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Exploiting the Trifocal Tensor in Dynamic
Pose-Estimation for Visual Control

H. M. Becerrd and C. Sagii@s

Abstract—Image-based approaches for visual control are mem- an overconstrained controller that may suffer of local minima
oryless and they depend on the information extracted from the problems [7]. This is overcome in [8] by defining a square
image plane. We propose the use of dynamic pose estimation into¢qntro| system and by using direct feedback of the elements
the task of driving a mobile robot to a desired location specified . o
by a target image. This approach reduces the dependence of theof the 1D TT into altwo-s.tep SW'tCh'ng control law. The use
control on the quality of visual data and facilitates the planning of Of more than two views in VS provides robustness as well
complex tasks. The pose estimation exploits the 1D trifocal tensor as enough information to correct depth from visual feedback,
(TT) as measurement, which allows to obtain a semicalibrated \which is not possible from two views.
estimation scheme that is valid for any visual sensor obeying |gyg schemes are memoryless, which makes this type of
a central projection model. The contribution of the paper is a . .
novel observability analysis of the estimation problem from the approach. completely depgndent on the information extractgd
1D TT using nonlinear tools, as well as the demonstration of the from the image plane. This dependence can be reduced with
validity of closed loop control from the estimated pose by showing the use of an estimation strategy, which improves robustness
a separation principle in our nonlinear framework. The overall by filtering and smoothing the measurements. Additionally,
position-based scheme drives the robot to a desired pose throughye hose estimation facilitates the planning of complex tasks,
smooth velocities without the need of a target model neither like obstacle avoidance. In this sense, dynamic estimation is
scene reconstruction nor depth information. The effectiveness of ’ ) : ’ .y :
the approach is evaluated via real-world experiments. of great interest in VS, and has been introduced in [9]. In
the context of mobile robots, on one hand, an approach that
recovers the robot pose has been proposed using structure

l. INTRODUCTION from motion in [10]. On the other hand, dynamic estimation

Nowadays, the research in mobile robotics is motivateéths been used in [11], where the authors propose a Kalman
by the introduction of wheeled mobile robots in SerViCﬁltering approach to match a set of landmarks to a prior
applications, where the precise positioning of the robot is @ftap and then to estimate the robot pose from these visual
important task. In this context, a vision system is a very goabservations. The effectiveness of applying a Kalman filtering
sensor for mobile robots [1]. In this paper we present a visugbproach on PBVS has been particularly studied in [12].
servoing (VS) approach to drive a wheeled mobile robot e have introduced preliminary results of a pose estimation
a desired pose (position and orientation), which is specifiggheme from several measurements given by the 1D TT in
by a target image previously captured. VS methods can j1e], where the tensor is computed from metric information
classified as image-based (IB) when image data is used direefhl a linear observability analysis is presented.
in the control loop, or position-based (PB) if an estimate of |n this paper, a mapless pose estimation scheme using one
pose parameters is carried out [2]. Pioneering works on VS glement of the 1D TT as measurement and its application in
mobile robots are classical 1B schemes using largely overcanisual servoing of mobile robots is presented. The proposed
strained control commands, for instance [3]. More recentl¥stimation scheme is valid for any type of central vision
geometric constraints relating two views have been appliggstem. Therefore, when the robot pose is estimated from the
to improve the performance and robustness of 1B schemagequate visual sensor and used for feedback, the visibility
e.g., the epipolar geometry [4] and the homography model [lnstraint problem is overcome. The core of our contribution
Nevertheless, these geometric constraints have both serigua comprehensive observability analysis of the estimation
drawbacks. The epipolar geometry is ill-conditioned with shogiroblem that has been developed using nonlinear tools and a
baseline and with planar scenes, while the homography moggibility analysis of the closed loop, showing the validity of
is not well defined if there are no dominant planes in the scereseparation principle between estimation and control in our

Although the trifocal tensor (TT) is more general, more rononlinear framework. In the context of control, although the
bust and without the drawbacks of other geometric constraiientation is a DOF in the closed loop system, the proposed
[6], it has been less exploited in visual control. The 2D TEcheme ensures total correction of both, position and orien-
has been introduced for visual control of mobile robots USiI’tgtion, using a single controller and smooth control inputs.
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Section IV details the control law and the stability of the closed
loop. Section V shows the performance evaluation real-world
experiments using a hypercatadioptric imaging system, and
finally, Section VI states the conclusions.

