three cases of localization and planning. The first case is shown
in Fig. 7 (left) where the robot starts near one branch (red triangle). The two candidate
key images I∗±1 and I∗±2 (orange circle and gray square) are in the same branch, and the
localization algorithm selects the closest key image I∗1 (orange circle). Once the robot is
localized, getShortestPath finds the minimum length path I∗ to the target image I∗n (ma-
genta triangle at top). The second and third cases are shown in Fig. 7 (center and right).
The robot starts between two branches of the graph (red triangle) such that the two candi-
date key images belong to different branches (orange circle and gray square). In these cases,
the localization algorithm is aided by the path planner to select the most similar key image
while taking into account the shortest path to the target image. As it can be seen in Fig.
7 (center), the shortest path to the target image (magenta triangle) corresponds to the key
image on the right (orange circle), but if the target image changes, as it is observed in Fig. 7

19

−1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

 x(m)

 y
(m

)

 Path planned

 Initial Pose

 Target Key Image

 First candidate

 Second candidate

−1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

 x(m)

 y
(m

)

 Path planned

 Initial Pose

 Target Key Image

 First candidate

 Second candidate

−1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

 x(m)

 y
(m

)

 Path planned

 Initial Pose

 Target Key Image

 First candidate

 Second candidate

Figure 7: Evaluation of the localization and planning. Left: Case when the two candidate images are
in the same branch of the graph. Center and right: Cases when the two candidate images are in different
branches.

(right), the algorithm selects the key image on the left (gray square). Hence, the localization
avoids long paths for initializing the robot navigation.

We evaluated the CPU time dedicated to solve the localization by comparing the divide-
and-conquer strategy using line 1 of Algorithm 2 against the exhaustive search for the same
graph of Fig. 6. This evaluation was done offline using a laptop with CPU Intel Core i7 of
2.20 GHz with 8.00 GB in RAM. The results are shown in Table 2 for 18 trials with different
initialization images. Since the termination condition of the function findNodesNeighbor-
hood depends on µ, we decided to evaluate the localization with 8 and 16 matches. By
setting a higher value of µ, the localization retrieved better key images in terms of com-
mon visual information. Also, the computation time does not suffer an important increment
compared to the exhaustive procedure.

Table 2: CPU time to solve the robot localization.
Method Compared nodes Time (s)
Division µ = 8 22.6 (Average) 1.94 (Average)
Division µ = 16 26.6 (Average) 2.27 (Average)
Exhaustive 89 7.3

8.2. Visual navigation with obstacle avoidance

We evaluated the performance of the visual path following scheme described in Algorithm
3. Notice that the input of this stage is the sequence of key images of the planned visual
path. For this experiment, we used the initialization procedure of image features described at

20

−1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

 x(m)

 y
(m

)

Path planned

Target Key Image

Closest Key Image

Initial pose

Final pose

Figure 8: Performance of the autonomous robot navigation. The magenta line shows the motion
of the robot during the navigation. As it can be seen, the robot gets close to the target key image (gray
triangle) with an error < 10cm. The images on the right from top to bottom are: the current image I at the
initial pose (red pentagon), the closest key image pI∗1 (light blue pentagon), the current image at the final
pose (orange triangle) and the target key image I∗ (gray triangle).

the beginning of this section. During the locomotion, we used a tracking algorithm based on
a sparse iterative version of the Lucas-Kanade optical flow in pyramids, implemented in the
function calcOpticalFlowPyrLK of OpenCV. We evaluated experimentally the performance
of the visual tracker with the NAO robot subject to the effect of the sway motion generated
by the robot’s locomotion. This issue has been addressed in the literature by canceling the
oscillations in the feedback error [5], or by filtering the measurements [18]. In our case, we do
not focus in a way to cancel the sway motion, we just tried to mitigate its effect by ensuring a
good tracking of point features in spite of this unavoidable robot motion. This was achieved
by tuning the points tracker setting a number of 3 pyramids and an appropriate size window
of 31 pixels.

