
November 24, 2015 International Journal of Control VisContHumanoidsJournalIJC˙pre

To appear in the International Journal of Control
Vol. 00, No. 00, Month 20XX, 1–24

Visual Servo Walking Control for Humanoids with Finite-time Convergence

and Smooth Robot Velocities

Josafat Delfina∗ , Hector M. Becerrab and Gustavo Arechavaletaa

aRobotics and Advanced Manufacturing Group, Centro de Investigación y de Estudios Avanzados del IPN,

Saltillo, Coah., Mexico, e-mail: (josafat.delfin, garechav)@cinvestav.edu.mx
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In this paper, we address the problem of humanoid locomotion guided from information of a monocular
camera. The goal of the robot is to reach a desired location defined in terms of a target image, i.e., a
positioning task. The proposed approach allows us to introduce a desired time to complete the positioning
task, which is advantageous in contrast to the classical exponential convergence. In particular, finite-time
convergence is achieved while generating smooth robot velocities and considering the omnidirectional
waking capability of the robot. In addition, we propose a hierarchical task-based control scheme, which can
simultaneously handle the visual positioning and an obstacle avoidance tasks without affecting the desired
time of convergence. The controller is able to activate or inactivate the obstacle avoidance task without
generating discontinuous velocity references while the humanoid is walking. Stability of the closed-loop
for the two task-based control is demonstrated theoretically even during the transitions between tasks.
The proposed approach is generic in the sense that different visual control schemes are supported. We
evaluate a homography-based visual servoing for position-based and image-based modalities, as well
as for eye-in-hand and eye-to-hand configurations. The experimental evaluation is performed with the
humanoid robot NAO.

Keywords: Visual servoing; humanoid robots; finite-time convergence; obstacle avoidance;
homography-based control

1. INTRODUCTION

The problem of humanoid locomotion has been widely studied in recent literature (Kajita et al.
(2014)). The complexity of the problem is mainly related to maintain the dynamic equilibrium of
the robot while walking. A pioneer walking pattern generator (WPG) (Kajita et al. (2003)) assumes
predefined references for the zero moment point (ZMP) coming from the sequence of footsteps that
the robot must follow during the coordination of its motion. In (Herdt et al. (2010)), the authors
propose a scheme based on quadratic programming (QP), which generates the sequence of such
steps in a reactive manner. In this approach, the input to the WPG is a reference in linear and
angular velocities of the center of mass (CoM) of the humanoid. The outputs are the trajectories of
the CoM that satisfy the criterion of the dynamic equilibrium and the trajectory of the foot that
generates the next contact point with the ground.

The locomotion task assigned to the robot can be defined in terms of a visual target, i.e., the robot
has to walk to a desired location defined from visual features. This positioning task is depicted in
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Figure 1. Positioning task of a humanoid robot. The locomotion is guided by visual servo control. (a) Eye-in-hand
configuration. (b) Eye-to-hand configuration.

Fig. 1(a) for an eye-in-hand and in Fig. 1(b) for an eye-to-hand configurations, respectively. In the
first case the robot motion induces camera displacements and in the second case the camera is fixed,
observing the motion of the robot from a stationary configuration (Chaumette and Hutchinson
(2006)). Visual information has been used in a variety of humanoid robot navigation strategies. In
(Ido et al. (2009)), a sequence of images obtained from a teaching phase together with a technique
based on template correlation have been suggested to decide the actions that a humanoid has to
perform for navigation purposes. The strategy proposed in (Faragasso et al. (2013)) copes with
different corridor configurations by taking advantage of vanishing points easily computed in that
particular environment. In (Oriolo et al. (2013)) a vision-based odometric localization method is
used to close the loop for the task of tracking a desired trajectory. In both last works, the humanoid
robot is assumed to behave as a non-holonomic system.

Humanoids are capable to perform several tasks simultaneously. In (Mansard et al. (2007)),
a grasping task commanded by visual servoing is performed while the humanoid is walking. This
strategy has been incorporated within a visually-guided locomotion planner in (Hayet et al. (2012)).
In these cases, the locomotion task cannot be modified by an error function obtained from the visual
task. The reactive walking controller introduced in (Herdt et al. (2010)) overcomes this limitation.
Using this WPG, the sequence of footsteps of the humanoid can be computed from a set of visual
features, as it is demonstrated in (Dune et al. (2010)). In that work, a classical visual servoing
scheme provides a reference of velocity for the CoM that is introduced to the WPG. Such scheme
is a decoupled approach in the sense that the visual controller is independent of the WPG. In
contrast, a coupled approach suggested in (Garćıa et al. (2014)), introduces the visual constraints
directly in the QP problem that is solved inside the WPG. Thus, this scheme is an extension of the
WPG (Herdt et al. (2010)) including the constraints given by the visual task in the linear model
predictive control scheme that solves the humanoid locomotion.

In this work, we focus on the locomotion guided from monocular vision while the robot is able to
avoid unexpected obstacles that appear during its motion. In the literature, the obstacle avoidance
task has been addressed from vision-based guidance of humanoid robots. In (Cupec et al. (2005)), a
vision-guided walking in structured indoor scenarios is proposed. The strategy uses odometry and
visual information to generate a local map of the environment where the robot is localized relative
to the obstacles and then a reactive footstep planner drives the robot to avoid the obstacles. The
authors of (Maier et al. (2013)) propose to detect obstacles from monocular images and sparse laser
data. Transversability of the environment is estimated from that information to provide motion
commands that drive the robot to avoid obstacles.