II. MATHEMATICAL MODELING
A. Robot Model

Fig. 2. Extracted bearing measurements from central cameras to estimate the
1D TT. Left: Hypercatadioptric image, the bearing measureiémtonverted

to its 1D projection ap = [sin 6, cos G}T. Right: Perspective image, where

the 1D projection is obtained from the normalization of the difference u-u

projection model [15], the use of the radial trifocal tensor (1D
TT) simplifies the synthesis of visual servo-controllers.

The 1D TT is a geometric constraint that encodes the
geometry among three views in the frame of planar motion,
which is a typical situation in the context of wheeled mobile
Fig. 1. Configuration of the robot with an on-board central camera. Leftobots. This constraint behaves better for general scenes in
Kinematic model. Right: Experimental platform. comparison with the epipolar geometry and the homography

model [6]. The estimation of the 1D TT is basically the same

The kinematic motion of many wheeled robotic platformgor any camera that approximately obeys the generic camera
can be characterized through a differential-drive model. Thigodel [15], e.g., conventional cameras and its combination
work focuses on driving a wheeled mobile robot from visualith mirrors (catadioptric systems). In order to estimate the 1D
information under the framework that is depicted in FigrT, point features are converted to their projective formulation
1(left). A central camera is fixed to the robot in a positiofh a 1D virtual retina as shown in Fig. 2 for hypercatadioptric
¢ translated along the longitudinal axj&. The motion of the systems and conventional cameras.
robot frame{R} with respect to a world fram¢¥'} can be
expressed using the unicycle modek —vsin ¢, § = v cos ¢ -y,
and ¢ = w, wherev and w represent the translational and
rotational velocities, respectively. The kinematic behavior of
the on-board camera is described by the following continuous-
time model:

x = [g(®) g(x) ]u,
y = h(x). @
This driftless affine system has state vector [z, y, QS]T,
input vectoru = [v,w]” and input vector fieldsgljgx) =
[—sin ¢, cos ¢, 0]" and gy (x) = [—£cos ¢, —Csing,1]". The
measurement vectoy, modeled as a nonlinear function offig. 3. Complete geometry between three camera locations. A global
. . . . eference frame is placed in the third view. Left: Absolute locations. Right:
the statei(x), will be defined through information extractedziive locations.
from images. By applying an Euler approximation (forward
difference) on the continuous derivatives [11], the discrete| et us define a global (world) reference frame as depicted
versions of the state equations are obtained: in Fig. 3(left) with the origin in the third camera. Then, the
camera locations at the initial, current and target views with

= — T (wil cos ¢p + vy si ,
Pht1 Tk (con ; Ok + vk sin dr) respect to that global reference &g = (z1,y1,¢1), C2 =
Y1 = Yk — T (Wil sindp — vy cos gr) , (72,12, ¢2) = x andCs = (0,0,0), respectively. The relative
Grv1 = Ok + Tswe (2) locations between cameras are defined by a local reference

where T, is the sampling period. In the sequel, we use tffgame in each camera as shown in Fig. 3(right). The geometry

notationse¢ = sin é, cé = cos ¢. of the three views is encoded in eight tensor elemé&ts,
(I, m,n = 1,2) that in general can be expressed as:

B. The 1D Trifocal Tensor as Visual Measurement Timn = —Kity + Koty + K3 fsc (0) (3

Omnidirectional vision in visual servoing provides the imwheret, = —zc¢ — ys, t, = xsd — ycp, fsc (¢) can bese
portant advantage of avoiding problems with the scene leaviageg, andxy, k2, k3 are adequate constants depending on the
the field of view, which requires a special navigation strategygeometric relationships between the fixed vies and Cs.
when conventional cameras are used [14]. However, given tfdus, the tensor elements are a function of the current camera-
omnidirectional vision systems are represented by a nonlineabot statex. Details about the expression of each element of
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the 1D TT can be verified in [16], [8]. It is worth mentioningtravel a considerable distance, as admitted by the observability
that in practice, it is a need to normalize the tensor elemermtsncept. Let us express the elements of the tensor (3) as a
in order to fix a scale, which means to divide each elemeg¢neric measurement model that is a function of the state of
by a non-null factor. Notice that the bearing measuremerte system (1) as follows:

