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Exploiting the Trifocal Tensor in Dynamic
Pose-Estimation for Visual Control

H. M. Becerra1 and C. Sagüés2

Abstract—Image-based approaches for visual control are mem-
oryless and they depend on the information extracted from the
image plane. We propose the use of dynamic pose estimation into
the task of driving a mobile robot to a desired location specified
by a target image. This approach reduces the dependence of the
control on the quality of visual data and facilitates the planning of
complex tasks. The pose estimation exploits the 1D trifocal tensor
(TT) as measurement, which allows to obtain a semicalibrated
estimation scheme that is valid for any visual sensor obeying
a central projection model. The contribution of the paper is a
novel observability analysis of the estimation problem from the
1D TT using nonlinear tools, as well as the demonstration of the
validity of closed loop control from the estimated pose by showing
a separation principle in our nonlinear framework. The overall
position-based scheme drives the robot to a desired pose through
smooth velocities without the need of a target model neither
scene reconstruction nor depth information. The effectiveness of
the approach is evaluated via real-world experiments.

I. INTRODUCTION

Nowadays, the research in mobile robotics is motivated
by the introduction of wheeled mobile robots in service
applications, where the precise positioning of the robot is an
important task. In this context, a vision system is a very good
sensor for mobile robots [1]. In this paper we present a visual
servoing (VS) approach to drive a wheeled mobile robot to
a desired pose (position and orientation), which is specified
by a target image previously captured. VS methods can be
classified as image-based (IB) when image data is used directly
in the control loop, or position-based (PB) if an estimate of
pose parameters is carried out [2]. Pioneering works on VS of
mobile robots are classical IB schemes using largely overcon-
strained control commands, for instance [3]. More recently,
geometric constraints relating two views have been applied
to improve the performance and robustness of IB schemes,
e.g., the epipolar geometry [4] and the homography model [5].
Nevertheless, these geometric constraints have both serious
drawbacks. The epipolar geometry is ill-conditioned with short
baseline and with planar scenes, while the homography model
is not well defined if there are no dominant planes in the scene.

Although the trifocal tensor (TT) is more general, more ro-
bust and without the drawbacks of other geometric constraints
[6], it has been less exploited in visual control. The 2D TT
has been introduced for visual control of mobile robots using
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an overconstrained controller that may suffer of local minima
problems [7]. This is overcome in [8] by defining a square
control system and by using direct feedback of the elements
of the 1D TT into a two-step switching control law. The use
of more than two views in VS provides robustness as well
as enough information to correct depth from visual feedback,
which is not possible from two views.

IBVS schemes are memoryless, which makes this type of
approach completely dependent on the information extracted
from the image plane. This dependence can be reduced with
the use of an estimation strategy, which improves robustness
by filtering and smoothing the measurements. Additionally,
the pose estimation facilitates the planning of complex tasks,
like obstacle avoidance. In this sense, dynamic estimation is
of great interest in VS, and has been introduced in [9]. In
the context of mobile robots, on one hand, an approach that
recovers the robot pose has been proposed using structure
from motion in [10]. On the other hand, dynamic estimation
has been used in [11], where the authors propose a Kalman
filtering approach to match a set of landmarks to a prior
map and then to estimate the robot pose from these visual
observations. The effectiveness of applying a Kalman filtering
approach on PBVS has been particularly studied in [12].
We have introduced preliminary results of a pose estimation
scheme from several measurements given by the 1D TT in
[13], where the tensor is computed from metric information
and a linear observability analysis is presented.

In this paper, a mapless pose estimation scheme using one
element of the 1D TT as measurement and its application in
visual servoing of mobile robots is presented. The proposed
estimation scheme is valid for any type of central vision
system. Therefore, when the robot pose is estimated from the
adequate visual sensor and used for feedback, the visibility
constraint problem is overcome. The core of our contribution
is a comprehensive observability analysis of the estimation
problem that has been developed using nonlinear tools and a
stability analysis of the closed loop, showing the validity of
a separation principle between estimation and control in our
nonlinear framework. In the context of control, although the
orientation is a DOF in the closed loop system, the proposed
scheme ensures total correction of both, position and orien-
tation, using a single controller and smooth control inputs.
Additionally, the proposed approach for pose estimation does
not require a precise camera calibration, neither a target model
nor scene reconstruction or depth information.

The paper is organized as follows. Section II describes the
motion model of the robot and the 1D TT. Section III presents
an extensive observability analysis of the estimation problem.
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Section IV details the control law and the stability of the closed
loop. Section V shows the performance evaluation real-world
experiments using a hypercatadioptric imaging system, and
finally, Section VI states the conclusions.

