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Abstract

This paper presents a novel approach for image-based visual servoing, extending
the existing works that use the trifocal tensor (TT) as source for image measure-
ments. In the proposed approach, singularities typically encountered in this kind of
methods are avoided. A formulation of the TT-based control problem with a virtual
target resulting from the vertical translation of the real target allows us to design
a single controller, able to regulate the robot pose towards the desired configura-
tion, without local minima. In this context, we introduce a super-twisting control
scheme guaranteeing continuous control inputs, while exhibiting strong robustness
properties. Our approach is valid for perspective cameras as well as catadioptric sys-
tems obeying the central camera model. All these contributions are supported by
convincing numerical simulations and experiments under a popular dynamic robot
simulator.
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1. Introduction

The goal of an image-based visual servoing (IBVS) scheme is to minimize a task
function that is specified directly from visual data in order to control the motion of
a robot by using visual feedback. Classical approaches of IBVS use points as visual
features [1], given that points are the simplest geometrical primitives that can be
extracted from an image. In the last years, the research community on IBVS has
dedicated important efforts in order to define better task functions from different
geometrical primitives (lines, moments, etc.) [2].

Geometric constraints between images have been extensively exploited for the
visual control of mobile robots [3, 4, 5, 6, 7, 8]. These schemes have improved ro-
bustness and have allowed to avoid local minima problems of the classical schemes
where over-constrained solutions are obtained. The homography-based control has
the practical limitation of relying on planar scenes only [3, 4]. Hence, more gen-
eral constraints like the ones induced by epipolar and trifocal geometries have been
preferred. However, the epipolar geometry is ill-conditioned with a short baseline,
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and moreover, the controllers based on the epipolar constraint are subject to sin-
gularities. This has been tackled by using control schemes that switch between two
different controllers when degeneracies and singularities appear [5, 6].

The present work has been inspired by [9], where the authors have suggested the
use of a virtual target in order to avoid some degeneracies of the essential matrix
and singularities of an epipolar visual control. In that work, the generation of a
virtual target relies on the transfer relations associated with the essential matrix.
However, the transfer of points can fail for certain configurations, like collinear
projection centers [10]. In this work, we propose the use of the T'T, which is known
to be more robust and better defined than the epipolar geometry. The transfer
relations associated with the TT can be used to transfer the visual content (points
and lines) of two source images into the third one (a virtual target image) without
degenerate cases. In the literature, the T'T has been exploited for IBVS but with
some limitations [7, 8]. In the former work, an over-constrained controller that may
suffer from local minima problems is proposed from the TT. This is overcome in [8],
by defining a square control system and by using measurements from the radial
TT in a control law that switches between controllers when a singularity occurs.
It is worth emphasizing that the importance of the TT for vision-based control is
that it is more robust than two-view geometry thanks to the additional information
of a third view, and that the problem of short baseline with epipolar geometry is
overcome.

The contribution of this work is two-fold. First, the use of a virtual target from
the 2D TT provides additional information that avoids the need of switching to
a different controller, in such a way that a single controller, free of singularities,
achieves regulation of the robot pose (position and orientation), in contrast to our
previous works [6, 8], where two discontinuous controllers are used in a switching
scheme. The controller is designed from a square trajectory tracking control system,
free of local minima with the use of adequate desired trajectories. Some preliminary
results around this contribution have been presented in a conference paper [11].
Second, for the first time to the knowledge of the authors, a super-twisting control
is proposed to be used in a IBVS scheme. This recent control technique is a particular
case of higher order sliding modes control [12], which results in continuous control
inputs, unlike classical sliding modes control [13]. The importance of the super-
twisting control for visual servoing applications is its intrinsic robustness achieved
from continuous signals against perturbations. In our particular case, the visual
servoing problem is transformed to a trajectory tracking problem. However, the
trajectory is generated on-line and its time-derivative is unknown, which causes the
appearance of a bounded perturbation in addition to the effects of image noise, so
that a robust controller must be used.

An additional benefit of the proposed IBVS scheme is that it is valid for different
types of cameras, in particular, those obeying the unified projection model [14]. This
is a first contribution of our proposal with respect to the work [7], which exploits the
2D TT using conventional cameras. However, the main contribution over [7] is that
the controller presented in this work is designed from a square control system for
trajectory tracking, free of local minima with the use of adequate desired trajectories.
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Figure 1: Representation of the robot model and the camera model. (a) Robot frame definition in
the Cartesian plane, with the z-coordinate corresponding to the vertical position of the camera in
the world frame. (b) Generic camera model of central cameras [14].

In [7], because of the over-constrained error function used, the computed robot
velocities are a least squares solution (pseudoinverse) of a non-square error system
with potential problems of local minima.