are md_ependent on focgl Iepgth, so that, oQIy _the ce_nter of h(x) = azsd + Brcd + yysd + Sycd 4)
projection for omnidirectional images or the principal point for i ]

conventional cameras is required to estimate the 1D TT. Thy4)erea, 5, 7, § are suitable constants defined for each tensor
the use of bearing information allows to get a semicalibrat&ment. This expression of the measurement model allows us
measurement for pose estimation and visual control, in contrigtgeneralize the results for any of the eight tensor elements
to previous approaches [4], [17]. as introduced in the following proposition.

1. DYNAMIC POSE ESTIMATION FROM 1D TT P_rop_ositior_l 1. The space _spanned by all possible Lie
, derivatives given by the generic measurement model (4) along
The high dependence of the IB control schemes on the, | actor fields; and g, of the continuous system (1) is of

information extracted from the image plane can be reduced §¥ansion three if the measurement accomplishesd # 0
combining a prediction of the current robot pose with robusf B—~ 0.

visual measurements. The problem of pose estimation exploit- pryof: The proof of this proposition is done by finding

ing & geometric constraint for visual control has been tacklgqh space spanned by all possible Lie derivatives and verifying
in the literature in a static fashion ([10], [5]), which meangs gimension. This space is given as:

that the pose is extracted by decomposing a mathematical

. ) ; . : T
entity at ea_ch time instant. _In this section, we _analyze the — (h,fglllh5;271759217%fgihfqlfqzhfquqlh L)
use of the information provided by the 1D TT in order to (5)
estimate the camera-robot pose dynamically, i.e., using a trudrhe first order Lie derivatives are as follows:
state estimator. We prove that the system is not observable

from a continuous-time viewpoint, however, a discrete-time Zyh = 0¢%¢ —as’¢ + (v — B) sdcd = pa (9)
ana_ly5|s shows thf_';\_t Wlth_ an excmng_ contrpller the system $;2h = Y (ﬁc2¢ + 5% + (a+49) s¢c¢) + g—g.
achieves observability. This controller is designed in the next

section. We have introduced the notatignfor functions depending

Observability is a structural property of a system that maéf' ¢ wh|c_h tezhmfr(;g5|z?s thl?t. somf?\ .Of tﬂ:‘e I;Le denvatt_:vefs
affect the convergence of an estimation scheme. This prope RY spa:jn ”: at 'r?C If(')na thls su |C|den dor L'e Zeqrc i 0
specifies if two states are distinguishable by measuring the otirependent vectors fo find the second order Lie dervatives,

put, i.e.,x; # x2 = h(x1) # h(x2). Few works concerned which results:

about nonlinear state observability of mobile robots. Some 22n — 0

basic results on the observability analysis of the estimation "21 ’ )

problem from 1D TT measurements using linear theory are Lph = L ((2a +0)c*p +3 (v — B) séc)
reported in [13]. In that work, the observability is ensured —0 (26 +a)s?p — h,

by using three different elements of the tensor, which seems Ly Lwh = op(8),

trivial to estimate three unknown quantities. Currently, new ¥ o - )
results on the observability of the robot pose with only one ~927% Pe @)

measurement from the 1D TT is reported using nonlinear tools.Notice that the Lie derivative&’;, £, h and.Z,,.Z,, h span
Firstly, the nonlinear theory for the analysis of continuous the same direction o, h and the corresponding gradients
systems introduced in [18] is used. According to this theorgf the formers do not contribute to the dimension of the space.
the following observability rank conditiortan be enunciated. The dimension of the observable space is determined by the

Definition 1. The continuous-time nonlinear system thdnk of the matrix (6). . .
describes the camera-robot kinematics (1) with some measure€l€arly, by taking the first three rows, this matrix has rank

ment/(x) is locally weakly observable if the observabilityfré€ ifa+d 70 or 5 —~ # 0. Thus, the space spanned by
] A o T “all possible Lie derivatives is of dimension three under such
matrix with rowsO, = {V,Z(ggjh(x) 14,j=1,2, q € N}

conditions. ]

is of full rankn for everyx . The interest of the previous result is to conclude about
The expressior’? h(x) denotes theth order Lie derivative the observability property of_ the camera-robot pose using one

of the scalar functior along the vector fieldy; and V is element of the 1D TT. In this sense, the following Lemma is

the gradient operator. From the previous observability rasfated.