Since the robot’s translation and rotation are decoupled, different control gains were used
in the control law (15): λv = 0.11 for frontal translation, λv = 0.055 for lateral translation,
λv = 0.6 for rotation and λo = 0.6. We set the transition time interval for ht(t) in (16) as
tt,f − tt,0 = 10 seconds for the obstacle peripheral avoidance. The duration of the transition
function h(t) was set experimentally to tf − t0 = 3.5 seconds to mitigate the discontinuities
of walking velocities when the robot switches to the next key image for computing the visual
error. Also, we defined experimentally h0 = 0.2 to keep a minimal walking velocity along
the robot navigation. It is worth emphasizing that a small threshold Tε for switching to
the next key image was not always the best option to obtain a natural robot motion during
navigation. Indeed, we have achieved a good behavior by fixing Tε = 18 pixels.

21

−1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

 x(m)

 y
(m

)

Path planned

Target Key Image

Closest Key Image

Initial pose

Final pose

Figure 9: Closed-loop path. The magenta line shows the motion of the robot during the navigation. In
this case, the target key image I∗n and the most similar key image I∗1 are depicted by the same light blue
pentagon. The images on the right from top to bottom are: the current image I at the initial pose (red
pentagon), the target key image I∗n (light blue pentagon) and the current image at the final pose (orange
triangle).

We show the behavior of the robot for the whole navigation scheme according to Algorithm
1. Fig. 8 shows the performance of the whole navigation scheme using the humanoid robot
NAO. The red pentagon depicts the initial pose of the robot, the light blue pentagon is the
most similar key image that Algorithm 2 returned. The target key image is the gray triangle,
and the orange triangle is the final pose of the robot during the experiment. The planned
visual path contained 18 key images over a total distance of 4.7m.

8.2.1. Closed-loop path

The behavior of the robot for a navigation in a loop is shown in Fig. 9, i.e., the target key
image I∗n is the most similar key image I∗1 (both are shown as the light blue pentagon) given
by the localization algorithm. Therefore, the robot starts (red pentagon) and ends (orange
triangle) near the location of the target image. The blue triangles refer to the path of 38
images followed by the robot over a distance of approximately 9m. It can be seen that the
proposed scheme effectively guided the robot to follow a path in closed-loop.

8.2.2. Obstacle avoidance and graph updating

To evaluate the obstacle avoidance and graph updating mechanisms, we proposed four
experiments with four different paths for which static obstacles appeared during the execution
of the visual path following stage.

Fig. 10 shows the detection of two types of obstacles with distance filters on images
obtained from the RGB-D sensor. To distinguish between thin (peripheral avoidance) and

22

Figure 10: Detection of the two types of obstacles (short and long) with the ASUS Xtion RGB-D
sensor. Top: small thin obstacle (the robot is able to surround it). Bottom: wide obstacle (the robot is
not able to surround it, but it is able to step over, for example a fence).

−1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

 x(m)

 y
(m

)

Path planned

Target Key Image

Closest Key Image

Initial pose

Final pose

Figure 11: First navigation with obstacles: peripheral avoidance. The magenta line shows the motion
of the robot during navigation with peripheral avoidance. The dotted black circle represents the security
distance ds that activates the avoidance. The red arrow represents the edge Ei where the robot located
the obstacle in memory. The images on the right show some snapshots of the robot during the peripheral
avoidance.

23

−1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

 x(m)

 y
(m

)

Path planned

Target Key Image

Closest Key Image

Initial pose

Final pose

Figure 12: Second navigation with obstacles: stepping over avoidance. The magenta line shows
the motion of the robot during navigation with stepping over avoidance. The solid and dotted black lines
represent the position of the obstacle and the security distance ds, respectively. The red arrow shows the
edge Ei where the robot located the large obstacle during the experiment. The black arrow represents the
weighted edge WEi where the robot located the short obstacle in Fig. 11. The images at the bottom show
some snapshots of the robot during the stepping over avoidance.

wide (stepping over) obstacles, we defined A = 0.1m in line 13 of Algorithm 3. Since our aim
was to show the performance of the robot navigation, the shape of the obstacles as well as
the image processing method for object segmentation are rather simple.

