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Abstract—In this paper, we propose a control method for high-
order integrator systems that achieves predefined-time conver-
gence, i.e., the system is driven to the origin in a desired settling
time that can be set as an explicit parameter of the controller
and it is achieved independently of the initial conditions. Our
method can be applied to any single-input single-output (SISO)
controllable linear system, to any SISO nonlinear system that can
be transformed to the normal form with stable zero dynamics and
to multiple-input multiple-output systems that can be decoupled
into SISO subsystems in the previously mentioned forms.
The proposed approach is based on the so-called time base
generators (TBGs), which are time dependent functions used
to build time-varying control laws. The contribution of this
paper is the generalization of the TBGs to develop predefined-
time controllers for high-order systems, providing procedures to
build the required time dependent functions. The performance
of the proposed controllers is evaluated and compared to finite-
time and fixed-time controllers in simulations and experiments.
We show the applicability of the proposed approach to control
electromechanical systems, in particular for the dynamic control
of robotic systems.

I. INTRODUCTION
Convergence time of a control system is an important design

parameter for real-time applications. Many applications re-
quire a strict time scheduling that constrains the time response
of the control system. For example, a robot that must reach a
desired position every specified time to grasp an object moving
on a conveyor belt or the orbital stabilization of a biped robot
to give a step in a predefined time. In this context is where
finite-time convergence [1] and fixed-time convergence [2] of
control systems make an important contribution. Nowadays,
both finite-time and fixed-time controllers have been developed
on the basis of sliding mode control (SMC) theory. Neverthe-
less, neither finite-time controllers nor fixed-time controllers
guarantee convergence on a specified time (predefined time)
for any initial condition.

Finite-time stability means that the solutions of a system
starting in an open neighborhood of the origin converge
to the origin in finite time [1]. Finite-time convergence of
second order systems has been widely studied [1], [3], [4].
A bounded continuous time-invariant controller that globally
finite-time stabilizes the double integrator system is introduced
in [1]. In order to reduce the undesired chattering phenomenon
of classical SMC, the theory of high-order SMC has been
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developed [3]. An example of high-order SMC with finite-
time stability is the discontinuous twisting controller, which is
specific for second order systems. The continuous version of
the twisting controller is studied in [4] on a disturbed double
integrator. Efforts have been made to develop tuning rules to
set the control gains accordingly to a desired settling time
in [5] for the discontinuous twisting controller and in [6] for
the continuous version. The methodologies for pure twisting
control allow to estimate an upper bound on the settling time
that depends on the initial conditions.

Fixed-time stability demands uniform boundedness of the
settling time for a globally finite-time stable system [7]. Thus,
fixed-time stability guarantees convergence of the closed-loop
system before an estimated bound on the settling time, inde-
pendently of the initial conditions. However, the settling time
changes for different initial conditions. Fixed-time controllers
have been proposed on the basis of SMC. In [2], the control
parameters are directly set as a function of the upper bound
on the settling time, such that fixed-time stability for high-
order systems is provided. A nonsingular fixed-time terminal
SMC is presented in [8] for the particular case of second
order nonlinear systems. A constructive scheme for tuning the
control parameters based on implicit Lyapunov functions is
introduced in [7], which achieves fixed-time stabilization of a
chain of integrators. The results in [9] prove that any finite-
time convergent homogeneous sliding mode controller can be
transformed into a fixed-time convergent one by means of a
discrete dynamic extension. A controller where the settling
time can be specified has been introduced in [10], however,
it is limited to the class of systems with the same number of
control inputs as state variables. Thus, it is worth emphasizing
that fixed-time convergence does not guarantee convergence in
a constant predefined time for any initial condition.

Predefined-time convergence means that a desired settling
time is a parameter that can be specified by the user, and
this constant convergence time is achieved independently of
the initial conditions. An approach to achieve predefined-time
convergence for first order systems has been early introduced
in [11] to induce attraction of force fields, in the context of
movement neuroscience, by using functions named time base
generators (TBGs). In the context of robot control, the TBG
for first order systems has been used together with an adaptive
SMC to yield finite-time tracking in [12]. The time-constraint
property of the TBG for first order systems has been used
for the parametrization of a hierarchical inverse kinematics
control of robots [13] and to yield smooth control signals
in visual control of humanoid robots [14]. Also, a TBG has
been exploited in a hierarchical scheme of kinematic tasks for
multirobot systems in [15]. A related work was presented in
[16], where a linear protocol that uses time-varying control



gains was proposed for reaching network consensus at a
preset time. The approach is valid for first and second order
integrator systems and no generalization is provided for high-
order systems. To the best of our knowledge, predefined-time
controllers have only been reported for first and second order
integrator systems. Moreover, the robustness of those methods
have not been analyzed.