In this paper, we propose a visual servo control of humanoid robots that achieves finite-time
convergence of a positioning task, even in the case that an obstacle is present in the path toward the
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target location. Finite-time convergence means that a task is finished in a predefined time interval.
A vision-based control for humanoid robots able to manage reactively an obstacle avoidance task
without jeopardizing the robot balance was not previously investigated in the literature. Both
problems visual servoing and obstacle avoidance have been treated separately in previous works
(Dune et al. (2010); Garćıa et al. (2014); Maier et al. (2013)). Additionally, ensuring finite-time
termination of a task is a desirable property for robotics applications even if only one task is
performed by the robot. Finite-time convergence improves the flexibility of the robotic system
when more than one task must be performed, by allowing to have a controlled scheduling of
the execution of each task (Jarqúın et al. (2013); Ou et al. (2013)). The classical asymptotic
stability of a visual task, presented for instance in (Dune et al. (2010); Garćıa et al. (2014)), is
disadvantageous in humanoid robots control given that the small final velocities keep the robot
oscillating around the goal without stopping, while a finite-time controller turns off the robot
velocities when predefined. This might improve the final accuracy of the task. From asymtotic
stability, a possibility to control the time of convergence might imply a no trivial tuning of control
gains. We exploit the ideas reported in the context of movement neuroscience for studying human
arm reaching tasks (Morasso et al. (1997)), where a time base generator (TBG) is proposed to
achieve finite-time tracking of hand trajectories. The TBG as a terminal attractor has been used
for kinematic control for handling postural task transitions of redundant robots in (Jarqúın et al.
(2013)). A different control scheme with finite-time convergence has been proposed in the context
of visual servoing for reference tracking of multiple non-holonomic robots in (Ou et al. (2013)).

In the work herein, we propose a decoupled visual servo walking control that introduces a TBG,
which also generates smooth robot velocities. The time to complete the positioning task is directly
predefined in terms of the TBG. The contribution of the paper is then two-fold: first, the pro-
posed visual servo walking control achieves finite-time convergence using smooth robot velocities
and considering the omnidirectional waking capability of the robot; second, the proposed scheme
corresponds to a hierarchical task-based control with smooth transitions that can deal with the
avoidance of an obstacle detected in the path toward the desired robot location without affecting
the desired time of convergence. The stability of the closed-loop for that couple of tasks is demon-
strated even during the transitions between tasks. Additionally, the proposed scheme is shown to
be generic in the sense that different visual control schemes can be used. In particular, we evaluate
the approach using a homography-based visual control for position-based and image-based modal-
ities, as well as for eye-in-hand and eye-to-hand configurations. The performance of the proposed
approach is reported from online experiments using the NAO robot as experimental platform.

Regarding to our results, it will be shown that fixed-time convergence is indeed achieved, i.e.,
the same convergence time is maintained from different initial conditions. This nice property had
not been explored before (Dune et al. (2010); Garćıa et al. (2014)). We consider that the time
constraint to finish a visual task might be hard to be introduced in a coupled approach like the one
in (Garćıa et al. (2014)). Exponential convergence of previous works (Dune et al. (2010); Garćıa
et al. (2014)) gives an initial large control effort, which is not suitable for the dynamic balance of
a humanoid robot. This issue is mitigated in our work thanks to the use of the TBG. Moreover,
the TBG allow us to obtain smooth robot velocities even in the activation of an obstacle avoidance
task while the visual servoing task is performing. As a consequence, the generated input references
do not put at risk the walking stabilization of humanoid robots. It is also important to mention
that the obstacle avoidance task is carried out without the need of an environment’s map nor any
previous training stage, in contrast to (Cupec et al. (2005); Maier et al. (2013)).

The paper is structured as follows. Section 2 presents a visual control scheme for humanoid
robots that achieves exponential stability. In Section 3, a generic extension of the previous visual
control to achieve finite-time convergence is proposed. In Section 4, we propose a generic visual
control scheme that yields finite-time convergence while handling the avoidance of an obstacle and
generating smooth robot velocities. Section 5 presents an experimental evaluation of the proposed
visual control scheme with and without obstacles. Conclusions are given in Section 6.
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2. VISUAL CONTROL SCHEME FOR HUMANOIDS

Visual control tasks can be formulated as a set of differential linear equations similar to other motion
tasks that humanoids perform simultaneously. Here we describe how humanoid locomotion can be
generated by only considering a linear model that captures the relation between the acceleration
of the CoM and the ZMP during walking and a reference velocity representing the instantaneous
output of a visual servo controller.

2.1 Humanoid Locomotion

The simplified discrete model of the ZMP-CoM that is commonly considered by a WPG is of the
form (Kajita et al. (2003)):

x(k + 1) = Ax(k) +Bu(k), (1)

p(k) = cx(k),

where

x(k) = [x(kT ) ẋ(kT ) ẍ(kT )]T ,

u(k) = ux(kT ), p(k) = px(kT ),

A =

1 T T 2/2
0 1 T
0 0 T

 , B =

T 3/6
T 2/2
T

 ,
c =

[
1 0 −h/g

]
,

with T the sampling period, x represents the position of the CoM w.r.t. x-axis (the formulation is
the same for y-axis). The jerk of CoM is given by ux =

...
x while px stands for the position of ZMP.