II. MATHEMATICAL MODELING

A. Robot Model
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Fig. 1. Configuration of the robot with an on-board central camera. Left:
Kinematic model. Right: Experimental platform.

The kinematic motion of many wheeled robotic platforms
can be characterized through a differential-drive model. This
work focuses on driving a wheeled mobile robot from visual
information under the framework that is depicted in Fig.
1(left). A central camera is fixed to the robot in a position
ℓ translated along the longitudinal axisyR. The motion of the
robot frame{R} with respect to a world frame{W} can be
expressed using the unicycle modelẋ = −υ sinφ, ẏ = υ cosφ
and φ̇ = ω, whereυ and ω represent the translational and
rotational velocities, respectively. The kinematic behavior of
the on-board camera is described by the following continuous-
time model:

ẋ =
[

g1(x) g2(x)
]

u,

y = h(x). (1)

This driftless affine system has state vectorx = [x, y, φ]T ,
input vectoru = [υ, ω]

T and input vector fieldsg1(x) =
[− sinφ, cosφ, 0]

T and g2(x) = [−ℓ cosφ,−ℓ sinφ, 1]
T . The

measurement vectory, modeled as a nonlinear function of
the stateh(x), will be defined through information extracted
from images. By applying an Euler approximation (forward
difference) on the continuous derivatives [11], the discrete
versions of the state equations are obtained:

xk+1 = xk − Ts (ωkℓ cosφk + υk sinφk) ,

yk+1 = yk − Ts (ωkℓ sinφk − υk cosφk) ,

φk+1 = φk + Tsωk (2)

whereTs is the sampling period. In the sequel, we use the
notationsφ = sinφ, cφ = cosφ.

B. The 1D Trifocal Tensor as Visual Measurement

Omnidirectional vision in visual servoing provides the im-
portant advantage of avoiding problems with the scene leaving
the field of view, which requires a special navigation strategy
when conventional cameras are used [14]. However, given that
omnidirectional vision systems are represented by a nonlinear

θ

u−u0

Fig. 2. Extracted bearing measurements from central cameras to estimate the
1D TT. Left: Hypercatadioptric image, the bearing measurementθ is converted
to its 1D projection asp = [sin θ, cos θ]T . Right: Perspective image, where
the 1D projection is obtained from the normalization of the difference u-u0

projection model [15], the use of the radial trifocal tensor (1D
TT) simplifies the synthesis of visual servo-controllers.

The 1D TT is a geometric constraint that encodes the
geometry among three views in the frame of planar motion,
which is a typical situation in the context of wheeled mobile
robots. This constraint behaves better for general scenes in
comparison with the epipolar geometry and the homography
model [6]. The estimation of the 1D TT is basically the same
for any camera that approximately obeys the generic camera
model [15], e.g., conventional cameras and its combination
with mirrors (catadioptric systems). In order to estimate the 1D
TT, point features are converted to their projective formulation
in a 1D virtual retina as shown in Fig. 2 for hypercatadioptric
systems and conventional cameras.
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Fig. 3. Complete geometry between three camera locations. A global
reference frame is placed in the third view. Left: Absolute locations. Right:
Relative locations.

Let us define a global (world) reference frame as depicted
in Fig. 3(left) with the origin in the third camera. Then, the
camera locations at the initial, current and target views with
respect to that global reference areC1 = (x1, y1, φ1), C2 =
(x2, y2, φ2) = x andC3 = (0, 0, 0), respectively. The relative
locations between cameras are defined by a local reference
frame in each camera as shown in Fig. 3(right). The geometry
of the three views is encoded in eight tensor elementsTl,m,n

(l,m, n = 1, 2) that in general can be expressed as:

Tl,m,n = −κ1tx + κ2ty + κ3fsc (φ) (3)

wheretx = −xcφ− ysφ, ty = xsφ− ycφ, fsc (φ) can besφ
or cφ, andκ1, κ2, κ3 are adequate constants depending on the
geometric relationships between the fixed viewsC1 andC3.
Thus, the tensor elements are a function of the current camera-
robot statex. Details about the expression of each element of
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the 1D TT can be verified in [16], [8]. It is worth mentioning
that in practice, it is a need to normalize the tensor elements
in order to fix a scale, which means to divide each element
by a non-null factor. Notice that the bearing measurements
are independent on focal length, so that, only the center of
projection for omnidirectional images or the principal point for
conventional cameras is required to estimate the 1D TT. Thus,
the use of bearing information allows to get a semicalibrated
measurement for pose estimation and visual control, in contrast
to previous approaches [4], [17].