In this work, we propose a novel control approach for
high-order integrator systems that achieves predefined-time
convergence, where the desired settling time is a user-defined
parameter that is reached for any initial condition. The pro-
posed approach can be applied to the class of n-order single-
input-single-output (SISO) controllable linear systems and
nonlinear systems that can be linearized to an integrator
chain or transformed to the normal form with stable zero
dynamics [17]. It is also applicable to those multiple-input-
multiple-output (MIMO) systems that can be transformed to
decoupled subsystems in the form of integrator chains or in the
normal form with stable zero dynamics. Furthermore, we have
introduced additional terms to the controllers to provide ro-
bustness against uncertainties and disturbances, which enlarge
its applicability. The proposed approach allows the synthesis
of controllers based on TBGs that are exploited in a trajectory
tracking control scheme. The method includes procedures
to build the TBGs as polynomial functions. Moreover, an
optimization criterion is introduced to determine the best
polynomial functions to accomplish the task. The resulting
controllers have the additional advantage of yielding smoother
control signals with considerable smaller control effort than
fixed-time controllers reported in the literature. In particular,
the controller for second order systems can benefit different
applications in robotics at the level of acceleration control.
Simulations and experiments demonstrate the applicability
of the control method for systems like a simple rotational
pendulum or a complex anthropomorphic manipulator.

The paper is organized as follows: Section II defines the
class of systems for which the proposed method is applicable
and defines the addressed problem. Section III introduces our
general approach to synthesize predefined-time controllers for
high-order systems. Section IV presents simulations and exper-
imental results that illustrate the applicability and robustness of
the proposed controllers. Moreover, the proposed control laws
are compared to finite-time and fixed-time controllers reported
in the literature. Section V remarks some conclusions.

II. DEFINITIONS

In this work, single-input single-output (SISO) n-order
systems are considered in an integrator-chain form as follows

ėj = ej+1, j = 1, ..., n− 1
ėn(t) = u(t)+ρ(t),
y = c1e1 + c2e2 + ...+ cnen,

(1)

with y being the system’s output, u(t) the control input, ρ(t)
a bounded matched disturbance and e1(ti) = e1i,..., en(ti) =
eni the initial conditions. The state vector is denoted as e(t) =
[e1(t), ..., en(t)]

T while the vector of initial conditions as ei =
[e1i, ..., eni]

T .

In the rest of the paper, the standard state space notation
will be used

ė(t) = Ae(t) + B(u(t)+ρ(t)),
y = Ce(t),

(2)

for appropriate matrix A and vectors B and C. Also, we will
use the following notation for time-derivatives:

ė(t) = de(t)
dt , ë(t) =

d2e(t)
dt2 , ..., e(n)(t) = dne(t)

dtn . (3)

Any SISO linear time-invariant system ẋ = Āx+B̄u can be
transformed into an n-order integrator system (1) provided it
is controllable, by transforming the system into the so-called
controllable canonical form [18] and applying an input that
cancels the open-loop dynamics of the nth state equation.

An analog procedure can be used for nonlinear systems that
can be transformed to the normal form [17], with stable zero-
dynamics. For instance, the following (n + r) order system
with relative degree n is in the normal form,

ξ̇j = ξj+1, j = 1, ..., n− 1

ξ̇n(t) = α(ξ,η) + β(ξ,η)u+ρ(t),
η̇1 = q1(ξ,η),

...
η̇r = qr(ξ,η),
y = ξ1,

(4)

where ξ = [ξ1, ..., ξn]
T and η = [η1, ..., ηr]

T .
By applying the input u = (−α(ξ,η) + v)/β(ξ,η) (notice

that β(ξ,η) 6= 0 so the relative degree is well defined), the
input-output behavior of the closed-loop system evolves as the
n-integrator chain (1), with v being an auxiliary control input,
together with the zero dynamics η which must be assumed to
be stable.