The height and gravity are h and g, respectively. The model (1) can be extended for a time horizon
given by N steps. If the ZMP reference is known then a QP can be solved to find the ZMP-CoM
solution. It is known that the QP formulation can be modified to consider automatic footstep
placements and to incorporate additional inequality linear constraints (Herdt et al. (2010)). The
WPG based on QP solves the following problem:

min
ū(k)

α

2
‖ū(k)‖2 +

β

2
‖ ˙̄x(k + 1)− ˙̄xr(k + 1)‖2 +

γ

2
‖p(k + 1)− pr(k + 1)‖2 , (2)

subject to D(k + 1)ū(k) ≤ b(k + 1),

where ˙̄x(k+ 1) = [ẋ(k + 1) . . . ẋ(k +N) ẏ(k + 1) . . . ẏ(k +N)]T is the velocity of CoM while ˙̄xr
represents its reference velocity, ū(k) = [ux(k) xf (k) uy(k) yf (k)]T , α and β are weights,

pr(k + 1) = Sc(k + 1)xc(k) + S(k + 1)xf (k),

D(k + 1) and b(k + 1) contain the coefficients of the inequality constraints that define the fea-
sible area to put the next step xf (k), Sc and S play the role of selection matrices to handle the
correspondence between the foot in contact xc(k) and the foot for the next step. The outcome of
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Figure 2. Visual control scheme for humanoids.

the pattern generator is used to compute the motion coordination by means of an efficient inverse
kinematics method (Kanoun (2011)).

2.2 Locomotion guided from visual control

Let νm be the velocity of the frame attached to the robot’s CoM and νc the velocity command given
by a visual servo controller. If it is assumed that a constant transformation mT c exists between νc
and νm, then the following equation holds:

νm =m T cνc, (3)

where

mT c =

(
mRT

c −mRT
c [r]×

0 mRT
c

)
∈ R6×6,

with [r]× ∈ R3×3 representing a screw-symmetric matrix and mRc ∈ SO(3). This constant trans-
formation means that the robot’s head is fixed w.r.t. the robot’s body. The input for the WPG can
be expressed as:

˙̄xr =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

νm. (4)

Notice that the translational components of ˙̄xr are the input of (2) while the angular term is used
to construct the linear inequality constraints that define the feasible region for the next footstep
placement. The whole process for the visual control tailored to humanoids is shown in Fig. 2.

2.3 Visual control strategies for eye-in-hand configuration

In this section, we briefly recall the classical approach for visual servo control (Chaumette and
Hutchinson (2006)). The aim is to drive a vector of m image features s to a desired value s∗. Thus,
we can define an error as follows:

e = s− s∗ ∈ Rm. (5)
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Figure 3. Eye-in-hand configuration. Reference frames definition and homography.

The relationship between the camera velocities and the change of the image features vector is
given by ṡ = Lsνc, where Ls ∈ Rm×6 is an interaction matrix. In this paper, we concern for
selecting an appropriate features vector of dimension 6, i.e. m = 6, in order to have a square
interaction matrix. Besides, in our case, s∗ is a vector of constant values and then ė = ṡ. Thus, the
time derivative of the error is given by:

ė = Lsνc. (6)

A typical choice of the camera velocity vector to impose an exponential decay of the error is as
follows:

νc = −λL̂−1
s e, (7)

with λ a positive control gain. Notice that we will propose a six-dimensional features vector that
allows us to have an invertible estimated interaction matrix L̂s.

2.3.1 Position-based scheme (3D)

Let us denote by F and F∗ the reference frames associated to the current camera pose (translation
and rotation) and the target pose, respectively, as shown in Fig. 3. A vector t expressed in F∗
represents the translation between the reference frames F and F∗, and R is the rotation matrix
between those frames. A features vector for a position-based control can be defined as follows:

s =

[
t
θa

]
∈ R6, (8)

where θa represents the angle/axis parametrization of the rotation matrix R (Rodrigues’ formu-
lation). Since the features vector encodes the translation and rotation with respect to the target
frame, in this case s∗ = 0 and therefore e = s. The time-derivative of the error vector is given by
(6) with the following square interaction matrix:

Ls =

[
I 0
0 Lθa

]
,

where I is an identity matrix of 3×3 and Lθa ∈ R3×3 is such that L−1
θa θa =θa (Chaumette and
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Hutchinson (2006)). The translational and rotational velocities result to be decoupled according to
(7) and the velocity vector is given by:

νc =

[
vc
ωc

]
= −λ

[
t
θa

]
. (9)

Considering that the control gain accomplishes λ > 0 and that the camera pose is accurately
estimated, the velocity vector (9) yields to an exponentially stable error dynamics of the form
ė = −λe.

There are several options to recover the relative pose between the current camera frame F and
the target one F∗. An option that does not require to know the 3D structure of the scene or a
3D model of an object in the scene is the homography matrix decomposition (Malis and Vargas
(2007)). The Euclidean homography matrix H can be estimated using only the normalized images
I and I∗. In a normalized image, the calibration parameters encoded in K are removed using K−1.
The homography encodes the rigid transformation that exists between the reference frames F and
F∗ as follows:

H = R +
t

d∗
n∗T , (10)

where R and t are the rotation matrix and translation vector as defined above, n∗ is the unitary
vector expressed in F∗ normal to a plane π, and d∗ is the distance from π to F∗. See Fig. 3 for
details.

Thus, it is possible to decompose H according to (10) to obtain R and t, which are necessary to
implement the control law (9). An efficient algorithm to carry out a decomposition of H is proposed
in (Triggs (1998)). It is well known that such kind of decomposition generates two geometrically
valid solutions, however, only one of them is physically admissible. The correct solution can be
selected taken the solution associated to the normal vector whose third component (nz) will be the
largest. We want to emphasize that although the homography model is valid for planar scenes, it
is also possible to estimate a homography associated to a virtual plane for non-planar scenes using
the algorithm proposed in (Malis et al. (2000)).

2.3.2 Image-based scheme (2D)

The homography model has also proved to be efficient for 2D visual servo control. A control
scheme that formulates a control law directly in terms of the homography matrix is proposed in
(Benhimane and Malis (2007)). Error vectors for translation and rotation are directly computed
from the homography matrix. The core idea in that scheme is that the reference frames F and F∗
coincide, if and only if the homography matrix H is equal to the identity matrix I. Under that
notion, a task function s = e ∈ R6 locally isomorphic to the camera’s pose is defined. The task

function e =
[
eTv eTω

]T
is null if and only if the camera reaches the target pose and it is given by:

ev = (H− I)m∗, (11)

[eω]× = H−HT ,

where m∗ is any normalized point in the target image I∗ that belongs to the plane (virtual plane
for non-planar scenes) that defines H, and [eω]× represents the skew-symmetric matrix for the

vector eω = [eωx eωy eωz]
T .
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Figure 4. Eye-to-hand configuration. Reference frames definition and homography.