III. DYNAMIC POSE ESTIMATION FROM 1D TT

The high dependence of the IB control schemes on the
information extracted from the image plane can be reduced by
combining a prediction of the current robot pose with robust
visual measurements. The problem of pose estimation exploit-
ing a geometric constraint for visual control has been tackled
in the literature in a static fashion ([10], [5]), which means
that the pose is extracted by decomposing a mathematical
entity at each time instant. In this section, we analyze the
use of the information provided by the 1D TT in order to
estimate the camera-robot pose dynamically, i.e., using a true
state estimator. We prove that the system is not observable
from a continuous-time viewpoint, however, a discrete-time
analysis shows that with an exciting controller the system
achieves observability. This controller is designed in the next
section.

Observability is a structural property of a system that may
affect the convergence of an estimation scheme. This property
specifies if two states are distinguishable by measuring the out-
put, i.e.,x1 6= x2 =⇒ h (x1) 6= h (x2). Few works concerned
about nonlinear state observability of mobile robots. Some
basic results on the observability analysis of the estimation
problem from 1D TT measurements using linear theory are
reported in [13]. In that work, the observability is ensured
by using three different elements of the tensor, which seems
trivial to estimate three unknown quantities. Currently, new
results on the observability of the robot pose with only one
measurement from the 1D TT is reported using nonlinear tools.
Firstly, the nonlinear theory for the analysis of continuous
systems introduced in [18] is used. According to this theory,
the following observability rank conditioncan be enunciated.

Definition 1. The continuous-time nonlinear system that
describes the camera-robot kinematics (1) with some measure-
ment h(x) is locally weakly observable if the observability

matrix with rowsOc ,

[

∇L
q
gigj

h(x) p i, j = 1, 2; q ∈ N

]T

is of full rankn for everyx .

The expressionL q
gi
h(x) denotes theqth order Lie derivative

of the scalar functionh along the vector fieldgi and ∇ is
the gradient operator. From the previous observability rank
condition, it can be seen that the observability property of
the nonlinear camera-robot system depends on the excitations,
since it is a driftless system. It suffices to find a set of rows lin-
early independent in order to fulfill the rank condition. Locally
weak observability is a concept stronger than observability,
which states that one can instantaneously distinguish each
point of the state space from its neighbors, without necessity to

travel a considerable distance, as admitted by the observability
concept. Let us express the elements of the tensor (3) as a
generic measurement model that is a function of the state of
the system (1) as follows:

h(x) = αxsφ + βxcφ + γysφ+ δycφ (4)

whereα, β, γ, δ are suitable constants defined for each tensor
element. This expression of the measurement model allows us
to generalize the results for any of the eight tensor elements
as introduced in the following proposition.

Proposition 1. The space spanned by all possible Lie
derivatives given by the generic measurement model (4) along
the vector fieldsg1 and g2 of the continuous system (1) is of
dimension three if the measurement accomplishesα + δ 6= 0
or β − γ 6= 0.

Proof: The proof of this proposition is done by finding
the space spanned by all possible Lie derivatives and verifying
its dimension. This space is given as:

Ω =
(

h,L 1
g1
h,L 1

g2
h,L 2

g1
h,L 2

g2
h,Lg1Lg2h,Lg2Lg1h, ...

)T
.

(5)
The first order Lie derivatives are as follows:

L
1
g1
h = δc2φ− αs2φ+ (γ − β) sφcφ = ϕa (φ) ,

L
1
g2
h = −ℓ

(

βc2φ+ γs2φ+ (α+ δ) sφcφ
)

+ ∂h
∂φ

.

We have introduced the notationϕ for functions depending
on φ, which emphasizes that some of the Lie derivatives
only span in that direction. It is sufficient for the search of
independent vectors to find the second order Lie derivatives,
which results:

L
2
g1
h = 0,

L
2
g2
h = −ℓ

(

(2α+ δ) c2φ+ 3 (γ − β) sφcφ
)

−ℓ (2δ + α) s2φ− h,

Lg1Lg2h = ϕb (φ) ,

Lg2Lg1h = ϕc (φ) .

Notice that the Lie derivativesLg1Lg2h andLg2Lg1h span
in the same direction ofL 1

g1
h and the corresponding gradients

of the formers do not contribute to the dimension of the space.
The dimension of the observable space is determined by the
rank of the matrix (6).

Clearly, by taking the first three rows, this matrix has rank
three ifα+ δ 6= 0 or β − γ 6= 0. Thus, the space spanned by
all possible Lie derivatives is of dimension three under such
conditions.