condition, it can be seen that the observability property of Lemma 1.The maximum rank of the nonlinear observability

the nonlinear camera-robot system depends on the excitatianafrix for the continuous camera-robot system (1) with one

since it is a driftless system. It suffices to find a set of rows lirklement of the 1D TT (3) as measurement turns out to be

early independent in order to fulfill the rank condition. Locallywo, and therefore, the system is not locally weakly observable

weak observability is a concept stronger than observabilitysing that information according to Definition 1.

which states that one can instantaneously distinguish each Proof: This proof results as a derivation of the Proposition

point of the state space from its neighbors, without necessitytoFrom (3), it is seen that, by adding to (4) the tetgfs. (¢)
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Vh asg+ fep  ys¢+ e axed — Prsg + yycd — oyse
vO — VLI | 0 0 —2(a+8) spep + (B — ) (s?¢ — ?9) 5
S| VLI | T | aco-psp qed—ds6  L((a+0) (26— ) —2(5 ) séed) — h ©)
VL5 h —asp — g —ysp— e L (6 (o +8) spep — 3 (B —7) (2 — 29)) — g—g

K1CO + KosQ K150k — Kooy K1 (—TksOp + YpChr) + Ko (Thcdr + yrSPr) + K3 fes (Or)
Oy = | Kicer + Kkaser,  Kisex — kacey, K1 (—xrser + yrpcer) + K2 (Trcer, + yrser) + K3 fes (k) @
K1cCr + K2sCe  K18Ck — KocCe K1 (—2r8C + YrcCr) + ko (TrcCr + YrsCh) + K3 fes (Cr)

with k3 a constant andf,. (¢) being s¢ or c¢, the non-

normalized elements of the tensor can be expressed in two O (x,)
of the following forms: on 0%\ oF
ox (Xrt1) Ix (xx)
1) Four elements of the tensdF;o;, Tia2, Tho1 and Thoo, O, = : 9)
can be written as (x) = fzcd + Yyso + K3 fsc (6). oh af /o of
In accordance to the generic measurement model (4), Fx (Xktn—1) i Kin—2) g5 (Xx)

for these tensor elements = 0, 0 = 0, 8 = ~, and s of full rankn at xy.

consequently the conditions of the previous proposition Next, an important result on the analysis of the observability
are not accomplished. of the camera-robot pose is established in the following
2) The other four element§}11, Th12, To11 andTs12, can  Lemma.

be expressed ds; (x) = awsg + dycd + k3 fsc (¢). In . : .
this case,3 = 0, v = 0, a = —4, and the conditions Lemma 2. The discrete camera-robot system (2) is said

in Proposition 1 to span a space of dimension three a be observable according to Definition 2 by using iny

not fulfilled. one element of the 1D TT (3) as measurement if rotational

) ) velocity is applied during two consecutive time instants and

Hence, sincex + 6 = 0 and 5 —~ = 0/in any case, the o corresponding velocities are different and no-null for these
observability matrix has only two rows linearly independent,  -onsecutive steps.

Proof: This is proved by constructing the corresponding

on
0. = [ v}i } - [ asd +PBep ys¢+0cd Fr | nponlinear observability matrix and verifying its rank. Let us
VZ,h ach — fBs¢  yep — o5 —h g consider the generic measurement (3) that represents any of
. . . ( ) the eight elements of the 1D TT in discrete time:
Given that this matrixO. has a lower rank than the dimen- h(xXp) = —Kite, + Koty, + Ksfee (O0) - (10)

sion of the state space & 3), the observability rank condition

is not satisfied and consequently locally weak observabilityThe required Jacobians in (9) are as follows:

cannot be ensured for the continuous system (1) with any K1CK + Kosoy T

element of the 1D TT (3) as measurement. The same result™ _ K18 — Kacdy =H;, (11)

is obtained by using any linear combination of elements of 9%k —kity, — Kate, + K3 fes (O1)

the tensor. Higher order Lie derivatives are linearly dependent

on lower order derivatives, so that, the maximum rank of the of 10 4y

observability matrix is two. n = | 0L A | =Fu 12)
Notice that in (8) only appears the gradient of the measure- g 00 1