Thus, the task function e can be estimated using only the images I and I∗, without obtaining the
3D structure of the target pose (d∗). It is only needed to estimate the homography H. The time-
derivative of the task function gives the linear system ė = Lνc, where L is a square interaction
matrix. In (Benhimane and Malis (2007)) it is shown that this control scheme is efficient even
without using the interaction matrix. Thus, the linear control

νc =

[
vc
ωc

]
= −λ

[
ev
eω

]
, (12)

with λ > 0, yields an error dynamics locally stable. Therefore, the control law (12) only depends
on the task function (11), which converges exponentially to zero. The local stability of the task
function is guaranteed for any 3D structure and any point m∗ (Benhimane and Malis (2007)).

2.4 Extension of the control strategies for eye-to-hand configuration

Let us consider the case of an eye-to-hand configuration as shown in Fig. 4. Under the same
definition of the error e = s − s∗ and assuming a static target, the time derivative of the error is
well-known to be of opposite sign w.r.t. the case of the eye-in-hand configuration, i.e:

ė = −Lsνc. (13)

Hence, the velocity command of the visual servo control is given by:

νc = λL̂−1
s e, (14)

being λ a positive control gain.

2.4.1 Position-based control

As depicted in Fig. 4, the Euclidean homography matrix that relates the frames F and F∗ in the
case of eye-to-hand configuration can be expressed as:

H = R +
t

d
∗n
∗T . (15)
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The homography H is estimated from normalized point features of the image I. The homography
H can be decomposed as described at the end of Section 2.3.1 to obtain (t,R). Similarly to the
error defined in (8), here we define:

e = s =

[
t

θa

]
∈ R6, (16)

where θa is the angle/axis parametrization of the matrix R. By applying (14), the velocity command
of the visual servo control in the camera frame C is given by:

νc =

[
vc
ωc

]
= λ

[
t

θa

]
. (17)

Assuming that the fixed desired robot pose (t∗,R∗) with respect to the camera frame C is known,
we can compute the pose of the frame F associated to the current robot pose as follows:

R = RR∗ and t = t + Rt∗. (18)

From the estimated current robot pose, a spatial motion transform, which transforms velocity
commands expressed in the fixed frame C to the current frame F , can be formed as follows:

FTC =

[
RT −RT [t]×
0 RT

]
.

Finally, the velocity command (17) expressed in the frame F is given by:

νc =F TCνc. (19)

This vector of velocities feeds the WPG as defined in (3).

2.4.2 Image-based control

An image-based control scheme in an eye-to-hand configuration can be also formulated in terms of
the homography H defined in (15). Let us define similar errors to those in (11) as follows:

ev = (H− I)m∗, (20)

[eω]× = H−H
T
.

Then, the velocity command of the visual servo control in the camera frame C is given by:

νc =

[
vc
ωc

]
= λ

[
ev
eω

]
. (21)

It is also necessary to apply (19) to express the velocity vector in the current robot frame F .

9
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3. VISUAL CONTROL WITH FINITE-TIME CONVERGENCE

In visual servo control, the regulation of a task function is commonly performed by imposing an
exponential decay as defined by (6) and (7). An important limitation of such regulation scheme is
that the time evolution of the task errors cannot be directly controlled. In addition, discontinuous
input signals appear at the activation time of the visual task as a by-product of the exponential
behavior. Here, we introduce a terminal attractor, in particular a modified time-base generator
(TBG) capable to ensure finite-time convergence while avoiding the undesired discontinuous effect
occurred at the task activation time. It is of the form:

λ(t, t0, tf ) = λ0 +
ḣ(t, t0, tf )

1− h(t, t0, tf ) + δ
, (22)

where 0 < δ < 0.1, t0 and tf > t0 are the initial and final times, respectively. The minimum value
of (22) is reached at λ0 which can be thought as a lower bound below the physical resolution of
the robot’s encoders. In the sequel, we will simplify the notation of the TBG as h(t) := h(t, t0, tf )
and the TBG gain as λ(t) := λ(t, t0, tf ). The function h(t) can be implemented using the following
smooth function whose range is the interval 0 ≤ h(t) ≤ 1:

h(t) = 1
2

(
1− cos

(
π(t−t0)
tf−t0

))
, t0 ≤ t ≤ tf , (23)

where t0 and tf are the initial and final transition times, respectively. The constant δ is useful to
avoid the indetermination at t ≥ tf when λ(t ≥ tf ) = 0/δ. By visual inspection of Fig. 5, we can

verify how the involved time varying functions h(t), ḣ(t) and λ(t) reach their final values at t = tf .
In the following lemma, we introduce a visual controller that uses the described terminal attractor

to replace the classical computation of the velocity command given in (7) and (14) for eye-in-
hand and eye-to-hand configurations respectively. Since one of these two types of configurations
can be used, in the sequel of the paper, the symbol ∓ or ± will appear to establish the sign of
some expressions. The correct sign in each expression is the upper sign if we have an eye-in-hand
configuration or the lower sign for an eye-to-hand configuration.
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Lemma 1: The time parametrized controller

νc = ∓λ(t)L̂−1
s e, (24)

where λ(t) is given by (22), ensures finite-time convergence of the error dynamics (6) for eye-in-
hand configuration, respectively (13) for eye-to-hand configuration, to the origin e = 0 ∈ R6.