Furthermore, the forthcoming analysis can also be applied
to multiple-input-multiple-output (MIMO) systems that can be
decoupled into SISO subsystems of the form (1) or (4) with
stable zero-dynamics. An example of the application of our
control approach to a nonlinear MIMO system will be shown
in the subsection IV.A.2.

The problem to address in this work is stated as follows.

Definition 2.1 (Problem Statement): Given a n-order inte-
grator chain (1), design a control law u = γ(e, t) such that
the system is driven from any initial state ei, at an initial
time ti, to a neighborhood of the origin of the state space
in a predefined finite time tf > ti, assuming knowledge of
the state. In such case, the control law u = γ(e, t) is said to
achieve predefined-time convergence.

III. TBG CONTROL FOR HIGH-ORDER SYSTEMS

In this section, we present the main contribution of the
paper: a methodology for the design of predefined-time con-
trollers for n-order integrators (1). For that, let us firstly
introduce a set of n continuous n-differentiable time functions
h1(t), h2(t), ... , hn(t); fulfilling the following conditions, at



initial time ti and final time tf ,

∀k ∈ {1, ..., n}, ∀j ∈ {0, ..., n}

h
(j)
k (t)|t=ti =

{
1 if j = k − 1
0 otherwise

h
(j)
k (t)|t≥tf = 0.

(5)

Next, consider the following matrix

H(t) =


h1(t) h2(t) ... hn(t)

ḣ1(t) ḣ2(t) ... ḣn(t)
...

...
...

h
(n−1)
1 (t) h

(n−1)
2 (t) ... h

(n−1)
n (t)

 . (6)

Notice that the condition (5) implies that H(ti) = I and
H(t ≥ tf ) = 0. Now, let us introduce a first result.

Lemma 3.1: Consider the matrix H(t) as defined in (6),
fulfilling the condition (5) and assuming that it is invertible
in the time interval [ti, tf ). The time-variant feedback control
law

u = K(t) · e(t),
with

K(t) =
[
h
(n)
1 (t), h

(n)
2 (t), ..., h

(n)
n (t)

]
H(t)−1,

(7)

achieves predefined-time convergence for the n-order system
(1) with ideal dynamics (ρ(t) = 0), i.e., e1(t) and their
derivatives converge to zero in a desired settling time τs =
tf−ti. Furthermore, the resulting state trajectory in the interval
t ∈ [ti, tf ) is

e(t) = H(t) · ei (8)

Proof: First notice that (8) is equivalent to

e1(t) = e1ih1(t) + e2ih2(t) + ...+ enihn(t),

e2(t) = e1iḣ1(t) + e2iḣ2(t) + ...+ eniḣn(t),
...

en(t) = e1ih
(n−1)
1 (t) + e2ih

(n−1)
2 (t) + ...+ enih

(n−1)
n (t).

This expression constitutes a coherent solution for the
system (1), i.e., the first derivative of the solution of e1(t)
equals the solution of e2(t), the first derivative of the solution
of e2(t) equals the solution of e3(t) and so on. Furthermore,
the condition (5) implies that at time t = ti, e(t) = ei (since
H(ti) = I). Moreover, the same condition implies that at time
t = tf , e(t) = 0 (since H(tf ) = 0).

In order to induce the solution (8), the input must fulfill
u(t) = ėn(t), which can be easily computed as

u(t) = e1ih
(n)
1 (t) + e2ih

(n)
2 (t) + ...+ enih

(n)
n (t).

In vectorial notation,

u(t) =
[
h
(n)
1 (t), h

(n)
2 (t), ..., h(n)n (t)

]
· ei. (9)

Now, (8) implies ei = H(t)−1·e(t). Thus, (9) can be written
as (7). In other words, the linear feedback (7) controls the
system (1) in such way that (8) describes its solution.

The computation of the required functions hk(t), fulfilling
the condition (5), is addressed in the following subsection.

In the Lemma 3.1, it is assumed that the matrix H(t) is
invertible, which might be an issue of the proposed linear feed-
back (7). Moreover, the feedback (7) may not provide stability
and robustness as a proper controller when disturbances and
errors in the state measure are considered. For that reason, the
following theorems combine the TBG of the Lemma 3.1 with
feedback controllers, in such a way that the TBG is used as
a reference trajectory in a tracking control scheme, avoiding
numerical issues and providing stability and robustness.