The interest of the previous result is to conclude about
the observability property of the camera-robot pose using one
element of the 1D TT. In this sense, the following Lemma is
stated.

Lemma 1.The maximum rank of the nonlinear observability
matrix for the continuous camera-robot system (1) with one
element of the 1D TT (3) as measurement turns out to be
two, and therefore, the system is not locally weakly observable
using that information according to Definition 1.

Proof: This proof results as a derivation of the Proposition
1. From (3), it is seen that, by adding to (4) the termκ3fsc (φ)
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∇Ω =









∇h
∇L 1

g1
h

∇L 1
g2
h

∇L 2
g2
h









=









αsφ+ βcφ γsφ+ δcφ αxcφ − βxsφ+ γycφ− δysφ
0 0 −2 (α+ δ) sφcφ+ (β − γ)

(

s2φ− c2φ
)

αcφ− βsφ γcφ− δsφ ℓ
(

(α+ δ)
(

s2φ− c2φ
)

− 2 (β − γ) sφcφ
)

− h
−αsφ− βcφ −γsφ− δcφ ℓ

(

6 (α+ δ) sφcφ− 3 (β − γ)
(

s2φ− c2φ
))

− ∂h
∂φ









(6)

Od =





κ1cφk + κ2sφk κ1sφk − κ2cφk κ1 (−xksφk + ykcφk) + κ2 (xkcφk + yksφk) + κ3fcs (φk)
κ1cǫk + κ2sǫk κ1sǫk − κ2cǫk κ1 (−xksǫk + ykcǫk) + κ2 (xkcǫk + yksǫk) + κ3fcs (ǫk)
κ1cζk + κ2sζk κ1sζk − κ2cζk κ1 (−xksζk + ykcζk) + κ2 (xkcζk + yksζk) + κ3fcs (ζk)



 (7)

with κ3 a constant andfsc (φ) being sφ or cφ, the non-
normalized elements of the tensor can be expressed in two
of the following forms:

1) Four elements of the tensor,T121, T122, T221 andT222,
can be written ash1 (x) = βxcφ + γysφ + κ3fsc (φ).
In accordance to the generic measurement model (4),
for these tensor elementsα = 0, δ = 0, β = γ, and
consequently the conditions of the previous proposition
are not accomplished.

2) The other four elements,T111, T112, T211 andT212, can
be expressed ash2 (x) = αxsφ + δycφ+ κ3fsc (φ). In
this case,β = 0, γ = 0, α = −δ, and the conditions
in Proposition 1 to span a space of dimension three are
not fulfilled.

Hence, sinceα + δ = 0 and β − γ = 0 in any case, the
observability matrix has only two rows linearly independent

Oc =

[

∇h
∇L 1

g2
h

]

=

[

αsφ+ βcφ γsφ+ δcφ ∂h
∂φ

αcφ− βsφ γcφ− δsφ −h

]

.

(8)

Given that this matrixOc has a lower rank than the dimen-
sion of the state space (n = 3), the observability rank condition
is not satisfied and consequently locally weak observability
cannot be ensured for the continuous system (1) with any
element of the 1D TT (3) as measurement. The same result
is obtained by using any linear combination of elements of
the tensor. Higher order Lie derivatives are linearly dependent
on lower order derivatives, so that, the maximum rank of the
observability matrix is two.

Notice that in (8) only appears the gradient of the measure-
ment alongg2, in addition to the gradient ofh. This means
that, the rotational velocity provides an observable direction
in the state space. However, this is not enough to cover the
three dimensional space. In contrast, the translational velocity
does not contribute to gain an observable direction, because
the gradient of Lie derivatives related tog1 provides linearly
dependent row vectors.

Actually, the implementation of an estimation and control
algorithm must be done in discrete time. Consequently, an ob-
servability analysis in discrete time is mandatory. Consider the
following observability rank condition for discrete nonlinear
systems [19].

Definition 2. The discrete-time nonlinear system (2) ex-
pressed asxk+1 = f (xk,uk), with measurementyk = h (xk)
is said to be observable atxk if the nonlinear observability
matrix

Od =











∂h
∂x

(xk)
∂h
∂x

(xk+1)
∂f
∂x

(xk)
...

∂h
∂x

(xk+n−1)
∂f
∂x

(xk+n−2) · · ·
∂f
∂x

(xk)











(9)

is of full rank n at xk.
Next, an important result on the analysis of the observability

of the camera-robot pose is established in the following
Lemma.

Lemma 2. The discrete camera-robot system (2) is said
to be observable according to Definition 2 by using only
one element of the 1D TT (3) as measurement if rotational
velocity is applied during two consecutive time instants and
the corresponding velocities are different and no-null for these
two consecutive steps.