Fig. 11 shows the first experiment of navigation with obstacle avoidance, where the blue
triangles refer to the planned path toward the target key image (gray triangle). In this case,
the obstacle length was Lo < A, therefore the robot surrounded it. The black dotted circle
represents the security distance ds = 0.13m that, if it is violated then the smooth transition
control of equation (15) is activated using ht(t)→ 1. The brown triangles indicate the nodes
associated to the edge Ei (represented by the red arrow) where the robot located the obstacle
during the experiment, i.e. the edge that will be updated with a large weight for the next
navigation.

Fig. 12 illustrates the second experiment performed with the updated graph. Although
the target key image (gray triangle) was the same as in the experiment of Fig. 11, the
resulting path (blue triangles) was different. This is due to the higher cost encoded in the
previously updated edge where the obstacle avoidance occurred (see Fig. 11). Concerning
the second experiment, the obstacle avoidance condition Lo > A was true. Hence, the robot
stepped over the obstacle. The dotted black line in Fig. 12 represents ds = 0.13m, which
was violated according to Algorithm 3, and the stepOverObstacle function handled the
robot motion execution. The red arrow and the brown triangles show the localization of
the obstacle during the experiment. In this case, the corresponding edge was also updated
for future navigation. As it can be observed in Fig. 12, the edge detection did not reflect
the proper location of the obstacle because the localization process uses the topology of the

24

graph, which is not spatial. However, according to our experiments, the localization of the
obstacles has an error of no more than one neighboring edge, which is sufficient to detect
and to avoid paths with obstacles. Thus, the information of the localized obstacles is used
to update the graph and to avoid planning paths containing obstacles as much as possible in
future navigations.

We have included a video as a multimedia extension of the paper, in which most of
the experiments reported herein are shown during their execution. The video also shows
experiments in cluttered and corridor-like environments, where the robot performs lateral
motion, since in those cases, it is demanded by the VM. These experiments demonstrate that
the proposed scheme allows to consider the holonomic nature of humanoid robots, providing
a versatile navigation solution.

9. CONCLUSIONS

In this paper, we have proposed a vision-based navigation scheme for humanoid robots
that relies on a topological representation of the environment known as visual memory. Such
environment model is constructed in a human-guided teaching phase, in which a set of key
images are captured and organized as a directed graph. We have shown that this graph is
enough to qualitatively solve the robot localization given the current image from the robot’s
camera. The proposed appearance-based localization method finds the most similar key
image with respect to the current image in terms of common visual information with sufficient
accuracy. Once the robot is localized and given a desired target key image associated to the
desired robot location, the visual path planner returns the sequence of key images to reach
the desired location. The experiments have shown that the humanoid is able to follow the
planned visual path. The visual-servo controller, that only relies on 2D information, drives
the robot to a vicinity of the location associated to a target key image, being sufficient for
a navigation task, rather than reaching the target location or following the path with high
accuracy.

It is clear that in static scenarios, the navigation based on a visual memory naturally
generates obstacle free paths since obstacles are taken into account in the initial supervised
navigation stage. However, it is important to deal with changes in the visual memory due to
obstacles that were not initially present. Thus, we have introduced an obstacle avoidance task
for stepping over and circumvent obstacles. We have shown that the humanoid robot is able
to avoid obstacles while keeping the performance of the visual path following. This has been
handled by means of the task-based control framework, in which the transitions of successive
and hierarchical tasks are performed smoothly to keep the balance of the humanoid robot
during navigation. In addition, we have shown that the humanoid localization and visual path
following can be completely based on 2D information by taking advantage of the homography
for planar and non planar scenes. Moreover, the proposed navigation scheme can be extended
to rely on other geometric constraints like the epipolar geometry or the trifocal tensor, since
they can provide the estimated translation and rotation required by the controller. In that
case, it might be useful to combine models. Although in our results the obstacle avoidance
strategy relies on depth measurements of an RGB-D sensor, this can be tackled in the future
by using only the monocular camera.