Theorem 3.2: Consider the matrix H(t) as defined in (6),
fulfilling the condition (5). Let Kf be a constant state-
feedback gain matrix such that the eigenvalues of (A−BKf )
have negative real parts (considering the state-space notation
(2)). The time-variant feedback control law

u = Kt(t)ei −Kf (e(t)−H(t)ei) ,
with

Kt(t) =
[
h
(n)
1 (t), h

(n)
2 (t), ..., h

(n)
n (t)

]
,

(10)

achieves predefined-time convergence for the n-order system
(1) with ideal dynamics (ρ(t) = 0), i.e., e1(t) and their deriva-
tives converge to zero in a desired settling time τs = tf − ti.
Furthermore, global asymptotic stability of the tracking error
ε(t) = e(t)−H(t)ei is achieved.

Proof: According to the Lemma 3.1, if the initial state
is set as ê(ti) = ei and the control input u = Kt(t)ei (9) is
applied then the system

˙̂e(t) = Aê(t) + BKt(t)ei,

evolves such that ê(t) = H(t)ei, i.e., ê(t) becomes the TBG
reference trajectory.

In this way, using (2) for ė(t) and the complete control law
(10), we have

ε̇(t) = ė(t)− ˙̂e(t)
= Ae(t) + BKt(t)ei −BKf (e(t)−H(t)ei)
−Aê(t)−BKt(t)ei

= (A−BKf ) (e(t)− ê(t))
= (A−BKf ) ε(t).

(11)
Thus, since Kf is such that the eigenvalues of (A−BKf )

have negative real parts, the tracking error is asymptotically
stable, meaning that e(t) follows H(t)ei. Then, as proved in
the Lemma 3.1, the reference H(t)ei vanishes for t ≥ tf
and e(t) converges to the origin of the state space in the
predefined-time window τs. Any small final error at time
t ≥ tf is corrected by the control input u = −Kfe(t), which
is applied for t ≥ tf , guaranteeing the global stability of the
closed-loop system.

The Theorem 3.2 establishes that the closed-loop system not
only achieves predefined-time convergence but also stability in
the single control law (10). Although in (10) the information
of ei is used explicitly, it appears as a parameter, thus the
control law (10) can be straightforwardly computed without
the need of a tuning procedure for different initial conditions
to obtained a preset convergence time. The linear control law
(10) is just one among the different control techniques that
can be used with the TBG.



In the following theorem, the TBG is combined with a
super-twisting controller (STC), which is known to be able to
compensate for matched uncertainties/disturbances ρ(t) [19],
leading to a more robust predefined-time controller. The STC
is applicable to systems with relative degree one, however, it
can be extended for high-order systems if the sliding surface
is designed such that it has relative degree one [20].

Theorem 3.3: Consider the matrix H(t) as defined in (6),
fulfilling the condition (5) and the tracking error vector ε(t) =
e(t)−H(t)ei. There exist gains k1, k2 ∈ R and Kfr ∈ Rn−1

such that the continuous time-variant sliding mode control law

u = Kt(t)ei −Kfrε2:n − k1|s|1/2sign(s) + v,
v̇ = −k2sign(s),
with

Kt(t) =
[
h
(n)
1 (t), h

(n)
2 (t), ..., h

(n)
n (t)

]
,

ε2:n = [ε2, ε3, ..., εn]
T and

s = [Kfr, 1] ε(t),

(12)

achieves predefined-time convergence for the disturbed n-
order system (1). Furthermore, global asymptotic stability of
the tracking error is achieved.

Proof: By using the n-order integrator dynamics (1), it
can be shown that the tracking error system evolves as:

ε̇j = εj+1, j = 1, ..., n− 1
ε̇n = u+ ρ−Kt(t)ei.

(13)

Thus, the dynamics of the sliding surface variable is given
by:

ṡ = [Kfr, 1] ε̇(t) = Kfrε2:n + u+ ρ−Kt(t)ei. (14)

Using the control law (12), the closed-loop dynamics is:

ṡ = −k1|s|1/2sign(s) + %,
%̇ = −k2sign(s) + ρ̇,

(15)

where % = v+ρ. It has been proved in [19] that, for a bounded
continuously differentiable disturbance, i.e., if |ρ| < L and
|ρ̇| < M for some constants L > 0,M > 0, the second order
dynamics (15) converges globally to the origin (s = 0, % = 0)
in finite-time in spite of the disturbance if adequate positive
control gains k1 and k2 are used. Moreover, the remaining
dynamics of the tracking error system is constrained to the
sliding surface, such that s = ṡ = 0. Thus, considering the
sliding surface definition, the first n − 1 equations of (13)
represent the remaining dynamics:

ε̇j = εj+1, j = 1, ..., n− 2
ε̇n−1 = −Kfrε1:n−1,

(16)

which can be enforced to have global asymptotic stability
through Kfr, since the system is a controllable chain of
n − 1 integrators, meaning that e(t) follows H(t)ei and
consequently, e(t) converges to the origin of the state space
in the predefined-time window τs.