ment alonggs, in addition to the gradient ok. This means being A, _ T, (wilepr + vrsor), A, _

that, the rotational velocity provides an observable directicyas (wilsdy, — vrcor). The recursive operatiohs of (9)

in the state space. However, this is not enough to cover tagyit in the nonlinear observability matrix (7), in which
three dimensional space. In contrast, the translational veloc&y: bn + Towy, and Gy = dp + T (wp + Wit 1)-

does not contribute to gain an observable direction, becausg; can pe seen that this matrix has three row vectors linearly
the gradient of Lie derivatives related g@ provides linearly independent if the following conditions are fulfilled:
dependent row vectors.

Actually, the implementation of an estimation and control T # 0, wi # 0, wigr 7 0, Wi 7 Wi (13)
algorithm must be done in discrete time. Consequently, an ob-Thus, it is proved that the observability matrix is full rank
servability analysis in discrete time is mandatory. Consider thigree and the system (2) is observable if rotational velocity is
following observability rank condition for discrete nonlineaapplied during two consecutive time instants and the velocities
systems [19]. are different and no-null at each instant. [ |

Definition 2. The discrete-time nonlinear system (2) ex- According to Lemma 2, a digital implementation of an
pressed a1 = f (xx,ux), with measurement;, = h (x;) estimation scheme for the system (2) with measurement of the
is said to be observable at; if the nonlinear observability type (10) collects enough information along two time instants.
matrix In this sense, both observability analysis, the continuous and
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discrete, are complementary each other. The no locally wealseparation principle is demonstrated. We consider that the
observability states that the robot pose cannot be distinguistestimation scheme is implemented as a Discrete Extended
instantaneously; however, the pose can be estimated in t€@lman Filter for the systemF, H, }, which accomplishes
steps in accordance to the discrete analysis. The conditiksnma 2. Given the good behavior of the 1D TT that we
for the observability in Lemma 2 confirm the dependendeave obtained in previous works [8], and given that the robot
of this property on the control inputs, in particular on theelocities are computed from the control law rather than
rotational velocity. It is worth mentioning that the previousneasured (unlike an odometric approach), we assume that the
mathematical developments have been shown for the neafifect of the noise can be neglected, in such a way that the
normalized tensor for clarity, and they are also valid fodeterministic model (2), expressedsas.; = f (xx, ux), with
normalized measurements, as required for implementation measuremeny;, = h (x;), is used for the subsequent analysis.

Remark 1. It can be demonstrated that a Discrete Extendethe behavior of the a priori estimation error in an EKF is
Kalman Filter is an efficient implementation of an observer +

= — X, = Jag) — f (X, k) . 17
that accomplishes Lemma 2. The demonstration can be found b1 Xkt ™ X1 S (e ) = f (%0 ) (A7) _
in [20]. It is worth emphasizing that the same result of the analysis

can be obtained using the a posteriori estimation esfof21].

Let us introduce an expansion of the functighand A:

Xk, Q) — f (&7, Q) = Fr (%6 — %) + @ (xx, %4, 0x) , (18)
h (Xk) —h ()A(;) = H, (Xk — )A(]:) + v (Xk,f(;) s (19)

IV. NONHOLONOMIC VISUAL SERVOING IN THE
CARTESIAN SPACE
In this section, we demonstrate the feasibility of clgsiné(

the control loop using the estimated pasg= Lﬁ:k,gk,ék
given by an estimation scheme, in order to drive the robot ¥¢here ® and ¥ are the second and higher order terms. By
reach a desired position and orientation. This can be refergbstituting (18) into (17) and using the discrete observer
as a pose regulation problem and in the three-view framewd given by the update stage of the E}ﬁl}f = X, +
defined by the 1D TT, the goal is to achie@ = (0,0,0). K (h(xx) —h (%;)), we have:

Let us define the output to be controlled as the reduced St@ﬁlek (xx — %5 — K (h(xx) — h (%5))) + @ (0, %7, ir) -

vector
]T _ (14) By substituting (19) and knowing that the a priori estimation

Xpk = [Tk, Yk Sus A o
’ error is given ag, = x;—%; , then:

Hence, the tracking errors agg = z, — z¢, £ = yi — ¢,
v_vherexg _and y,‘j are the discret_e values of desired smooth e, =Fr (Is —KyHy) e, + 0O
time-varying references. The difference equations of these
errors result in the following system: where ©, = @ (x, %, ) — FrKp¥ (xi,%; ). Let us

. denote the first two components of the vectgr ase, .
gk-ﬁ-l =&+ TsD (¢ka Z) Ui — Tsxik (15) . p e C&% Crik
st —len Then, the estimated tracking errords = §, — e, ;.

where &, = X1 — X7, D (¢, 0) = { o —Usdn ] The control law (16) can be written using the estimated

. tracking error as:
we=[vg,wi]” andx?, = [j:g,ygf. Given that the control g

~ ~ —1 _ . d
inputs appear in the first differentiation of each output, the ;=D (—k (fk - er,k) +Xr,k) :
relative degree of the system &5 and a first order zero introducing thi trol input into the tracki
dynamics appears. This represents a DOF of the system, whiclﬁy introducing this control Input Into the tracking error
is the orientation ). As the control is based on estimation,SyStem (15), the closed loop difference equation with estimated

the static state feedback control lawy, resulting from the state feedback results as:
inversion of the error system (15) turns out to be Chor = (12 _ TSDf)_lk) &+ TSDf)_lke;k
=D " (—kék + x;{k) . (16)
wherek =diag(k1, k2) is a matrix of control gains anb—! =
D! gqbk, £). It can be verified that the input velocities achieve
global stabilization of the position error system (15) in the case . _; SORSPK + CoRChr  —SdRChR + SPrchr
of feedback of the real stai®,. In such a case, the dynamic DD = —S<5k0¢k + S¢k6¢3k C¢k6¢3k + S¢k5¢§k
behavior of the closed loop position error is exponentially

stable iff k&, and ks € (0, 2/T,). Notice that the control turns out to be a definite positive matrix assuming that the
law (16) is valid when the camera is shifted from the robdgitial estimation of¢; is no 3 rad off, according to a TT-

+7, (DD — 1) &,

The product of matrices

rotational axis { # 0), which is a common situation. based initialization procedure [20]. Finally, the overall closed
loop control system with estimated state feedback is expressed
A. Stability of the Estimation-based Control Loop as follows:

In this section, the stability of the closed loop system with &1
feedbackii; of the estimated camera-robot pose is analyzed.TltekH }
is known that the separation principle between estimation and
control is not accomplished in general for nonlinear systems. +
However, we present an adequate analysis for our case and

L-T.DD 'k [TSDﬁflk,o} [ & }
0 F. (Is — KxHy) e
~ —1
T, (DD - 12) %4,
O '
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Notice that each dynamicg, and e, is subject to a . 7 -
perturbation. The tracking error is subject to a perturbation 7" = {[0,0,gbk} , ¢1 = constant R}-
depending on the derivative of the desired references and
the estimation error is subject to a bounded perturbaan  Thus, zero dynamics in this control system means that when
depending on the dynamics of the estimation error. The mdegeral and longitudinal positions of the camera-robot system
important effect comes from the second one, because #re corrected, the orientation may be different to zero. Next,
former perturbation depends on the accuracy of the orientatibris proved that orientation correction is also achieved by
estimation and it can be neglected considering the smoothnttesking the proposed references, in such a way that pose
of the reference signals. Thus, the stability of the overall coregulation is obtained.
trol scheme is determined by the estimation error dynamics.
According to Lemma 4 of [21] the perturbatid®; can be
bounded as|®;| < A|le; || where \ is a real positive
number and it is independent on the robot velocities. Givé = Ik,yk,sbk} provided by the 1D TT-based estimation
that in our case the EKF fulfills the additional conditionscheme and the reference signals (20), drives the camera-robot
stated in Theorem 7 of [21] (the boundness of the matricegstem (2) to reach the locatiofx = 0,y = 0,¢ = 0), i.e
of the linear approximation, the boundness of the estimationentation is also corrected.
covariances and the nonsigularity of the matili), the Proof: In the previous section we have proved the stability
perturbation eventually will vanish and the state estimator wilif the position error dynamics with feedback of the estimated
behave as an exponential observer. The triangular form of ttate, in such a way that correction of the lateral and longitu-
estimator-control system shows that the stability property dnal errors is ensured in seconds. It only remains to prove
achieved by ensuring the stability of each one of the dynamiigt the orientation is also zero when the target location is
& ande,, i.e., a separation principle holds for the systemmeached. From the decomposition of the translational velocity
This is accomplished in our case and exponential stability eéctor given by the kinematic behavior of the robot and
the overall control system is achieved. using the difference equations,. 1 — zx = —d0 sin @y,