Proof: This is proved by constructing the corresponding
nonlinear observability matrix and verifying its rank. Let us
consider the generic measurement (3) that represents any of
the eight elements of the 1D TT in discrete time:

h (xk) = −κ1txk
+ κ2tyk

+ κ3fsc (φk) . (10)

The required Jacobians in (9) are as follows:

∂h

∂xk

=





κ1cφk + κ2sφk

κ1sφk − κ2cφk

−κ1tyk
− κ2txk

+ κ3fcs (φk)





T

= Hk, (11)

∂f

∂xk

=





1 0 ∆y

0 1 −∆x

0 0 1



 = Fk, (12)

being ∆x = Ts (ωkℓcφk + υksφk), ∆y =
Ts (ωkℓsφk − υkcφk). The recursive operations of (9)
result in the nonlinear observability matrix (7), in which
ǫk = φk + Tsωk andζk = φk + Ts (ωk + ωk+1).

It can be seen that this matrix has three row vectors linearly
independent if the following conditions are fulfilled:

Ts 6= 0, ωk 6= 0, ωk+1 6= 0, ωk 6= ωk+1. (13)

Thus, it is proved that the observability matrix is full rank
three and the system (2) is observable if rotational velocity is
applied during two consecutive time instants and the velocities
are different and no-null at each instant.

According to Lemma 2, a digital implementation of an
estimation scheme for the system (2) with measurement of the
type (10) collects enough information along two time instants.
In this sense, both observability analysis, the continuous and
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discrete, are complementary each other. The no locally weak
observability states that the robot pose cannot be distinguished
instantaneously; however, the pose can be estimated in two
steps in accordance to the discrete analysis. The conditions
for the observability in Lemma 2 confirm the dependence
of this property on the control inputs, in particular on the
rotational velocity. It is worth mentioning that the previous
mathematical developments have been shown for the non-
normalized tensor for clarity, and they are also valid for
normalized measurements, as required for implementation.

Remark 1. It can be demonstrated that a Discrete Extended
Kalman Filter is an efficient implementation of an observer
that accomplishes Lemma 2. The demonstration can be found
in [20].

IV. NONHOLONOMIC VISUAL SERVOING IN THE
CARTESIAN SPACE

In this section, we demonstrate the feasibility of closing

the control loop using the estimated posex̂k=
[

x̂k, ŷk, φ̂k

]T

given by an estimation scheme, in order to drive the robot to
reach a desired position and orientation. This can be referred
as a pose regulation problem and in the three-view framework
defined by the 1D TT, the goal is to achieveC2 = (0, 0, 0).
Let us define the output to be controlled as the reduced state
vector

xr,k = [xk, yk]
T . (14)

Hence, the tracking errors areξ1k = xk − xd
k, ξ2k = yk − ydk,

wherexd
k and ydk are the discrete values of desired smooth

time-varying references. The difference equations of these
errors result in the following system:

ξk+1 = ξk + TsD (φk, ℓ)uk − Tsẋ
d
r,k (15)

where ξk = xr,k − xd
r,k, D (φk, ℓ) =

[

−sφk −ℓcφk

cφk −ℓsφk

]

,

uk= [υk, ωk]
T and ẋd

r,k =
[

ẋd
k, ẏ

d
k

]T
. Given that the control

inputs appear in the first differentiation of each output, the
relative degree of the system is2, and a first order zero
dynamics appears. This represents a DOF of the system, which
is the orientation (φ). As the control is based on estimation,
the static state feedback control lawuk resulting from the
inversion of the error system (15) turns out to be

ûk= D̂
−1

(

−kξ̂k + ẋd
r,k

)

. (16)

wherek =diag(k1, k2) is a matrix of control gains and̂D−1 =

D−1

(

φ̂k, ℓ
)

. It can be verified that the input velocities achieve
global stabilization of the position error system (15) in the case
of feedback of the real stateuk. In such a case, the dynamic
behavior of the closed loop position error is exponentially
stable iff k1 and k2 ∈ (0, 2/Ts). Notice that the control
law (16) is valid when the camera is shifted from the robot
rotational axis (ℓ 6= 0), which is a common situation.