Notice that the robust controller (12) allows the method to
deal with parametric uncertainties, i.e., perfect knowledge of
the system dynamics is not required, since some mismatches
can be considered in the term ρ(t), which is a disturbance
fulfilling the matching condition [17] that can be rejected by

the super-twisting controller using appropriate control gains
[19].

Even if the initial conditions are not exactly known, the
predefined-time convergence will be achieved according to the
Theorems 3.2 and 3.3 provided that the corresponding tracking
controller guarantees that the settling time of the tracking error
will be lower than the predefined convergence time. In the case
of the super-twisting controller, the settling time to the sliding
surface –and hence to zero tracking error– is a finite value.
Thus, predefined-time convergence with rough knowledge of
the initial conditions can be guaranteed by the super-twisting
controller using appropriate control gains [21].

A. Computation of functions hk(t).

The computation of functions hk(t) means the computation
of the reference trajectory (8) when either the applied control
law is (10) or (12). In this subsection a couple of methods for
computing such functions as polynomials are introduced.

First, let us introduce a simple possibility to compute
functions hk(t), fulfilling (5), as polynomials of order 2n+1.
For that, consider the following notation:

G(t) =


g(t)
ġ(t)

...
g(n)(t)

 , (17)

where
g(t) =

[
t2n+1, t2n, ..., t, 1

]
.

Proposition 3.4: Consider the matrix G(t) as in (17). For
each index k ∈ {1, .., n}, compute the following vector of
coefficients:

ck =

[
G(ti)
G(tf )

]−1 [
Ik
0

]
, (18)

where Ik is the kth column vector of the identity matrix with
dimension n + 1 and 0 is a column vector of zeros with
dimension n + 1. The functions hk(t) fulfilling (5) can be
computed as

hk(t) =

{
g(t) · ck if t ∈ [ti, tf ]
0 otherwise. (19)

Proof: By definition, g(t) and its derivatives are in-
dependent vectors of dimension 2(n + 1). Furthermore, the
evaluation of g(t) and its derivatives at times ti and tf leads to
independent vectors. Thus, the matrix built for the computation
of ck in (18) is square and has inverse, consequently ck is well
defined and unique. By defining hk(t) = g(t)·ck, (18) implies

g(ti)
ġ(t)|t=ti

...
g(n)(t)|t=ti

g(tf )
ġ(t)|t=tf

...
g(n)(t)|t=tf


ck =



hk(ti)

ḣk(t)|t=ti
...

h
(n)
k (t)|t=ti
hk(tf )

ḣk(t)|t=tf
...

h
(n)
k (t)|t=tf


=

[
Ik
0

]
. (20)



This equation states that hk(t) and its derivatives are zero at
time t = tf . Furthermore, hk(t) and its derivatives are zero at
time t = ti excepting for h(k−1)

k (t) = 1. Thus, hk(t) fulfills
the condition (5) at ti and tf . Moreover, (20) implies that
h
(n)
k (t) = 0 at t = tf , meaning that u = 0 at t = tf . Finally,

by (19), each hk(t) and its derivatives are null for t > tf .
Previous proposition proposes a particular way for com-

puting functions hk(t). However, different possibilities may
be explored. In the following proposition a higher degree
polynomial vector is used, i.e., g(t) = [ts, ..., t, 1] with
s > 2n + 1, allowing more degrees of freedom during the
computation of the coefficients ck, which can be adjusted
by means of an optimization criterion. In particular, let us
consider the quadratic cost function (21) defined in terms of
the closed-loop state trajectory e(t) and the input u(t), where
the applied control action is computed as either (10) or (12)
without disturbance ρ(t), and the functions h1(t), ..., hn(t) are
defined as hk(t) = g(t)ck, fulfilling (5),

J(c1, ..., cn) =

tf∫
ti

e(t)TQe(t) + u(t)Ru(t)dt, (21)

where Q is a positive definite matrix of appropriate dimensions
and R > 0.