An experimental evaluation of the different stages of the navigation as well as its integra-
tion have been reported in this paper using the NAO platform. We have shown experimentally

25

that our navigation scheme works effectively in different indoor environments like corridors,
uncluttered or cluttered environments. We have taken advantage of the motion capabilities
of humanoid robots, since no motion constraints are imposed by the navigation scheme, al-
lowing the robot to walk in any direction as required by the visual path and the obstacle
avoidance strategy.

As future work, we plan to extend the obstacle avoidance strategy to deal with moving
obstacles and to deal with huge visual memories. Additionally, since there exist several visual
SLAM techniques based on keyframes, one could try to combine the proposed navigation
scheme with those methods in order to take advantages of both 2D and 3D worlds.

References

[1] A. H. Javadi, B. Emo, L. Howard, F. Zisch, Y. Yu, R. Knight, J. P. Silva, H. J. Spiers,
Hippocampal and prefrontal processing of network topology to simulate the future, Na-
ture Communications.

[2] Y. Matsumoto, M. Inaba, H. Inoue, Visual navigation using view-sequenced route rep-
resentation, in: IEEE Int. Conf. on Robotics and Automation, 1996, pp. 83–88.

[3] J. Courbon, Y. Mezouar, P. Martinet, Indoor navigation of a non-holonomic mobile
robot using a visual memory, Autonomous Robots 2008 (25) (2008) 253–266.

[4] J. Courbon, Y. Mezouar, P. Martinet, Autonomous navigation of vehicles from a vi-
sual memory using a generic camera model, IEEE Trans. on Intelligent Transportation
Systems 10 (3) (2009) 392–402.

[5] C. Dune, A. Herdt, O. Stasse, P. B. Wieber, K. Yokoi, E. Yoshida, Cancelling the sway
motion of dynamic walking in visual servoing, in: IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, 2010, pp. 3175–3180.

[6] M. Garćıa, O. Stasse, J. B. Hayet, C. Dune, C. Esteves, J. P. Laumond, Vision-guided
motion primitives for humanoid reactive walking: decoupled versus coupled approaches,
The Int. Journal of Robotics Research 34 (4–5) (2014) 402–419.

[7] J. Delfin, H. M. Becerra, G. Arechavaleta, Visual servo walking control for humanoids
with finite-time convergence and smooth robot velocities, Int. Journal of Control 89 (7)
(2016) 1342–1358.

[8] G. Lopez-Nicolas, N. R. Gans, S. Bhattacharya, C. Sagues, J. J. Guerrero, S. Hutchin-
son, Homography-based control scheme for mobile robots with nonholonomic and field-
of-view constraints, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cy-
bernetics) 40 (4) (2010) 1115–1127.

[9] F. Chaumette, S. Hutchinson, Visual servo control. Part I: Basic approaches, IEEE
Robotics and Automation Magazine 13 (4) (2006) 82–90.

[10] J. Ido, Y. Shimizu, Y. Matsumoto, T. Ogasawara, Indoor navigation for a humanoid
robot using a view sequence, The Int. Journal of Robotics Research 28 (2) (2009) 315–
325.

26

[11] A. Diosi, S. Segvic, A. Remazeilles, F. Chaumette, Experimental evaluation of au-
tonomous driving based on visual memory and image-based visual servoing, IEEE Trans.
on Intelligent Transportation Systems 12 (3) (2011) 870–833.

[12] H. M. Becerra, C. Sagüés, Y. Mezouar, J. B. Hayet, Visual navigation of wheeled mobile
robots using direct feedback of a geometric constraint, Autonomous Robots 37 (2) (2014)
137–156.

[13] J. Delfin, H. M. Becerra, G. Arechavaleta, Visual path following using a sequence of
target images and smooth robot velocities for humanoid navigation, in: IEEE-RAS Int.
Conf. on Humanoid Robots, 2014, pp. 354–359.

[14] J. Delfin, H. M. Becerra, G. Arechavaleta, Humanoid localization and navigation using
a visual memory, in: IEEE-RAS Int. Conf. on Humanoid Robots, 2016, pp. 75–80.

[15] A. Cherubini, F. Chaumette, Visual navigation of a mobile robot with laser-based col-
lision avoidance, The Int. Journal of Robotics Research 32 (2) (2013) 189–205.