Proof. Notice that due to the time-dependent gain λ(t), the control law (24) makes the closed-
loop system time-dependent. Introducing (24) in (6) or (13) with the correct sign depending if the
configuration is eye-in-hand or eye-to-hand respectively, we have in both cases:

ė = −λ (t)LsL̂
−1
s e. (25)

Hence, (25) is a non-autonomous system with equilibrium point e = 0 ∈ R6. An stability analysis
for this system must consider the property of non-autonomy (Khalil and Grizzle (2002)). Let us
define the following candidate Lyapunov function:

V (e) =
1

2
eTe, (26)

which is continuously differentiable, positive definite and decrescent as required (Khalil and Grizzle
(2002)). The last two properties mean that the inequalityW1 (ei) ≤ V (ei) ≤W2 (e) is accomplished
for all e ∈ R6. Because the candidate Lyapunov function (26) does not explicitly depend on time,
W1 (e) and W2 (e) are trivially found to be W1 (e) = W2 (e) = V (e). The time-derivative of the
candidate Lyapunov function is

V̇ = −λ (t) eTLsL̂
−1
s e.

To show that the equilibrium point e = 0 of the non-autonomous system (25) is asymptotically
stable, a positive definite function W3 (e) must be found such that:

∂V

∂t
+
∂V

∂e
ė ≤ −W3 (e) . (27)

The term ∂V/∂t is zero because V (e) is not a function of time. Additionally, we have that:

∂V

∂e
ė = V̇ = −λ (t) eTLsL̂

−1
s e. (28)

Since λ(t) in (22) satisfies a lower bound condition:

λ(t) ≥ λ0 > 0.

Then, we have:

∂V

∂e
ė = −λ (t) eTLsL̂

−1
s e ≤ −λ0e

TLsL̂
−1
s e. (29)

Therefore, we can set W3 (e) = λ0e
TLsL̂

−1
s e and asymptotic stability is guaranteed if and only

if LsL̂
−1
s > 0 , i.e., the matrix LsL̂

−1
s is positive definite. This is the typical stability condition for

a visual servo controller, however, in this case the additional condition λ(t) ≥ λ0 > 0 on the time
parametrized function must be satisfied. For the PBVS (9), the condition LsL̂

−1
s > 0 holds globally

11



November 24, 2015 International Journal of Control VisContHumanoidsJournalIJC˙pre

for a good estimation of the pose parameters. For the IBVS (12), the condition LsL̂
−1
s > 0 holds

locally around e = 0, as shown in (Benhimane and Malis (2007)).
Now, let us prove the finite-time convergence of the closed-loop error dynamics (25). Assuming

that the error dynamics (25) are decoupled by L̂−1
s (which is feasible given a good estimation of

the interaction matrix), we have that the individual dynamics are:

ėi(t) = −λ(t)ei(t) for i = 1, ..., 6

with λ(t) as in (22). By separation of variables and integration, the solution of each individual
error dynamics using the TBG gain (22) become:

ei(t) = c0e
−λ0(t−t0) (1− h(t) + δ) , (30)

where c0 is found out evaluating the previous equation for t = t0. Thus, c0 = e(t0)
1+δ . Replacing c0

in (30) and operating we have:

ei(t) = ei(t0)e−λ0(t−t0)

(
1− h(t)

1 + δ

)
. (31)

Since λ0 is a small gain, the exponential term is a slow dynamic. However 1− h(t)
1+δ → 0 as t→ tf .

Thus, the shape of e(t) closely follow the profile of 1− h(t) and the convergence time is controlled
by h(t). This means that e(t) is a smooth function that asymptotically converges to zero at t = tf
regardless of the initial condition e(t0) and finite-time convergence of the error is ensured.

4. VISUAL CONTROL WITH OBSTACLE AVOIDANCE

The visual task considers the error between the current and target images to control the humanoid
robot. However, if the camera detects a static obstacle while the robot walks toward the target
location, then the robot should activate the obstacle avoidance as its primary task and, as a
consequence, the degree of importance of the visual task decreases. This means that two tasks
should be simultaneously solved within a time interval without causing conflicts in the locomotion
behavior of the humanoid.

A widely used strategy to handle the compromise of active tasks consists of defining a strict
hierarchy between them (Lee et al. (2012)). Following this scheme, the visual task is the single
active task until a security distance (ds) between the obstacle and the robot is violated. If this
occurs, then the obstacle avoidance task becomes the primary active task and the solution of the
visual task is projected onto the null-space of the primary task Jacobian. Otherwise, the obstacle
avoidance task must remain inactive.

In particular, the task function to avoid an obstacle is defined as:

eo = xo − ds ∈ R, (32)

such that:

xo = ||xr − xo||, (33)

12
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where xr = [xr yr]
T ∈ R2 and xo = [xo yo]

T ∈ R2 corresponds to the relative robot and obstacle
positions w.r.t. the current frame F . By differentiating the task error (32) w.r.t. the vector xr−xo,
we obtain the gradient of the task:

go =

(
xr − xo
xo

)T
∈ R1×2. (34)

Then, assuming a common reference frame to express the obstacle avoidance task and the visual
task, e.g. the target frame F∗, we can express the kinematics of the obstacle avoidance task as
follows:

ėo = Joνc, (35)

where Jo is the obstacle avoidance Jacobian given by:

Jo =
(
go 01×4

)
∈ R1×6 (36)

and its corresponding null-space projector is given by:

Qo = I − JTo Jo ∈ R6×6. (37)

If the obstacle avoidance task is not active, i.e. if eo > 0, the control law is obtained as in (24).
Otherwise, if e0 ≤ 0, the control law is given by a hierarchical task-based scheme expressed as:

νc = νo + νv|o, (38)

νo = −λoJ+
o eo,

νv|o = (JvQo)
+ (∓λv(t)e− Jvνo) ,

where J+
o = JTo (JoJ

T
o )−1 is the Moore-Penrose pseudoinverse, Jv = L̂s is the corresponding

interaction matrix, νo is the velocity vector’s solution of the obstacle avoidance task (high priority
task) and νv|o is the velocity vector’s solution for the visual task (secondary task) that takes into
account the obstacle avoidance task.