The paper is organized as follows. Section 2 describes the mathematical model-
ing of the robot, the camera and the visual measurements provided by the TT for
coplanar camera locations. In Section 3, the generation of the virtual target relying
on the TT is detailed. Section 4 describes the controller design from the TT and
using the super-twisting control. In Section 5, we establish conditions for the sta-
bility of the closed loop system and the corresponding proof is presented. Section 6
shows the performance of the proposed approach through realistic simulations and
experiments. Finally, Section 7 summarizes the conclusions.

2. Robot and Visual Information Models

2.1. Robot Kinematics

Let x = (z,9,¢)" be the state vector of a differential drive robot shown in
Fig. 1(a), where z and y are the robot position coordinates in the plane, and ¢ is
its orientation. Assume that a central camera is fixed to the robot in such a way
that the robot and camera reference frames coincide. The kinematic model of the
camera-robot system expressed in the state space can be written as follows:

x —sing 0
y | =] cosg 0 [ Z ] , (1)
é 0 1

being v and w the translational and angular velocities, respectively. In the sequel,
the notation s,  Sin¢ and Co & cos ¢ is used. Although the robot motion is on
the plane, its perception is carried out on the 3D world. Hence, hereafter, we will
also make use of the full coordinates of 3D points. More precisely, we will denote
the coordinates of a 3D point in the camera frame as a 3 x 1 matrix X.

2.2. The Trifocal Tensor for Generic Cameras

A desirable feature for a visual control scheme is its applicability for different
types of cameras, from conventional to omnidirectional ones. This way, an adequate



type of camera can be chosen depending on the application. Mostly, a camera with
wide field of view is preferred in order to avoid the loss of some visual features
during the navigation. Furthermore, the recent literature has shown that the use
of geometric constraints is a good strategy to achieve generic control schemes. This
is supported by the fact that a unique representation exists to model properly all
vision systems having approximately a single center of projection [14]. This unified
projection model allows the computation of a geometric constraint, like the TT, in
the same way for any central vision system.

According to the unified projection model, the coordinates of the point on the
sphere, X,, corresponding to a 3D point X , can be computed from point coordinates
x on the normalized image plane (refer to Fig. 1(b)) and the sensor parameter ( as
follows [14]:

Xc = (77_1+C) X, (2)
x =[x 551

where n = ﬁ, = +/1+(1—¢?)[|x]|2. In this work, we assume that the
camera is calibrated if omnldlrectlonal vision is used, which allows us to exploit the
representation of the points on the unit sphere to estimate the TT. However, if a
conventional camera is used, calibration is not needed and the TT can be computed
from normalized points according to their distribution on the image [10].

The TT encapsulates all the geometric relations between three views, indepen-
dently of the structure of the scene [10]. Thus, it has been used for motion esti-
mation [15] and reconstruction [16]. The TT has 27 elements (18 of which being
independent) and it can be expressed as TT ={Ty, Ty, T3}, with T; € R**3 for
t = 1,2,3. In this work, we focus on the use of interest points as image features.
Consider three corresponding points projected on the unitary sphere p, p’ and p”
and expressed in homogeneous coordinates, i.e. p = (p',p? p*)’. The incidence
relation between these points is given as

Pl (Zp"Tz) [P"], = 03x3 (3)

where [p], is the common skew symmetric matrix. This expression provides a set
of nine equations, however, only four of them are linearly independent. Hence,
seven triplets of point correspondences are needed to compute the 27 elements of
the tensor.

Consider a framework where images are taken from three different coplanar lo-
cations, i.e., with a camera moving at a fixed distance from the ground plane. In
this case, several elements of the tensor are zero and only 12 elements are in gen-
eral non-null. Fig. 2 depicts the upper view of three cameras with global reference
frame in the third view, in such a way that the corresponding camera locations are
C1 = (1’1,y17¢1), CQ = ((L’Q,yg,gbg) and Cg = (0,0,0) The TT can be analytically
deduced for this framework as done in [7], resulting in the following expressions for
the non-null elements:



Figure 2: Geometry between three camera locations in the plane. (a) Absolute locations with
respect to a reference frame in Cs. (b) Relative locations.