Proposition 3.5: The coefficients c1, ..., cn, leading to the
minimum cost TBG (21), can be computed as the following
quadratic programming problem (QPP ):

min
c1,...,cn

J(c1, ..., cn) =

[
cT1 , ..., c

T
n

]
Mei

TT(ti, tf )Mei

 c1
...

cn

 , (22)

subject to, ∀k ∈ {1, .., n},[
G(ti)
G(tf )

]
ck =

[
Ik
0

]
, (23)

where

T(ti, tf ) =
tf∫
ti

GT (t)QG(t) + g(n)(t)TRg(n)(t)dt

Mei
= [Iei,1, ..., Iei,n] ,

(24)

with ei,k denoting the kth entry of ei and I being the identity
matrix of dimension s+ 1.

Proof: First, assume that the coefficients c1, ..., cn fulfill
with (23). Then, by the Proposition 3.4 (defining hk(t) =
g(t)ck), the condition (5) is fulfilled. Notice that[

h
(n)
1 (t), ..., h

(n)
n (t)

]
= g(n) [c1, ..., cn] ,

H(t) = G(t) [c1, ..., cn] .
(25)

Assuming that e(ti) = ei and that there do not exist
disturbances, the control laws (10) and (12) are equivalent to
(9). Thus, considering (8) and (9), the cost function (21) can
be written as

J(c1, ..., cn) =
tf∫
ti

eTi H(t)TQH(t)ei+

eTi

[
h
(n)
1 (t), ..., h

(n)
n (t)

]T
R
[
h
(n)
1 (t), ..., h

(n)
n (t)

]
eidt.

Moreover, factorizing ei and considering (25) it follows:

J(c1, ..., cn) =
tf∫
ti

eTi

(
[c1, ..., cn]

T
G(t)TQG(t) [c1, ..., cn]

+ [c1, ..., cn]
T

g(n)(t)TRg(n)(t) [c1, ..., cn]
)

eidt.

Notice that ei and [c1, ..., cn] are time-independent. Thus,
by using (24), the previous expression is equivalent to

J(c1, ..., cn) = eTi [c1, ..., cn]
T

T(ti, tf ) [c1, ..., cn] ei.

Finally, the previous expression is equivalent to (22) by
using the fact that

[c1, ..., cn] ei = Mei

[
cT1 ...c

T
n

]T
.

The matrix T(ti, tf ) is positive definite and the quadratic
cost function J is convex, hence, it has a finite global
minimum. Moreover, T(ti, tf ) can be computed by numerical
integration, independently of the coefficients and the initial
conditions. In general, the coefficients ci depend on the
initial condition, however, their computation can be efficiently
achieved (even on-line) by using existing optimization algo-
rithms for solving the QPP (22). Furthermore, in robotics and
electromechanical control applications, it frequently occurs
that the output of the system is its position and the system
is static at the initial time. In such case, the optimal coeffi-
cients in the Proposition 3.5 can be computed by assuming
ei = [1, 0, ..., 0]T , thus the QPP becomes independent on the
initial conditions.

IV. SIMULATION AND EXPERIMENTAL RESULTS

This section is divided in two main parts. The first part
presents simulation results and the second part presents some
experiments on a real electromechanical system.

A. Simulation results

1) Comparison with finite-time and fixed-time controllers:
Let us first provide a comparison of the proposed approach
with respect to finite-time and fixed-time controllers reported
in the literature ( [1]–[4], [8]). Three of them ensure finite-
time convergence: the discontinuous twisting controller [3],
the continuous twisting controller [4], and the Bhat and
Bernstein controller [1]. The rest of them guarantees fixed-
time convergence: the Polyakov’s controller [2], the Zuo’s
controller [8], and the proposed TBG controller. We use the
double integrator system (1) with n = 2 for the comparative
analysis of the settling time for the set of controllers.

The controllers were implemented in Matlab using the Euler
forward method to approximate the time-derivatives with time
step of 0.5 milliseconds. For each controller, we set the initial
condition x2i = 0.5, and we varied the initial value x1i
from 0 to 100. For every initial condition, we measured the
convergence time of the system when ‖ e ‖< 1 × 10−2 and
the maximum absolute value of the control input u.