An undesired effect of the instantaneous switching between the control laws (24) and (38) is
an abrupt change in the input signals of the locomotion controller, i.e. the velocity profiles of the
robot’s CoM (Keith et al. (2011)). This is a well-known problem in the visual control community
where some solutions have been suggested, e.g., (Mansard et al. (2009), Cherubini and Chaumette
(2013)). In particular, we adopted the intermediate value strategy introduced in (Lee et al. (2012)).
This scheme rewrites the control law (38) as:

ν ′c = ν ′o + ν ′v|o, (39)

ν ′o = J+
o ė
′
o,

ν ′v|o = (JvQo)
+
(
∓λv(t)e− Jvν

′
o

)
,

where

ė′o = −λoht(t)eo ∓ (1− ht(t))JoJ
+
v λv(t)e (40)

encodes the intermediate desired values that can be interpreted as the weighted combination of the
obstacle and visual tasks. The shape of the proposed transition function ht(t) is the same as the
TBG defined in (23) for an adequate transition time interval tt,0 ≤ t ≤ tt,f .

13



November 24, 2015 International Journal of Control VisContHumanoidsJournalIJC˙pre

The following theorem analyzes the convergence of the time-constrained hierarchical control law
with smooth transitions (39).

Theorem 1: Consider the stack of two tasks: obstacle avoidance and visual servo control, which
can be represented by the following extended kinematics:

ė′ =

(
Jo
±Jv

)
νc, (41)

where e′ =
(
e′o eT

)T
. The control law (39) ensures finite-time convergence to the origin e′ = 0.

Proof. A Lyapunov candidate function considering the two time-constrained hierarchical tasks in
transition (39) is:

V (e′) =
1

2
e′
T
e′. (42)

The derivative w.r.t. time of (42) is:

V̇ (e′) = e′
T
ė′ = e′

T
(
Jo
±Ls

)
νc =

(
eoJo ± eTLs

)
νc. (43)

By substituting (39) into (43), making νc = ν ′c and organizing the terms in matrix form, we obtain:

V̇ = −e′TMe′, (44)

where

M =

(
Ma M b

M c Md

)
, (45)

with

Ma = λoht(t)
(
JoJ

+
o − Jo(L̂sQo)

+L̂sJ
+
o

)
, (46)

M b = λv(t)Jo

(
±(L̂sQo)

+ + (1− ht(t))
(
±J+

o JoL̂
+
s ∓ (L̂sQo)

+L̂sJ
+
o JoL̂

+
s

))
,

M c = λoht(t)
(
±LsJ+

o ∓ Ls(L̂sQo)
+L̂sJ

+
o

)
,

Md = λv(t)Ls

(
(L̂sQo)

+ + (1− ht(t))
(
J+
o JoL̂

+
s − (L̂sQo)

+L̂sJ
+
o JoL̂

+
s

))
,

By using the definition of the pseudoinverse, it can be verified that:

Jo(L̂sQo)
+ = JoQoL̂

−1
s , (47)

Ls(L̂sQo)
+ = LsL̂

−1
s . (48)

Additionally, we have the following properties from the Jacobian of the obstacle avoidance task:

JoJ
+
o = JoJ

T
o = 1, (49)

JoQo = 0. (50)

14
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Then, using the previous identities, the submatrices of M in (46) reduce as follows:

Ma = λoht(t) ∈ R, (51)

M b = ±λv(t) (1− ht(t))JoL̂
+
s ∈ R1×6,

M c = 0 ∈ R6×1,

Md = λv(t)LsL̂
−1
s ∈ R6×6.

Therefore:

M =

(
λoht(t) ±λv(t) (1− ht(t))JoL̂

+
s

06×1 λv(t)LsL̂
−1
s

)
. (52)

We have that λo, λv(t) > 0 and 0 ≤ ht(t) ≤ 1. Since the eigenvalues of matrix M only depend
on λo, λv(t), ht(t) and assuming that LsL̂

−1
s > 0, from Lemma 1 we conclude that the error e′

converges to the origin in finite-time. Hence, the convergence of the time-constrained hierarchical
tasks in transition is ensured.

The previous theorem allows us to claim that the visual servo control task is accomplished in a
predefined time in spite of the occurrence of an obstacle avoidance task.

5. EXPERIMENTAL EVALUATION

We have tested the proposed approach using a NAO humanoid robot. For evaluation purposes,
we decided to use the position-based scheme for experiments in eye-to-hand configuration and the
image-based scheme for experiments in eye-in-hand configuration. In both cases, the robot was
calibrated with respect to a fixed top camera to provide ground truth and measure the visual task
performance.

5.1 Visual control with TBG

In this section, we report some results to evaluate the visual control approach using the TBG to
achieve finite-time convergence only for the positioning task, i.e., without obstacles. We report
three experiments with three different initial conditions using the eye-in-hand configuration. We
set t0 = 0 and tf = 39 for h(t) and δ = 0.001. The performance of the positioning task is shown
in Fig. 6. The convergence of the robot to the desired pose for the same time tf from the three
different initial locations can be appreciated from the plots in Fig. 7.