Tl = —loChy +tasCohr, T11o = tay Spy + tysCoy s

Ti51 = —tyCoy = taysg,, Tisg = by Sgy — tyaSg,

Tty = —tue;S¢y +teySe Tola = —tu, Coy + tys 5S¢,
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T3tz = —tey, T3hg = —ty,, T33) = tay, Tzzp = by, (4)
where t,, = —xicy, — YiSs,, by, = TiSe, — YiCe, for i = 1,2 and where the superscript

m indicates that the tensor elements are given by metric information. In practice,
the estimated tensor has an unknown scale factor and this factor changes as the
robot moves. We can fix a common scale during the navigation by normalizing each
element of the tensor as Tij, = 15, /Ty, where T, are the estimated TT elements
obtained from point matches, 7;;; are the normalized elements, and T} is a suitable
normalizing factor. We can see from Eq. (4) that 7313 and T393 are constant and
non-null, assuming that the camera location C; is different from Cs. Therefore, any
of these elements is a good candidate as normalizing factor.

3. A Virtual Target from the TT

In visual servoing, the set-point of the control loop is given by a target image
previously acquired. In the sequel, as described in Fig. 2, Cy, Cy(t), and Cj are
respectively the initial, current (at time ) and target camera-robot location. Notice
that C; and Cj3 remain fixed during the robot evolution. The pose regulation
problem consists in driving the robot autonomously to reach Cy(t) = Cs, where the
current image observed by the camera (corresponding to Cy(t)) is the same as the
target image. On the one hand, it is numerically troublesome to estimate the TT if
two images are the same and some elements must be discarded for control purposes
in that case [7]. On the other hand, the use of the radial TT (first 8 expressions
of Eq. (4)) has resulted in the need of a few controllers in order to accomplish the
pose regulation task [8]. Inspired by [9], we have derived the equations of the TT
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Figure 3: Overview of the TT-based visual servoing methodology with a virtual target.

considering a new, virtual target location Cs. This target location is the same as
before but it is shifted by a vertical translation (¢,) with respect to C; and Cs(t)
as shown in Fig. 4. Thus, the planar geometry among Ci, Cy(t) and Cj stays the
same as in Fig. 2 and the image at the end of the motion will be different to the
virtual target image (associated to Cs3). The benefits of using a virtual target are
that any non-null element of the new tensor TT(t) (corresponding to views at Cy,
C,(t), and C3) may be chosen for control purposes, as they are well-defined.

To implement this strategy, consider the overview depicted in Fig. 3. We define
image points configurations p (initial) and p” (target) corresponding to locations
C; and Cg, respectively. Then, the robot moves to a configuration Cy(0) from
which the feedbacked control starts (¢ = 0). From this configuration, the points p
have been tracked into points p’(0), and the TT(0) (at time 0) can be computed.
We also deduce the TT(0) associated to the virtual target, and, next, the virtual
target position p” can be estimated to be used in the control loop. Then, for ¢t > 0,
the control loop uses the entries of the TT computed from p,p” and p’(t) (current
image) to drive the robot to the target location. Now, we detail the generation of a
virtual target by exploiting the point-transfer property of the TT.

3.1. From Real TT to Virtual TT

By considering the non-planar case of camera locations, and introducing C;
instead of Cs, we have that at time 0, the TT(0) (relating p, p’(0), p”) differs from
TT(0) (as in Eq. 4, computed from p, p’(0), p”) by the following elements:

lell?)(o) = t226¢1’T{7§3(0) = _t225¢17T17g1(0) = _t216¢2 (0),T{§2(0) = tZl'S(bz (O)a
T315(0) = tzy5¢,, T33(0) = taycpy, 1351(0) = —t2,54,(0), Togy = —12,¢4,(0) (5)

where t,, =1t,, = t., given that the global reference frame is now C;. We recommend
to fix the distance ¢, as a portion of the normalizing factor, e.g., t, = 0.17T, so that,
the scale factor of the real tensor is introduced in the new elements. The angles ¢,
and ¢9(0) (that will evolve as ¢»(t) in the control loop) can be estimated from the
original tensor TT(0) (Eq. 4 up to scale) as follows:

_ ; T393T512—T313T121 _ T332T1214+T331T>12
(25 = arcsin (25 = ar .
LT A <T323T332+T313T331> ’ 2(0) areeos <T323T332+T313T331> (6)

Hence, by using both Eq. 5 and Eq. 6, we can deduce TT(0).
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Figure 4: Setup for the generation of a virtual target image, above the real target. From the T'T
associated to Cq, Cy, C3 and an arbitrary vertical translation ¢,, the T'T associated to Cq, Cs,
Cj3 can be estimated. Then, TT is used for point transfer.

3.2. Generating the Virtual Target

Generating the virtual target implies transferring the projections of points seen
at C; and Cy(0) into the view corresponding to Cs. If p and p/(0) are two such
points at C; and Cy(0), detected by an interest point detector and matched, then
observe that, in general, they do not satisfy the epipolar constraint induced by the
first two views. Hence, the Eq. 3 has no solution.