The five mentioned controllers were manually tuned to
achieve a similar convergence time around 6 seconds for
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Fig. 1. Comparison of a proposed TBG controller (10) versus finite-time and
fixed-time controllers. Top: Settling time as a function of the initial condition
x1i . Bottom: Maximum absolute value of the control input as a function of
the initial condition x1i .

initial conditions x1i = 1 and x2i = 0.5. Then, we kept the
same control gains for the simulations with different initial
conditions of x1i . We use the linear TBG controller defined
in (10) for n = 2 and TBG functions (19) with τs = 6 seconds
and Kf = [2, 3].

The results are shown in Fig. 1. On the one hand, the
settling time for the twisting and Bhat and Bernstein finite-
time controllers increased unbounded as the initial conditions
became bigger. On the other hand, in the Polyakov’s and the
Zuo’s controllers the convergence time was kept bounded,
below 6 seconds, however the maximum absolute value of
the control input increased really fast with them (the corre-
sponding profiles early escaped toward the top in Fig. 1).

The TBG controller was the only in which the convergence
time was kept constant at 6 seconds for every initial condition,
while the increment of the maximum control effort was slow
and close to linear. Additionally, the TBG controller is not
affected by the time step of the control loop, while the other
compared controllers needed a high frequency control cycle
since they are all based on the sliding modes paradigm.

2) 7-DoF robot manipulator PA10: Let us illustrate the
application of the TBG method in a nonlinear MIMO system.
Consider the manipulator of Fig. 2(a), with the equations of
motion in terms of the Euler-Lagrange formalism as:

B(q)q̈ + C(q, q̇) = u, (26)

where {q, q̇, q̈} ∈ R7 are the joint configuration, velocity, and
acceleration, respectively. B(q) ∈ R7×7 denotes the symmetric
positive definite inertial matrix, C(q, q̇) = C(q, q̇)q̇+D(·)q̇+
g(q) contains the Coriolis vector C(q, q̇)q̇ ∈ R7, D(·)q̇ ∈ R7

is the damping vector that expresses the inner dissipative
energy of the system, and g(q) ∈ R7 is the gravity vector.
The vector of control torques is u ∈ R7. We applied the
computed-torque control scheme in which the control torques
are expressed as:

u = B(q)v + C(q, q̇), (27)

where v ∈ R7 is an auxiliary control input. The computed-
torque scheme decouples the joint dynamics and hence, v
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Fig. 2. PA10 manipulator with the TBG controller (10) for convergence time
of 3 seconds. (a) illustrates the initial (green) and desired (red) configurations
as well as some configurations along the computed trajectory. (b) shows the
joint configuration errors. (c) shows the joint velocities profiles. (d) and (e)
show the auxiliary control and the control inputs for each joint, respectively.

is applied to a set of seven decoupled subsystems of sec-
ond order. Thus, v is a stack of seven equations (10) with



ej = [qj − qdj , q̇j ]T for j = 1, ..., 7 and the same Kf = [2, 3]
for each subsystem. The matrices Kt and H are also the
same for each subsystem and they are computed as in the
Proposition 3.4 for ti = 0 and tf = 3 seconds.

The implementation of the complete control scheme re-
quired the instantaneous evaluation of B(q) and C(q, q̇).
For this, we used the efficient recursive spatial algorithms
described in [22]. In particular, we obtained B(q) by means
of the Composite Rigid Body algorithm while C(q, q̇) was
calculated with the spatial version of the Newton-Euler algo-
rithm with q̈ = 0 as its argument. The simulation was imple-
mented in Matlab using the ode45 solver with time step of 1
millisecond. In Fig. 2, we show the results of regulating the
joint configuration error of the PA10 manipulator toward zero.
The initial and desired joint configurations were set to qi =(
0 π

3
−π
4

π
3
π
4
π
2
π
4

)T
and qd =

(
π
3

−π
4

π
3
π
5

−π
2

−π
3 0

)T
. It

can be seen in Fig. 2(b) that the joint configuration errors
converge to zero in the predefined 3 seconds. In Fig. 2(c), it
can be observed the smooth behavior of the joint velocities.
The auxiliary control signals in Fig. 2(d) start at zero and
converge to zero within the same time interval. Observe in
Fig. 2(e) that the control inputs do not converge to zero; they
have to compensate the nonlinear effects C(q, q̇) at the desired
configuration. This is expected since qd 6= 0.