In the case of eye-in-hand configuration, we used the top camera mounted on the robot’s head
and the camera velocities are computed using (12). The images were obtained at a frame rate of
12Hz with a resolution of 640×480 pixels. The image features were acquired as follows: first, a
corner detector based on (Shi and Tomasi (1994)) was used, which is implemented on the function
goodFeaturesToTrack of the OpenCV library. Then, we assigned a SIFT descriptor (Lowe (1999))
to each detected point. A robust matcher based on RANSAC (Fischler and Bolles (1981)) matched
all the points between the current image and the target image. Finally, we used the function
calcOpticalFlowPyrLK from OpenCV, which tracks the points using an algorithm based on a
sparse iterative version of the Lucas-Kanade optical flow in pyramids. The tracking of points from a
camera mounted on a humanoid robot is not trivial due to the jerky camera movements generated
by the robot’s gait. Thus, the tracker was experimentally tuned to deal with this unavoidable
behavior. We evaluated experimentally the performance of the tracker with the NAO robot. It
was found that the tracker is able to work properly at the maxima forward, lateral and rotational
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Figure 6. Performance of the positioning task for TBG experiments. The green triangle displays the desired pose of
the robot and the blue, red and black triangles display the three experiments with different initial poses.

velocities whereas the maximum step sizes are 0.04m for forward direction, 0.14m for lateral and
0.349rad for rotation. The DLT function of ViSP library was used to compute the homography.
It is important to say that it is possible to compute the homography for non-planar scenes using
the implementation proposed in (Malis et al. (2000)), as we did in a previous work (Delfin et al.
(2014)).
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Figure 7. Input velocities to the WPG for experiments with TBG. From three different initial locations, the conver-
gence is achieved at a given final time tf = 39.
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Figure 8. Snapshots of the eye-to-hand configuration. The purple crosses display the desired pose of the robot and the

blue, red, yellow and green crosses display the current pose. We can see the convergence of the robot in the image to the desired
position of the pixels.

5.2 Visual control with TBG and obstacle avoidance

In this section, we present results of the proposed hierarchical task-based approach with smooth
transitions, where the positioning task given in terms of a visual target must be finished in a desired
time, in spite of the execution of an obstacle avoidance task when needed.

5.2.1 Eye-to-hand configuration

For the case of eye-to-hand configuration, an uEye 120SE-M-GL camera was mounted at 2.9m
from the floor obtaining images at a frame rate of 16Hz with a resolution of 752×480 pixels. A
pattern of points was placed on the NAO’s head and the points were tracked, as seen in Fig. 8,
and used to compute the required homography. In this case, the camera velocities are computed
using (19). The initial selection of the points was done manually and they were tracked using the
function calcOpticalFlowPyrLK from OpenCV as in the eye-in-hand experiments. The centroid
of the four points was used to compute xo, i.e. the distance between the robot and the obstacle.

For the reported experiments, the reference pose is displaced and rotated 1.67m and 86 degrees
respectively from the initial pose. A landmark was used to simulate the obstacle and it was placed
at 0.97m from the initial pose, we set ds = 140 pixels ' 0.39m. The robot is controlled in order to
achieve the reference pose while the obstacle is avoided using a switching between the control laws
(24) and (38) for one experiment and (39) for another, both with λo = 0.6. For the TBG, we set
t0 = 0 and tf = 43 for h(t) and δ = 0.001. We defined the transition time interval tt,f − tt,0 = 3 for
the obstacle avoidance using the transition function ht(t) as defined in (23). During the experiments,
we measured the Center of Pressure (CoP) of each foot, but only in the simple support phase of
the gait. We recorded the lateral and frontal positions of the CoP using the pressure sensors on the
robot’s soles as seen in Figs. 10 and 11, where the dashed lines represent the edges of the robot’s
soles.

Fig. 9 shows the velocities for both experiments, without and with smooth transitions respec-
tively. In Fig. 9(a) we can see the input velocities to the WPG using a switching between the control
laws (24) and (38). It can be seen discontinuities caused by the switching between one and other
control law between t = 25 and t = 30 when the security distance is violated. This discontinuity
produces that the CoP gets close to the edge of the sole unbalancing the robot and consequently
it might fall. This behavior can be observed in the Figs. 10(a) and 11(a), mainly in the frontal
reading of the left foot where the CoP around the second 30 gets close to the edge. It can be seen
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Figure 9. Input velocities to the WPG for eye-to-hand configuration. (a) Input velocities using a switching between

the control laws (24) and (38). (b) Input velocities with smooth transitions using the control law (39). It can be seen the
transition function ht(t) during the activation interval.
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Figure 10. Frontal displacement of the CoP for eye-to-hand configuration. (a) Measurement of the CoP displacement
during the interval of switching between the control laws (24) and (38). (b) Measurement of the CoP displacement during the

activation of the transition function ht(t) using the control law (39).

that the reaction to the discontinuity is not instantaneous due to the humanoid locomotion.
When the transition function ht(t) is used, these discontinuities are alleviated. Fig. 9(b) shows the

input velocities to the WPG using the control law (39). We can see the activation of the transition
function ht(t) around the second 26. This smooth combination of the obstacle task and the visual
task causes less displacement of the CoP as can be seen in Figs. 10(b) and 11(b). Thus, the control
scheme with smooth transitions between tasks does not compromise the dynamic balance of the
humanoid robot.

Fig. 12 shows the performance of the positioning task. The position of the obstacle is plotted as
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Figure 11. Lateral displacement of the CoP for eye-to-hand configuration. (a) Measurement of the CoP displacement

during the interval of switching between the control laws (24) and (38). (b) Measurement of the CoP displacement during the
activation of the transition function ht(t) using the control law (39).
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Figure 12. Performance of the positioning task for eye-to-hand configuration. (a) Path followed by the robot using

a switching between the control laws (24) and (38). (b) Path followed by the robot with smooth transitions using the control
law (39).

a black square and the security distance as the black circle. The switching of the control laws (24)
and (38) is activated by eo. In Fig. 12(a) this switching is clearly observed, i.e. when the robot
invades to the security distance, it is ejected out of the circle. For the case of the control law (39),
the transition function ht(t) is also activated by eo, when the robot invades the security distance
for the first time, as seen in Fig. 12(b). In this case the robot leaves smoothly the circle evading
the obstacle. Some snapshots of the pattern of dots for this experiment are shown in Fig. 8, we
can see the convergence of the pixels to their desired position. It is important to say that in all the
tests done, the magnitude of the positioning error was less than 0.05m.