A simple workaround uses the fact that the T'T gives a unique transferred straight
line for the third view, given any two straight lines equations in the first and second
views. As illustrated by Fig. 4, consider a pair of horizontal/vertical lines (1,1,)
passing through p, and a second pair of lines (1), 1)) passing through p’(0). Then, by
construction, the transferred point p” should belong in the third view to the straight
line corresponding to any the pairs (1,,1},), (15, 1), (1,,1,), (1,, 1), each of which being
computed with TT(0). Notice that we have chosen pairs of horizontal /vertical lines
for simplicity but any pair of lines could be chosen, more generally, given that
any pair of lines in the first and the second view define two planes and a 3D line
corresponding to their intersection. In Fig. 4, the process is illustrated for the pair
(L, 1), which image is given by [10]:

I, = (IIT1(0)1,, 1] T2 (0)L,, 17 T5(0)1)".

Each of the aforementioned 4 straight line pairs leads to a linear constraint on the
homogeneous coordinates of p”. Hence, a linear system can be formed to determine
the homogeneous coordinates of p” € R3 in a least square sense:

_ /1 . —//H2

where L is a 4 x 3 matrix containing the four line equations. Classically, p” is
extracted as the singular vector of L associated to the smallest singular value.



4. A Single Controller from the T'T

In the literature of visual control, switching control laws have been proposed
to solve the pose regulation problem of mobile robots by exploiting a geometric
constraint [5, 6, 8]. At least two different controllers with an appropriate switching
policy are used in such approaches. This is done in order to deal with degeneracies
of the visual measurements and singularities of the controllers. In this section, we
present a single controller that is capable to drive the robot to the target pose
(position and orientation). On the one hand, the controller takes advantage of
the robust and well defined visual measurements provided by the trifocal tensor
estimated from the virtual target, TT. On the other hand, an adequate pair of
measurements has been chosen in such a way that no singularity appears in the
computation of the robot velocities. Additionally, the robust super-twisting control
is used in order to ensure a good trajectory tracking.

4.1. Input-Output Linealization

Given that the TT is an over-constrained measurement (more elements of the
tensor than robot’s degrees of freedom), there are several options to define two
system’s outputs in order to have a square control system. This is convenient to
avoid the use of pseudoinversion in the computation of the robot velocities and
consequently to avoid local minima. An option is to carry out the positioning task
in two stages as in [8]. However, in the paper herein, we aim for controlling the
three degrees of freedom of the mobile robot through a single controller, free of
singularities and free of local minima. To achieve that, after an analysis of the
information provided by the TT estimated from the virtual target, we have chosen
the following pair of visual measurements as outputs of the camera-robot system:

G =T &= (7)
Ti3

In the sequel, we will denote x = x5, ¥y = Y2 and ¢ = ¢, which is the robot pose
in the plane with respect to the reference frame attached to Cs. The chosen outputs
are related to the camera-robot state as follows:

&1 = a(wss—ycs), &= —tang
where « is an unknown scale factor. An important consideration is that these out-
puts are valid in the range |¢| < 7/2, so that, we assume that the initial orientation
of the robot accomplish such condition. Notice that both outputs are null if the
robot has reached the target location. The invertibility of the dynamic system
formed with the time derivative of these outputs has been the main reason of their
choice. It can be seen that & = 0 and & = 0 imply that ¢ =0, y = 0 and = is a
degree of freedom of the solution, which means that the orientation and longitudinal
error are corrected while the lateral error may be different from zero (zero dynamics
from the control theory point of view [17]). However, given that &; is related to the
longitudinal position and & depends directly on the orientation, the lateral devia-
tion can be corrected with the tracking of an adequate trajectory for & as the robot
moves forward. It is desired to drive the outputs to zero in a fixed time horizon,



which is a trajectory tracking control problem. Let us define the following error
functions:

61251—5f, 62:52—53
where £ and £ are smooth desired trajectories with null final value. The tracking
problem can be faced by using the input-output linearization technique [17]. It needs

the time derivatives of the error functions and consequently the time derivatives of
the outputs, which are obtained as follows:

51 = « (:ts¢ + x¢c¢ —ycg + ygbs¢> )

258 0‘5%7;131 — Tizot, (bsqﬁ
TP,

& =

Using the kinematic model of the robot (see Eq. 1), we have:

L = « (—V.Si - yci + (zcy + ysg) w)
é: _ toceTiz — Tizats, 56,
’ Tty '