[16] N. Mansard, O. Stasse, F. Chaumette, K. Yokoi, Visually-guided grasping while walking
on a humanoid robot, in: IEEE Int. Conf. on Robotics and Automation, 2007, pp.
3041–3047.

[17] A. Herdt, H. Diedam, P. B. Wieber, D. Dimitrov, K. Mombaur, M. Diehl, Online walk-
ing motion generation with automatic footstep placement, Advanced Robotics 24 (5-6)
(2010) 719–737.

[18] G. Oriolo, A. Paolillo, L. Rosa, M. Vendittelli, Vision-based trajectory control for hu-
manoid navigation, in: IEEE-RAS Int. Conf. on Humanoid Robots, 2013, pp. 118–123.

[19] A. Paolillo, A. Faragasso, G. Oriolo, M. Vendittelli, Vision-based maze navigation for
humanoid robots, Autonomous Robots 41 (2) (2017) 293–309.

[20] J. H. Hayet, C. Esteves, G. Arechavaleta, O. Stasse, E. Yoshida, Humanoid locomotion
planning for visually-guided tasks, Int. Journal of Humanoid Robots 9 (2) (2012) 26.

[21] G. Oriolo, A. Paolillo, L. Rosa, M. Vendittelli, Humanoid odometric localization inte-
grating kinematics, inertial and visual information, Autonomous Robots 40 (5) (2016)
867–879.

[22] L. George, A. Mazel, Humanoid robot indoor navigation based on 2D bar codes: Ap-
plication to the NAO robot, in: IEEE-RAS Int. Conf. on Humanoid Robots, 2013, pp.
329–335.

[23] R. Cupec, G. Schmidt, O. Lorch, Vision-guided walking in a structured indoor scenario,
Automatika 46 (1-2) (2005) 49–57.

[24] D. Maier, C. Stachniss, M. Bennewitz, Vision-based humanoid navigation using self-
supervised obstacle detection, Int. Journal of Humanoid Robotics 10 (2) (2013) 1–28.

[25] O. Stasse, B. Verrelst, B. Vanderborght, K. Yokoi, Strategies for humanoid robots to
dynamically walk over large obstacles, IEEE Trans. on Robotics 25 (4) (2009) 960–967.

27

[26] N. Perrin, O. Stasse, L. Baudouin, F. Lamiraux, E. Yoshida, Fast humanoid robot
collision-free footstep planning using swept volume approximations, IEEE Trans. on
Robotics 28 (2) (2012) 427–439.

[27] M. Naveau, M. Kudruss, O. Stasse, C. Kirches, K. Mombaur, P. Souères, A reactive
walking pattern generator based on nonlinear model predictive control, IEEE Robotics
and Automation Letters 2 (1) (2017) 10–17.

[28] M. Ferro, A. Paolillo, A. Cherubini, M. Vendittelli, Omnidirectional humanoid naviga-
tion in cluttered environments based on optical flow information, in: IEEE-RAS Int.
Conf. on Humanoid Robots, 2016, pp. 75–80.

[29] A. Rioux, W. Suleiman, Autonomous slam based humanoid navigation in a cluttered
environment while transporting a heavy load, Robotics and Autonomous Systems 99
(2018) 50 – 62.

[30] J. Stalbaum, J.-B. Song, Keyframe and inlier selection for visual slam, in: Int. Conf. on
Ubiquitous Robots and Ambient Intelligence, 2013, pp. 391–396.

[31] G. Guan, Z. Wang, S. Lu, J. Da-Deng, D-Dagan-Feng, Keypoint-based keyframe selec-
tion, IEEE Trans. on Circuits and Systems for Video Technology 23 (4) (2013) 729–734.

[32] E. Malis, F. Chaumette, S. Boudet, 2 1/2 Visual servoing with respect to unknown ob-
jects through a new estimation scheme of camera displacement, Int. Journal of Computer
Vision 37 (1) (2000) 79–97.

[33] R. I. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision, 2nd Edition,
Cambridge University Press, 2004.