5.2.2 Eye-in-hand configuration

For the experiments with obstacle avoidance in the eye-in-hand configuration, an Asus Xtion Pro
Live RGB-D sensor was used to measure the distance to the obstacle. It was mounted on the NAO’s
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Figure 13. Snapshots of the eye-in-hand configuration. The green crosses display the desired position of the points in
the image and the red crosses display the current position of points. We can see the convergence of the points in the image to

their desired position.
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Figure 14. Input velocities to the WPG for eye-in-hand configuration. (a) Input velocities using a switching between
the control laws (24) and (38). (b) Input velocities with smooth transitions using the control law (39). It can be seen the

transition function ht(t) during the activation interval.

head and the detection of the obstacle was done using the OpenNI and OpenCV libraries. The
reference image was captured at 1.55m and 10 degrees from the initial pose. A 0.44m long tube
was used as obstacle and it was placed at 0.9m from the initial pose. Due to the operating range of
the RGB-D sensor, we set ds = 0.50m. As in the eye-to-hand configuration, the robot is controlled
in order to achieve the reference pose using a switching between the control laws (24) and (38) for
one experiment and (39) for another, both with λo = 0.7. In this case, the velocities associated to
the visual task are computed using (12). We set t0 = 0 and tf = 46 for the TBG and δ = 0.001. We
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Figure 15. Frontal displacement of the CoP for eye-in-hand configuration. (a) Measurement of the CoP displacement

during the interval of switching between the control laws (24) and (38). (b) Measurement of the CoP displacement during the
activation of the transition function ht(t) using the control law (39).
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Figure 16. Lateral displacement of the CoP for eye-in-hand configuration. (a) Measurement of the CoP displacement

during the interval of switching between the control laws (24) and (38). (b) Measurement of the CoP displacement during the

activation of the transition function ht(t) using the control law (39).

defined for these experiments the transition time interval tt,f − tt,0 = 9 for the obstacle avoidance.
Also, we made a measurement of the CoP in each foot.

Fig. 13 shows some snapshots of the images captured by the NAO’s camera during the experi-
mental run using the control law (39). The points marked as red crosses are the tracked points in
the current robot view. The green crosses are the corresponding points of the target image.

Fig. 14 displays the velocities for both experiments, and the Figs. 15 and 16 display the mea-
surements of the robot’s CoP. We can observe a similar behavior as in the eye-to-hand experiments
regarding the discontinuities in the velocities and the displacement of the CoP caused by the
switching of control laws without smooth transitions. The discontinuities are alleviated once the
smooth transition is used.

The performance of the positioning task for these experiments is shown in Fig. 17. It can be
seen that unlike the eye-to-hand experiments, the robot invades the security distance because the
obstacle leaves the field of view of the sensor. This field of view is plotted in the Fig. 17 as the
cyan cones for three different robot’s poses: at the initial pose, at the pose when the obstacle leaves
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Figure 17. Performance of the positioning task for eye-in-hand configuration. The cyan cones depicts the field of
view of the RGB-D sensor for three samples poses. (a) Path followed by the robot using a switching between the control laws

(24) and (38). (b) Path followed by the robot with smooth transitions using the control law (39).

the RGB-D field of view and at the pose when the robot leaves the security distance. Notice that
although the robot violates the security distance, the obstacle is avoided properly. This effect is
due to the constrained field of view of the distance sensor and can be overcome by using another
distance sensor with larger measurement range and field of view.

6. CONCLUSIONS

In this work, we have proposed a vision-based humanoid locomotion approach that uses monocu-
lar images to solve the problem of driving a humanoid robot to a desired location. The proposed
approach is a decoupled visual servo walking control, where a reference velocity computed from a
visual servoing scheme is given as input to a walking pattern generator. This approach facilitates
the introduction of a time constraint to complete the positioning task, which is advantageous in
contrast to the classical exponential convergence. We verified that the proposed approach achieves
finite-time convergence using smooth robot velocities and considering the omnidirectional waking
capability of the robot. Also, the proposed approach is able to handle simultaneously the visual
positioning task while avoiding an unexpected obstacle without altering the desired time of conver-
gence. Moreover, the continuity of the velocity profiles are maintained when task transitions occur.
The stability analysis has been done to demonstrate the convergence of the two task-based control.
We have shown theoretically and experimentally that the proposed approach can be applied using
different visual servoing schemes and camera-robot configurations, which shows the generality of
the approach. The online experiments were conducted with a NAO robot for evaluation purposes.

For future work, we consider extending the approach to handle more than two tasks in the
hierarchical scheme, dealing with different types of obstacles: obstacles that can be surrounded
or obstacles that can be passed over. In this case, the robot must identify the type of obstacle
and decide how to carry out the obstacle avoidance task while keeping the smoothness of robot
velocities. Additionally, in order to enlarge the workspace of the visual task, which is limited by the
matching of visual features between the current and target images, we want to extend the proposed
approach to follow a path that is defined in terms of a sequence of reference images as done in
(Delfin et al. (2014)). The sequence of reference images is previously acquired in a supervised
teaching phase. Thus, autonomous navigation can be performed by replaying the visual path but
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taken into account the avoidance of obstacles not present during the teaching phase.
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