Knowing that o (zcg + ysy) = —Ts31, t.,co = —Tiz1 and t, 84 = Tizz, the error

system can be expressed as
: —a =TIy, 'd
s-[0 dml)lgn) e
T1231 02(62,0
This system can be written as € = Ju + g, where J is the interaction matrix
that relates the robot velocities to the rate of change of the visual measurements
of Eq. 7 and p represents a perturbation term depending on the time derivatives
of the desired trajectories and the image noise parameter o, which is the standard
deviation of a Gaussian noise. We will assume the terms éf, §§l and the image noise
as unknown bounded perturbations, so that a robust controller, able to reject their
effects, must be proposed. Indeed, as described later, the desired trajectory & will
be generated online as the robot moves. Consequently fg is unknown and cannot be
used as a feedforward term in the tracking controller. Notice that the perturbations
fulfill the matching condition [17]; they belong to the range space of the input vector.
Then, they can be rejected by using a robust controller. In the sequel, for simplicity
we will denote 01(€%, 0) = o1 and 02(£4,0) = 0o.
In order to find out adequate robot velocities to track the desired trajectories,
the error system must be inverted, which is possible given that:

_ Ti T @
det (J) = « 2T oo # 0.

Hence, the robot velocities are given by:



_l ’1:13317?125,1
|: v :| — a O‘(T1231TJ;T1232) |: u1 :| (9)
0 _% V2

Tl31+T132
where v, and vy are auxiliary control inputs that define the convergence of the error
functions. Notice that a is a scale factor for the translational velocity and it is
absorbed by the auxiliary controls with appropriate gains. The auxiliary controls
are defined in the next section by using a robust control technique.

4.2. Super-Twisting Control

In previous works, we have proposed the use of classical Sliding Modes Control
(SMC) for visual servoing of mobile robots [6, 8]. Such approaches deal efficiently
with the occurrence of singularities due to the nature of the visual measurements
used. Additionally, SMC provides the advantage of robustness against system un-
certainties and perturbations, like measurement noise. Although classical SMC has
shown good performance in an uncountable number of applications, like in VS, its
major criticism has been the discontinuous behavior of the computed control inputs
that may derive into the chattering problem [13]. In order to alleviate this drawback,
the theory of Higher Order Sliding Modes (HOSM) has been recently developed [12].
Particularly, the second order sliding modes control called Super-Twisting Algorithm
(STA) has been efficiently applied for mobile robots control [18, 19]. STA offers the
robustness of classical SMC with continuous control inputs. Moreover, STA does
not need the time derivative of the sliding surface to be measured, as demanded by
other HOSM.

In the VS application of this paper, the reasons of the use of STA are two-fold:
1) In order to correct the lateral deviation from an adequate desired trajectory
of the orientation, £§ must be defined as an unknown function, which introduces
an unknown perturbation 53 encoded in go. 2) The image noise generates non-
deterministic perturbations (g1, 02) in the error system of Eq. 8 and they must be
rejected. These issues can be overcome by defining the auxiliary inputs of Eq. 9
using the STA as follows:

v o= —kile|? sgn(er) + i,

i = —kosgn(ey),

v = —k3 ‘€2|% sgn(ez) + ug,

Uy = —kysgn(es) (10)

where ki, ko, k3, k4 are control gains that must accomplish the conditions given
in the stability analysis section. It is worth emphasizing that the auxiliary control
inputs v; and vy are continuous as analyzed in [12]. In order to clarify this fact, v; is
plotted for e; in the interval [-1,1] in Fig. 5. We have used u;(—1) = 0 for numerical
integration, k; = 0.1 and ko takes different values, so that, u; has different effects
on the behavior of v;. It can be seen that the auxiliary control v; is continuous,
similarly vs, and it does not depend on the control gains.

10
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Figure 5: Plot of the auxiliary control input v; given by the super-twisting control for different
control gains ky. The resultant signal vy is continuous, similarly for vy

4.83. Desired Trajectories

The desired trajectories must drive smoothly the outputs of the system from
their initial values to zero in a fixed time horizon. Thus, the desired trajectory for
&1 is always defined as follows:

g = 51;0) (1+Cos(7r—t>), 0<t<r
¢ =0, t>7 (11)

where 7 is a user-defined time horizon in which the robot reaches the target location.
Given that the orientation control also must drive the robot to correct the lateral
deviation, a desired trajectory & related to x is proposed. Let us define the following
angle that can be seen in Fig. 1(a), which depends on the lateral deviation:

T332S¢ - T3310¢>)
T332ch + T33154

1 = arctan <—

where ¢ is given by Eq. 6. According to the initial value of the angle ¢ in comparison
with the value of the initial orientation ¢, the desired trajectory for & is defined in
two different forms. If |¢(0)] > [¢(0)], then:

& = &(0)-—%, 0<t<7
& =0, t>T. (12)

Notice that the condition |¢| > || means that the robot is oriented in such a
way that lateral deviation, and consequently ¢ (t), tends to decrease as the robot
moves forward. On the contrary, and excepting ¢(0) = ¢(0) = 0, if [¢(0)| < |(0)],
the desired trajectory for & is defined in two main segments as follows:

11
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& = 52(71)¢
& =0, t>7T (13)

n<t<rT

where &5(71) is an intermediate goal to be reached in 71 seconds, and which can
be defined by &5(m1) = rtan(¢(0)). The factor x is related to the curvature of the
motion during ¢t < 7. The first segment of £¢ drives the robot to reach the condition
|op(11)| > |¢(m1)|, and after that, the corresponding trajectory depending on (t) is
used. We suggest to define 7 = 7/2. As it can be seen in the next section, the robot
motion from these desired trajectories does not result in rotations in site. This is
preferred because, mostly, rotations in site must be performed in a short time, which
is dynamically demanding for the system.

5. Stability Analysis

In this section, we provide conditions for the selection of appropriate gains in
the super-twisting controller and we prove the relationship between the control of
the chosen visual measurements and the camera-robot’s state.

Lemma 1. Suppose that the perturbation terms of the system in Eq. 8 are globally
bounded by:

1 1
lo1] < mler]?, |oa] < v2leal?

for some constants vy, v2 > 0. Then, the origin (e1,e3) = (0,0) is an equilibrium
point that is globally asymptotically stable if the control gains satisfy:

kﬂl?
ki > 2v, ko> ———m——
1 4! 2 3 (lﬁ — 2%)
]f:ﬁ%
ks > 2 ky> ——=2—
3 Y2, R4 3 (k;g — 2%)

PrOOF. The closed loop behavior of the error system in Eq. 8 is given by:

e = —k ’61‘% sgn(ey) + uy + o1, (14)
U = —kosgn(ey),

ea = —k3 |€2|% sgn(ez) + uz + 0o,

Uy = —kysgn(es)

Notice that the dynamics of e; and e; are decoupled one from another and
the stability of e; and e; can be proven separately. Let us define the following

12



candidate Lyapunov function for the first block as proposed in [20] for a super-
twisting controller:

1 2
V(el,ul) = 2]{?2 |€1| + %U% + % <k51 |€1‘2 sgn(el) — U1> s

which can be expressed in the quadratic form

Viewu) = 207 PV, (15)

4ko + kI —ky

—ky 2
that V (e, u;) is positive definite and radially bounded if k; > 0. By expanding the
quadratic form, we find that the time-derivative of the candidate Lyapunov function
is given by:

T
where U = [ |el|%sgn(el) Uy } and P = It can be seen

V(el,ul) = (2]€2 -+ %k%) % (’61’) -+ 2U11:Ll
ki ler ? sgnen) + wn (% (Jea]?) sen(er) + fea]? & (sen(e))) |

1 1
We have that < (|e1]) = éisgn(e;), 4 (\61|2> = 1]e1] 2 4 (Jey|) and the last term

1
of the previous expression |e1|2 < (sgn(e;)) = 0 as can be verified in [20]. Then, the
time-derivative can be expressed as:

. 1 -1
V(el,ul) = (2]{32 + %k%) élsgn(el)—i-QuliLl—klsgn(el) (Ul |€1|2 + %Ul |61| 2 elsgn(61)>.

Using the closed loop dynamics given by Eq. 14, and after some simple mathe-
matical operations, the time-derivative can be written as follows:

_1 1
V(el,ul) = —%]{31 |61| 2 (2]{72 |€1| + k% |€1| - 2]€1U1 |€1‘2 sgn(el) + U%)
_1 1
+01 |e1] 2 ((2k2 + 1k7) |e1]2 sgn(er) — %klul).

Then, it can be expressed in the following form:

. 1 1
Vienu) = =5 |12 0TQU + g1 |eg| 2 ¢] ¥ (16)
2ky + kI —ky
—kl 1
perturbation term is null, the stability condition is determined by the matrix @),
which must be positive definite in order to have V negative definite. This is ac-
complished if k&; > 0 and ky > 0. Otherwise, in a real situation where there
exists a bounded perturbation term, the following analysis holds. We know that

where Q = and ¢ = [ 2ks + %k% —%kl } Notice that if the

lo1] <m |61|%, so that, in the extremes of the inequality 0; = 74 |61|%sgn(61). Then,
the time-derivative of the candidate Lyapunov function accomplishes:

. _1 1
V(el,ul) < —%/{31 |€1‘ 2 (2]{72 |€1| + ]{?% |€1| — 2k‘1u1 |€1|2 Sgn(el) + U%)

1 1 1
+71 |e1|2sgn(eq) ler| 2 ((2k2 + 3k?) le1]? sgn(er) — %klul),
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which can be simplified as:

Viewur) < —huler] 7 [ (2ho + k2 = (42 4+ k) ) lerl = (261 = 91) i fer|? sg(er) + ud].