Yk+1 — Y = 0V cos ¢, We have that

Proposition 2. The proposed visual servoing scheme with
control inputs (16) using feedback of the estimated state

B. Pose Regulation through adequate Reference Tracking o1, = arctan (_M> .

Notice that up to now, the proposed controller drives to zero Yet1 = Uk

the lateral and longitudinal errors through a smooth evolution, Let us define the parabolic relationship between Cartesian
but the orientation evolves freely. In order to obtain alsooordinatesz = 28y2 according to the desired trajecto-
orientation correction for nonholonomic mobile robots, a goages (20). Its corresponding discrete time-derivative results in
option is to define an adequate path for the robot positiop, , , — z;, = 22 29y (ye+1 — yx). Thus, when ther and y-

The following time-differentiable references are proposed t@ordinates track the desired trajectories, the robot orientation

achieve this goal: is related to the current lateral position as follows:
d T ¢r, = arctan 920
Y = (1+cos (—kTS)) , 0<KT, <, k Yk | -
2 T Yo
d o i) d 2 )
Ty = 1/_3 (yk) v 0<kTs<7 (20) As mentioned, when the robot has followed the reference

path andkT, = 7 the position reaches zera = 0, y =
where(zg, yo) is the estimated initial position, obtained fronD), and consequently = arctan (0) = 0. This proves that
an initialization procedure [20], and is a user-defined tem- although the orientation is a DOF for the control system, the
poral horizon to reach the target position. These referendesation (x = 0,y = 0,¢ = 0) is reached inr seconds by
depict a parabolic path on the — y plane from the point tracking the defined profile (20) for the position coordinates.
(x0, yo) to (0,0). Notice that the robot always starts over the ]
desired path, so that the controller has to maintain the trackingThis behavior can be obtained whenever the tangent of the
in the path. In case that the robot would start off the path, tipath is zero at the origin, as in (20). Thus, it is possible to
stability property of the controller will drive the robot positionuse different functions besides a parabolic one in order to
to asymptotically converge to the desired path. The trackimgsure that the robot reaches the target with the desired orien-
of the reference drives the robot to perform an initial rotatiotation, for instancez? = zo (1 — cos (y?7/2yo)). However,
autonomously when the robot heading is not tangent to thesmoother performance of the robot motion is obtained using
path. the parabolic path.

As mentioned previously, when the controlled outputs reachNote that pose regulation is achieved using a single con-
zero at the timer the so-calledzero dynamicss achieved in troller and smooth control inputs, in contrast to [8], where
the robot system. Zero dynamics is described by a subsetaotwo-step control law that produces discontinuous robot
the state space which makes the output to be identically zexocities is proposed. Additionally, the proposed approach
[22]. In the particular case of the robot system (2) with outputeerein takes into account the nonholomicity of wheeled mobile
$1 = x, S2 = Yk, this set is given as: robots unlike [4].
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Fig. 4. Experimental evaluation of the closed loop control system. Left: Resultant path plotted using the estimated camera-robot state, but also the reference
path and the odometry are shown. Center: Estimated camera-robot state. Right: Computed velocities.

V. EXPERIMENTAL EVALUATION

An extensive evaluation of our proposal through simulations
is reported in [20]. This section presents the evaluation of
the implemented estimation scheme and the feasibility of
closing the loop using the estimated pose for visual servoing
purposes through real-world experiments. The experiments
herein use the robot Pioneer 3-AT shown in Fig. 1(right),
which is equipped with a hypercatadioptric imaging system
that consists of a camera Sony XCD-X7101CR and a mirror
Neovision H3S.