3) Robust trajectory tracking control: Let us illustrate the
robust option for the TBG given by the Theorem 3.3 in a
third order system. The simulation considers a time-varying
disturbance ρ(t) = 2(1+ sin(2t)) and the reference trajectory
provided by the TBG uses different initial conditions to those
in the system, i.e., the control law considers ei = (5,−3, 3)T
while the real initial conditions of the system are (10,−6, 6)T .
The coefficients of the TBGs are obtained as in the Proposition
3.4 for a predefined-time of 6 seconds. The control gains are
set as k1 = 5, k2 = 3 and Kfr = (6, 5).

Fig. 3 shows that the state trajectories converge to the
references around 4 seconds and therefore, they are driven
to zero in the desired predefined time. It can be seen that
the control input remains oscillating at steady-state since it is
effectively rejecting the disturbance ρ(t).

B. Experimental results

The experimental setup consists of a simple rotational
pendulum as shown in Fig. 4(a). The system parameters used
in the controller were roughly estimated to the following
values: length of the link l = 20 cm, mass m = 0.11 kg and
damping constant k = 0.11 kg/sec. The torque-mode servo
controller device is a Dynamixel MX-28T. The controller is
connected to the computer for sending the instantaneous torque
commands as well as for obtaining the instantaneous position
and velocity profiles at 1 kHz. We verified the behavior
of the TBG controller formulated in the Theorem 3.2 with
n = 2 for different initial conditions and the same convergence
predefined-time. In particular, Fig. 4(b) shows the profiles
of the state of the system (θ and θ̇) along the time axis
(top) and the control signal (bottom) for 4 initial conditions
with a convergence predefined-time of 3 seconds. The desired
position and velocity were π and zero, respectively. The
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Fig. 3. Robust predefined-time TBG controller (12) for a disturbed third
order integrator system. The convergence time is preset to 6 seconds.

tracking control gain matrix was set to Kf = [11, 1.1]. The
polynomial functions of the TBGs were calculated by means
of the optimization method given in the Proposition 3.5 with
3 additional degrees of freedom (s = 8).

For comparison purposes, we applied the Polyakov’s con-
troller [2] with 4 initial conditions and 3 seconds as the
predefined convergence time (see Fig. 4(c)). It is evident
the difference in the controllers performance, the TBG-based
controller is able to keep the predefined convergence time
while the Polyakov’s controller achieves the convergence in
different times.

V. CONCLUSIONS

In this paper, we have proposed a general method to
synthesize controllers whose desired closed-loop settling time
can be set by the user and it is achieved independently of
the initial conditions. This property is called predefined-time
convergence. The kind of systems that can be controlled
with this approach are SISO linear controllable systems and
nonlinear systems that can be transformed to the normal form,
with stable zero dynamics. Moreover, it is possible to control
MIMO systems that can be decoupled into SISO subsys-
tems in the previously mentioned forms. In our approach, a
reference trajectory is firstly computed, named TBG. Later,
the TBG is combined with feedback controllers to achieve
closed-loop stability and robustness, in particular applying a
linear feedback controller and a super-twisting controller with
the TBG. Furthermore, we have proposed methods to build
the TBGs as polynomial functions. We consider of special
interest the applicability of the predefined-time controllers
in the control of robotic systems. The performance of some
controllers as study cases has been evaluated for regulation
problems and compared with existing finite-time and fixed-
time controllers in simulations. Experiments have also shown
good performance of the control method in a real setup.
Moreover, a good benefit of the proposed controllers is that
they yield smoother control signals with considerable smaller
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Fig. 4. Experimental setup: the behavior of a real pendulum with the TBG
controller of the Theorem 3.2 and the Polyakov’s controller [2]. (a) illustrates
the real system at two different configurations. (b) shows the behavior of the
TBG controller with four initial conditions and 3 seconds as the predefined
time of convergence. (Top) shows the state profiles. (Bottom) shows the
computed control inputs. (c) shows the behavior of Polyakov’s controller with
four initial conditions and 3 seconds as the fixed time of convergence. (Top)
shows the state profiles. (Bottom) shows only the computed control input of
the first initial condition for clarity of the visualization.

magnitudes than finite-time and fixed-time controllers reported
in the literature.
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