This expression can be written as follows:

2ky + kI — (% + k1> v —ki+im

Viep,u) < -4 |€1|_% UTQU, with Q = !
_kl + 571 1

2

Thus, the time-derivative of the candidate Lyapunov V is negative definite if Q
is positive definite (¢ > 0), which is satisfied if

2k, —I—k‘% — (% —{—lﬁ) ~v1 > 0 and det (Q) > 0.

Operating the first condition, we have 2 (k; — 2v;) ks + k% (ky — 71) > 0. This is
accomplished for k; > 27, and ky > 0. However, a more conservative bound has to
be found for ko from the determinant positivity, which is equivalent to:

2 (k‘l — 2’71) k’g — éllkl/le > 0.

~ Both following conditions ensure that det(Q) is positive and consequently that
V' is negative definite:

kﬂ%

8 (]{71 - 2’}/1)

These conditions establish that if the control gains are larger than some terms
depending on a bound of the perturbations, then asymptotic stability is achieved
regardless of the value of the gains. Therefore, this is a global condition for stability,
so that the error dynamics e; is globally asymptotically stable. Similar conditions
are derived following the same procedure for the second block of Eq. 14.

The global asymptotic stability of the equilibrium point of the tracking error
system is consistent with previous stability proofs of control systems using a super-
twisting controller [12, 20].

ki > 271, ko >

Theorem 1. The camera-robot system is in the target location if and only if the
visual measurements, given by Eq. 7, both reaches zero in T seconds. Therefore,
the desired target location (z,y,¢) = (0,0,0) is the only equilibrium point of the
system’s state.

PROOF. On the one hand, it is trivial to see that if the camera-robot system is in
the target location, then the visual measurements are both equal to zero (see Eq.
7). On the other hand, Lemma 1 ensures that the error system of Eq. 8 is globally
asymptotically stable, i.e., the tracking error is ensured to be zero using adequate
control gains independently of the perturbations o1, 0. Indeed, the initial errors
are zero because the desired trajectories are defined to initiate from the values of
the visual measurements at zero time (Eqgs. 11-13). Given the asymptotic stability
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of the closed-loop system, the tracking error remains at zero, i.e. (ej,es) = (0,0)
and then & = &4, & = &4, Thus, we have:

S = aty= 51;0) <1 + cos (g)) ,

£(0) T

& = —tan¢g = arctan | — | . (17)
¥(0) Y

where ¢, is the relative position between the current and target positions with respect

to the current reference frame. Using the non-holonomic motion constraint of the

robot expressed as

T
— = —tan ¢,
Y

the behavior of the visual measurement &, is defined by:

i~ ()

We can use that arctan <§> ~ I in the range ¥ € [~1,1] . Thus, the solution of

=

the approximated differential equation is given by:

£2(0)
x = Cyy ¥ (18)

where C; is the constant of integration in the solution of the differential equation. As
we have said previously, & is related to the position correction in the y—axis. The
reduction of the longitudinal error y is defined by the sinusoidal function that reaches
zero in 7 seconds. So that, & — 0 = y — 0 and, from Eq. 18, y - 0= = — 0.
Therefore, as given by Eq. 17, + — 0 = & — 0, and finally, the angular error ¢
follows the prescribed behavior given the simultaneous convergence of x and y.

6. Controller Evaluation

In this section, the performance of the proposed scheme for pose regulation tasks
is shown via simulations and experiments with a popular dynamic robot simulator.

6.1. Simulation Results

The simulation results have been obtained by using Matlab scripting with a
closed loop time of 0.3s. The TT is estimated from synthetic images generated
using the parameters presented in Table 1. Synthetic images are generated through
the generic camera model [14]. The control gains have been fixed as k; = 0.5,
ko = 0.02, k3 = 0.1 and k4 = 0.01. The time to complete the regulation task has
been defined as 7 = 90s.

The resulting paths on the plane, from three different initial locations, can be
seen in Fig. 6(a). The case of the initial location at L; = (0, —11, 0°) is special, given
that ¢(0) = (0) = 0. In such a case, £&§ = 0 during the navigation. This case is also
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Figure 6: Simulation results for three different initial locations showing the robot navigation and
the behavior of important variables. (a) Paths on the 2 —y plane. (b) Evolution of the robot pose.
(¢) Computed velocities. (d) Evolution of the visual measurements.