The omnidirectional images are captured at a size of
1024x 768 pixels using the free software Player. This is an
adequate image size in order to facilitate the detection of image
features in omnidirectional images, which in general present a
low resolution. The low resolution is accentuated around the
center of projection, however, features in such region are not
used. The camera is connected to a laptop onboard the robot
(Intel® Core™ 2 Duo CPU at 2.50 GHz with Debian Linux),
in which an EKF-based pose estimation and the control law

are implemented in C++. The observed scene has been set o s s 9 12 15 18 a  u
up with features on different planes in order to ensure a A §§/R
sufficient number of points in the scene. The experiments P -
have been carried out using tracking of features (14 points) Time (5)

as implemented in the OpenCV library. The tracking has a

low computational cost and leads to a good behavior of tﬁl@ 5. Behavior of the extracted information from the images. Top: Motion of
the point features on the initial image, where the markecdrresponds to the

1D TT estimation [8] initial point features, the marker “O” to the target points and the marker “+”
The 1D TT is estimated using the five-point method [16fre the points in the image at the end of the motion. Bottom: Four normalized

with the projection center (u= 513, vy = 409) as the tensor elements.

only required information of the imaging system. This point

is previously estimated using a RANSAC approach from

3D vertical lines, which project in radial lines in centrathe reference than the path obtained from odometry. Thus,

omnidirectional images. Thus, for this type of images, it iwe assert that the estimation of the camera-robot pose is

enough to find the point where radial lines join, which avoidsufficiently accurate and then, the estimated pose is suitable

the need to obtain the complete camera calibration parametés.feedback control. The duration of the positioning task is

The sampling period’; is set t00.3 s, which is adequate to fixed to 24 s through the time in the references, which is the

obtain a good estimation of the 1D TT and good closed lodgrmination condition of the control law. Fig. 4(center) shows

frequency. The distance from the camera to the rotation a@ggood behavior in the tracking of references for the position

of the robot has been roughly set#e= 10 cm. coordinates, which indicates that the robot reaches the target
We report an experiment where the robot moves directfyith good precision.

toward the target. Fig. 4(left) presents the resultant path givenThe input velocities given by the proposed control law with

by the estimated robot pose for one of the experimental rufisedback of the estimated pose are shown in Fig. 4(right).

This figure also shows the reference path and the one givenThey behave smoothly along the task, in contrast to the control

odometry. It can be seen that the estimated path is closerirtputs in previous approaches, e.g., [8]. Fig. 5(top) presents
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Fig. 6. Sequence of some of the omnidirectional images captured by the hyp
the target image, the second is the initial and the last is the image at the end o
camera for the same experimental run is shown.

the motion of the image points along the sequence, wheilg]
the points at the end of the motion (marker “+”) are close
to the points in the target image (marker “O”). Notice that[4
the point features move smoothly, in such a way that the
evolution of the tensor elements is also smooth during the task
as presented in Fig. 5(bottom). Also, it is worth noting that thés]
tensor estimation is not affected when the robot is reaching
the target, i.e., there is no problem with the short baselinz6
Fig. 6 shows a sequence of some images taken by the cam r]a
onboard and an external video camera respectively. The robt
motion in this experiment is shown in the attached Video
together with the view of the on-board camera and evolution qf;
the recorded data. Thus, these results validate the effectiveness
of the proposed approach to reach a desired position and
orientation using feedback of the estimated camera-robot po

from the 1D TT.
10
VI. CONCLUSIONS ol

In this paper we have presented a new generic pose esti-
mation scheme and its application for position-based visuat
servoing (PBVS) to drive mobile robots to a desired location.
This approach reduces the dependence of the control on the
visual data and may facilitate the planning of complex taskd:
By exploiting the 1D TT estimated from bearing measure-
ments, a semicalibrated estimation scheme that is valid for d#$i
visual sensor obeying a central projection model is obtained,
so that the visibility constraint problem of visual servoing capa4)
be overcome using the appropriate central sensor. Additionally,
this approach does not need a target model neither scene recgn-
struction nor depth information. The core of our contribution is
a novel observability study of the nonlinear estimation problem
from the 1D TT, as well as the demonstration of the validit96]
of closed loop control from the estimated pose by showing a
separation principle in our nonlinear framework. The overdl7]
PBVS scheme corrects position and orientation simultaneously
using smooth input velocities. The scheme is evaluated yia)
real-world experiments using images from a hypercatadioptric
imaging system. [t
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