A. Stability of the Estimation-based Control Loop

In this section, the stability of the closed loop system with
feedback̂uk of the estimated camera-robot pose is analyzed. It
is known that the separation principle between estimation and
control is not accomplished in general for nonlinear systems.
However, we present an adequate analysis for our case and

a separation principle is demonstrated. We consider that the
estimation scheme is implemented as a Discrete Extended
Kalman Filter for the system{Fk,Hk}, which accomplishes
Lemma 2. Given the good behavior of the 1D TT that we
have obtained in previous works [8], and given that the robot
velocities are computed from the control law rather than
measured (unlike an odometric approach), we assume that the
effect of the noise can be neglected, in such a way that the
deterministic model (2), expressed asxk+1 = f (xk,uk), with
measurementyk = h (xk), is used for the subsequent analysis.
The behavior of the a priori estimation error in an EKF is

e−k+1
= xk+1 − x̂−

k+1
=f (xk, ûk)− f

(

x̂+

k , ûk

)

. (17)

It is worth emphasizing that the same result of the analysis
can be obtained using the a posteriori estimation errore+k [21].
Let us introduce an expansion of the functionsf andh:

f (xk, ûk)− f
(

x̂
+

k
, ûk

)

= Fk

(

xk − x̂
+

k

)

+ Φ
(

xk, x̂
+

k
, ûk

)

, (18)

h (xk)− h
(

x̂
−

k

)

= Hk

(

xk − x̂
−

k

)

+Ψ
(

xk, x̂
−

k

)

, (19)

whereΦ and Ψ are the second and higher order terms. By
substituting (18) into (17) and using the discrete observer
as given by the update stage of the EKF̂x+

k = x̂−

k +
Kk

(

h (xk)− h
(

x̂−

k

))

, we have:

e
−

k+1=Fk

(

xk − x̂
−

k
−Kk

(

h (xk)− h
(

x̂
−

k

)))

+Φ
(

xk, x̂
+

k
, ûk

)

.

By substituting (19) and knowing that the a priori estimation
error is given ase−k = xk−x̂−

k , then:

e−k+1
=Fk (I3 −KkHk) e

−

k +Θk

where Θk = Φ
(

xk, x̂
+

k , ûk

)

− FkKkΨ
(

xk, x̂
−

k

)

. Let us
denote the first two components of the vectore−k as e−r,k .
Then, the estimated tracking error iŝξk = ξk − e−r,k.

The control law (16) can be written using the estimated
tracking error as:

ûk= D̂
−1

(

−k
(

ξk − e−r,k

)

+ ẋd
r,k

)

.

By introducing this control input into the tracking error
system (15), the closed loop difference equation with estimated
state feedback results as:

ξk+1 =
(

I2 − TsDD̂
−1

k
)

ξk + TsDD̂
−1

ke−r,k

+Ts

(

DD̂
−1

− I2

)

ẋd
r,k.

The product of matrices

DD̂
−1

=

[

sφksφ̂k + cφkcφ̂k −sφkcφ̂k + sφ̂kcφk

−sφ̂kcφk + sφkcφ̂k cφkcφ̂k + sφksφ̂k

]

turns out to be a definite positive matrix assuming that the
initial estimation ofφk is no π

2
rad off, according to a TT-

based initialization procedure [20]. Finally, the overall closed
loop control system with estimated state feedback is expressed
as follows:
[

ξk+1

e−k+1

]

=

[

I2−TsDD̂
−1

k
[

TsDD̂
−1

k,0
]

0 Fk (I3 −KkHk)

]

[

ξk
e−k

]

+

[

Ts

(

DD̂
−1

− I2

)

ẋd
r,k

Θk

]

.
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Notice that each dynamicsξk and e−k is subject to a
perturbation. The tracking error is subject to a perturbation
depending on the derivative of the desired references and
the estimation error is subject to a bounded perturbationΘk

depending on the dynamics of the estimation error. The more
important effect comes from the second one, because the
former perturbation depends on the accuracy of the orientation
estimation and it can be neglected considering the smoothness
of the reference signals. Thus, the stability of the overall con-
trol scheme is determined by the estimation error dynamics.
According to Lemma 4 of [21], the perturbationΘk can be
bounded as‖Θk‖ ≤ λ

∥

∥e−k

∥

∥

2
, where λ is a real positive

number and it is independent on the robot velocities. Given
that in our case the EKF fulfills the additional conditions
stated in Theorem 7 of [21] (the boundness of the matrices
of the linear approximation, the boundness of the estimation
covariances and the nonsigularity of the matrixFk), the
perturbation eventually will vanish and the state estimator will
behave as an exponential observer. The triangular form of the
estimator-control system shows that the stability property is
achieved by ensuring the stability of each one of the dynamics
ξk and e−k , i.e., a separation principle holds for the system.
This is accomplished in our case and exponential stability of
the overall control system is achieved.