[34] R. Mur-Artal, J. M. M. Montiel, J. D. Tardos, ORB-SLAM: a versatile and accurate
monocular SLAM system, IEEE Transactions on Robotics 31 (5) (2015) 1147–1163.

[35] T. H. Cormen, Introduction to algorithms, MIT press, 2009.

[36] I. Kostavelis, A. Gasteratos, Learning spatially semantic representations for cognitive
robot navigation, Robotics and Autonomous Systems 61 (12) (2013) 1460–1475.

[37] D. Gálvez-López, J. D. Tardos, Bags of binary words for fast place recognition in image
sequences, IEEE Transactions on Robotics 28 (5) (2012) 1188–1197.

[38] N. G. Aldana-Murillo, J. B. Hayet, H. M. Becerra, Comparison of local descriptors for
humanoid robots localization using a visual bag of words approach, Intelligent Automa-
tion and Soft Computing (2017) 1–11.

[39] A. Babenko, V. Lempitsky, The inverted multi-index, IEEE Transactions on Pattern
Analysis and Machine Intelligence 37 (6) (2015) 1247–1260.

[40] M. Muja, D. G. Lowe, Scalable nearest neighbor algorithms for high dimensional data,
IEEE Transactions on Pattern Analysis and Machine Intelligence 36 (11) (2014) 2227–
2240.

28

[41] A. Escande, N. Mansard, P. B. Wieber, Hierarchical quadratic programming: Fast online
humanoid-robot motion generation, The Int. Journal of Robotics Research 33 (7) (2014)
1006–1028.

[42] L. Nardi, C. Stachniss, User preferred behaviors for robot navigation exploiting previous
experiences, Robotics and Autonomous Systems 97 (2017) 204 – 216.

[43] F. Keith, P. B. Wieber, N. Mansard, A. Kheddar, Analysis of the discontinuities in
prioritized task-space control under discrete task scheduling operations, in: IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, 2011, pp. 3887–3892.

[44] N. Mansard, A. Remazeilles, F. Chaumette, Continuity of varying-feature-set control
laws, IEEE Trans. on Automatic Control 54 (11) (2009) 2493–2505.

[45] J. Lee, N. Mansard, J. Park, Intermediate desired value approach for task transition of
robots in kinematic control, IEEE Trans. on Robotics 28 (6) (2012) 1260–1277.

[46] O. Kanoun, F. Lamiraux, P.-B. Wieber, Kinematic Control of Redundant Manipulators:
Generalizing the task-priority framework to inequality task, IEEE Trans. on Robotics
27 (4) (2011) 785–792.

[47] J. Shi, C. Tomasi, Good features to track, in: IEEE Conf. on Computer Vision and
Pattern Recognition, 1994, pp. 593–600.

[48] H. Bay, T. Tuytelaars, L. V. Gool, SURF: Speeded up robust features, in: European
Conf. on Computer Vision, 2006, pp. 404–417.

[49] E. Marchand, F. Spindler, F. Chaumette, Visp for visual servoing: a generic software
platform with a wide class of robot control skills, IEEE Robotics and Automation Mag-
azine 12 (4) (2005) 40–52.

[50] B. Triggs, Autocalibration from planar scenes, in: H. Burkhardt, B. Neumann (Eds.),
Computer Vision - ECCV’98, Vol. 1406 of LNCS, Springer Berlin Heidelberg, 1998, pp.
89–105.

29

	INTRODUCTION
	Related work
	OUTLINE OF THE NAVIGATION STRATEGY
	STRUCTURE OF THE VISUAL MEMORY
	VISUAL LOCALIZATION AND PLANNING
	VISUAL PATH FOLLOWING
	The sequence of visual tasks
	Smooth transitions between key images

	OBSTACLE AVOIDANCE
	Obstacle localization and graph updating
	Peripheral avoidance
	Step over the obstacle

	EXPERIMENTAL EVALUATION
	Localization
	Boundary of the initialization around a key image
	Localization in one branch
	Localization aided by planning

	Visual navigation with obstacle avoidance
	Closed-loop path
	Obstacle avoidance and graph updating

	CONCLUSIONS