B. Pose Regulation through adequate Reference Tracking

Notice that up to now, the proposed controller drives to zero
the lateral and longitudinal errors through a smooth evolution,
but the orientation evolves freely. In order to obtain also
orientation correction for nonholonomic mobile robots, a good
option is to define an adequate path for the robot position.
The following time-differentiable references are proposed to
achieve this goal:

ydk =
y0
2

(

1 + cos
(π

τ
kTs

))

, 0 ≤ kTs ≤ τ,

xd
k =

x0

y20

(

ydk
)2

, 0 ≤ kTs ≤ τ (20)

where(x0, y0) is the estimated initial position, obtained from
an initialization procedure [20], andτ is a user-defined tem-
poral horizon to reach the target position. These references
depict a parabolic path on thex − y plane from the point
(x0, y0) to (0, 0). Notice that the robot always starts over the
desired path, so that the controller has to maintain the tracking
in the path. In case that the robot would start off the path, the
stability property of the controller will drive the robot position
to asymptotically converge to the desired path. The tracking
of the reference drives the robot to perform an initial rotation
autonomously when the robot heading is not tangent to the
path.

As mentioned previously, when the controlled outputs reach
zero at the timeτ the so-calledzero dynamicsis achieved in
the robot system. Zero dynamics is described by a subset of
the state space which makes the output to be identically zero
[22]. In the particular case of the robot system (2) with outputs
s1 = xk, s2 = yk, this set is given as:

Z∗ =
{

[

0, 0, φ̄k

]T
, φ̄k = constant∈ R

}

.

Thus, zero dynamics in this control system means that when
lateral and longitudinal positions of the camera-robot system
are corrected, the orientation may be different to zero. Next,
it is proved that orientation correction is also achieved by
tracking the proposed references, in such a way that pose
regulation is obtained.

Proposition 2. The proposed visual servoing scheme with
control inputs (16), using feedback of the estimated state

x̂k =
[

x̂k, ŷk, φ̂k

]T

provided by the 1D TT-based estimation
scheme and the reference signals (20), drives the camera-robot
system (2) to reach the location(x = 0, y = 0, φ = 0), i.e.,
orientation is also corrected.

Proof: In the previous section we have proved the stability
of the position error dynamics with feedback of the estimated
state, in such a way that correction of the lateral and longitu-
dinal errors is ensured inτ seconds. It only remains to prove
that the orientation is also zero when the target location is
reached. From the decomposition of the translational velocity
vector given by the kinematic behavior of the robot and
using the difference equationsxk+1 − xk = −δυ̂k sinφk,
yk+1 − yk = δυ̂k cosφk, we have that

φk = arctan

(

−
xk+1 − xk

yk+1 − yk

)

.

Let us define the parabolic relationship between Cartesian
coordinatesx = x0

y2

0

y2 according to the desired trajecto-
ries (20). Its corresponding discrete time-derivative results in
xk+1 − xk = 2x0

y2

0

yk (yk+1 − yk). Thus, when thex and y-
coordinates track the desired trajectories, the robot orientation
is related to the current lateral position as follows:

φk = arctan

(

−2
x0

y20
yk

)

.

As mentioned, when the robot has followed the reference
path andkTs = τ the position reaches zero(x = 0, y =
0), and consequentlyφ = arctan (0) = 0. This proves that
although the orientation is a DOF for the control system, the
location (x = 0, y = 0, φ = 0) is reached inτ seconds by
tracking the defined profile (20) for the position coordinates.

This behavior can be obtained whenever the tangent of the
path is zero at the origin, as in (20). Thus, it is possible to
use different functions besides a parabolic one in order to
ensure that the robot reaches the target with the desired orien-
tation, for instance,xd = x0

(

1− cos
(

ydπ/2y0
))

. However,
a smoother performance of the robot motion is obtained using
the parabolic path.

Note that pose regulation is achieved using a single con-
troller and smooth control inputs, in contrast to [8], where
a two-step control law that produces discontinuous robot
velocities is proposed. Additionally, the proposed approach
herein takes into account the nonholomicity of wheeled mobile
robots unlike [4].
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Fig. 4. Experimental evaluation of the closed loop control system. Left: Resultant path plotted using the estimated camera-robot state, but also the reference
path and the odometry are shown. Center: Estimated camera-robot state. Right: Computed velocities.

V. EXPERIMENTAL EVALUATION

An extensive evaluation of our proposal through simulations
is reported in [20]. This section presents the evaluation of
the implemented estimation scheme and the feasibility of
closing the loop using the estimated pose for visual servoing
purposes through real-world experiments. The experiments
herein use the robot Pioneer 3-AT shown in Fig. 1(right),
which is equipped with a hypercatadioptric imaging system
that consists of a camera Sony XCD-X7101CR and a mirror
Neovision H3S.

The omnidirectional images are captured at a size of
1024×768 pixels using the free software Player. This is an
adequate image size in order to facilitate the detection of image
features in omnidirectional images, which in general present a
low resolution. The low resolution is accentuated around the
center of projection, however, features in such region are not
used. The camera is connected to a laptop onboard the robot
(Intel R© CoreTM 2 Duo CPU at 2.50 GHz with Debian Linux),
in which an EKF-based pose estimation and the control law
are implemented in C++. The observed scene has been set
up with features on different planes in order to ensure a
sufficient number of points in the scene. The experiments
have been carried out using tracking of features (14 points)
as implemented in the OpenCV library. The tracking has a
low computational cost and leads to a good behavior of the
1D TT estimation [8].

The 1D TT is estimated using the five-point method [16],
with the projection center (u0 = 513, v0 = 409) as the
only required information of the imaging system. This point
is previously estimated using a RANSAC approach from
3D vertical lines, which project in radial lines in central
omnidirectional images. Thus, for this type of images, it is
enough to find the point where radial lines join, which avoids
the need to obtain the complete camera calibration parameters.
The sampling periodTs is set to0.3 s, which is adequate to
obtain a good estimation of the 1D TT and good closed loop
frequency. The distance from the camera to the rotation axis
of the robot has been roughly set toℓ = 10 cm.

We report an experiment where the robot moves directly
toward the target. Fig. 4(left) presents the resultant path given
by the estimated robot pose for one of the experimental runs.
This figure also shows the reference path and the one given by
odometry. It can be seen that the estimated path is closer to

0 3 6 9 12 15 18 21 24
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Fig. 5. Behavior of the extracted information from the images. Top: Motion of
the point features on the initial image, where the marker “·” corresponds to the
initial point features, the marker “O” to the target points and the marker “+”
are the points in the image at the end of the motion. Bottom: Four normalized
tensor elements.

the reference than the path obtained from odometry. Thus,
we assert that the estimation of the camera-robot pose is
sufficiently accurate and then, the estimated pose is suitable
for feedback control. The duration of the positioning task is
fixed to 24 s through the timeτ in the references, which is the
termination condition of the control law. Fig. 4(center) shows
a good behavior in the tracking of references for the position
coordinates, which indicates that the robot reaches the target
with good precision.

The input velocities given by the proposed control law with
feedback of the estimated pose are shown in Fig. 4(right).
They behave smoothly along the task, in contrast to the control
inputs in previous approaches, e.g., [8]. Fig. 5(top) presents



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, AUGUST 2012 8

Fig. 6. Sequence of some of the omnidirectional images captured by the hypercatadioptric robot camera during the real experiments (first row). The first is
the target image, the second is the initial and the last is the image at the end of the motion. In the second row, the sequence of images taken from an external
camera for the same experimental run is shown.

the motion of the image points along the sequence, where
the points at the end of the motion (marker “+”) are close
to the points in the target image (marker “O”). Notice that
the point features move smoothly, in such a way that the
evolution of the tensor elements is also smooth during the task,
as presented in Fig. 5(bottom). Also, it is worth noting that the
tensor estimation is not affected when the robot is reaching
the target, i.e., there is no problem with the short baseline.
Fig. 6 shows a sequence of some images taken by the camera
onboard and an external video camera respectively. The robot
motion in this experiment is shown in the attached Video1,
together with the view of the on-board camera and evolution of
the recorded data. Thus, these results validate the effectiveness
of the proposed approach to reach a desired position and
orientation using feedback of the estimated camera-robot pose
from the 1D TT.

VI. CONCLUSIONS
In this paper we have presented a new generic pose esti-

mation scheme and its application for position-based visual
servoing (PBVS) to drive mobile robots to a desired location.
This approach reduces the dependence of the control on the
visual data and may facilitate the planning of complex tasks.
By exploiting the 1D TT estimated from bearing measure-
ments, a semicalibrated estimation scheme that is valid for any
visual sensor obeying a central projection model is obtained,
so that the visibility constraint problem of visual servoing can
be overcome using the appropriate central sensor. Additionally,
this approach does not need a target model neither scene recon-
struction nor depth information. The core of our contribution is
a novel observability study of the nonlinear estimation problem
from the 1D TT, as well as the demonstration of the validity
of closed loop control from the estimated pose by showing a
separation principle in our nonlinear framework. The overall
PBVS scheme corrects position and orientation simultaneously
using smooth input velocities. The scheme is evaluated via
real-world experiments using images from a hypercatadioptric
imaging system.
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