Image size ¢ fmm) | ap | a
Conventional 640x480 0 6 560 | 561
Fisheye 800x 600 2.916 8 990 | 994
Paracatadioptric 1024 %768 1 6 895 | 898
Hypercatadioptric | 1024x768 | 0.9662 6 895 | 898

Table 1: Parameters for the different types of camera.

special because an epipolar control is not able to solve it. In the case of the initial
location at Ly = (4, —9,40°), & is defined by Eq. 12. For L3 = (=5, —13,0°), & is
defined by Eq. 13. In all three cases, the robot reaches the target with good precision
and carries out a smooth motion, as shown in Fig. 6(b). This behavior is obtained
with the robot velocities of Fig. 6(c), which are provided by the super-twisting
control. Notice that the velocities are practically continuous. Just at some moments,
when the trajectory tracking deviates lightly, a small component in the form of a
triangular signal may appear in the control inputs. In Fig. 6(d), the evolution of
the visual measurements given by Eq. 7 is shown. Due to the normalization of &;,
the plots for the three cases look similar.
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Figure 7: Motion of the image points for the three initial locations using (a) a conventional camera
for points motion for L. (b) a fisheye camera for points motion for Ly. and (c¢) a paracatadioptric
system for points motion for Ls. The markers represent: “.”=initial image, “O” =real target image,
“A”=virtual target image and “x”=image at the end of the motion.

In order to show the validity of the proposed VS scheme for different cameras, the
motion of the point features is presented in Fig. 7(a) using a conventional camera
from L;. A fisheye camera is simulated for the case with initial location Ly in
Fig. 7(b). For the control from Lg, a paracatadioptric vision system is used and the
motion of the image points is shown in Fig. 7(c).

A performance comparison of the Super-Twisting Control (STC) with a classical
Pole-Placement Control (PPC) is presented to show the benefits of the former.
We evaluate both controllers under Gaussian image noise of 1 pixel of standard
deviation and under a perturbation in rotation. This perturbation is simulated
by adding a constant rotational velocity wpe, =0.1 rad/s to the control signal w,
in such a way that the robot is drifting to the left as it moves if the controller
does not compensate adequately. The PPC has been used in several vision-based
schemes, e.g., [7, 9]. For such a control, the auxiliary inputs of Eq. 9 are defined as
v = —kie; + Sf, Vg = —kgeg + 53 Notice that fgl is unknown given the definition of
the desired trajectory and we assume Sg = 0, which may affect the behavior of the
PPC. Fig. 8(a) shows that the regulation task is successfully accomplished in spite
of the perturbed situation using the STC and with superior accuracy than the PPC.
The initial location corresponds to ¢(0) = 1(0) as depicted by the line along the
longitudinal axis of the robot at the initial location. That configuration generates a
singularity for epipolar control, which do not occur in the proposed approach.
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Placement Control (PPC) including image noise and a perturbation in rotation.
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Figure 10: Analysis of robustness against noise and parameters uncertainty. (a) Robustness against
image noise. (b) Robustness to focal length variation. (c) Robustness to optical center variation.

As can be seen in Fig. 8(b-c), the effect of image noise is really harmful for
PPC because the amplitude of the control inputs directly depends on the amplitude
of the error signals. On the contrary, the STC is able to reduce significantly the
effect of image noise and effectively reject the effect of the perturbation. The visual
measurements are well behaved for the STC as shown in Fig. 9(a). The vision
system in this case is hypercatadioptric and the motion of the image points for the
STC is presented in Fig. 9(b).

An important aspect of any visual control scheme is the robustness against image
noise and uncertainty in parameters. Fig. 10(a) shows the mean and standard
deviation of the mean squared error for each state variable of the camera-robot over
50 Monte Carlo runs while varying the standard deviation of the image noise from
0 to 2 pixels. It can be seen that the effect is really small even for the largest image
noise. As described in section 2.1, the image points matched in the three images have
to be transformed to calibrated coordinates through the internal camera calibration
parameters before computing the TT. In the simulations depicted in Fig. 10(b) the
known focal length is fixed to 6mm for the T'T estimation while its real value to
generate the synthetic images is changed from 2mm to 10mm. It can be appreciated
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that a variation about +2mm in the focal length is efficiently supported by the
control scheme, with no practical effect on the final location. In Fig. 10(c) the
coordinates of the projection center are considered in the center of the image for the
control law, while their real value is changed on each direction. The final position
is more sensitive to this variation than the orientation, so that, the position error
increase as the variation of the projection center increases. However, the control
scheme provides good robustness and keeps a good performance of the navigation
task in spite of small calibration errors.

Figure 11: Visual configuration of the experiments. (a) Image at C; (bottom) and corresponding
pose (up). (b) Image at Cs (bottom) and corresponding pose (up). (c) Matches between SIFT
features in Cyq, Cgq, Cj3, used to evaluate TT(0) and the virtual target.

6.2. Ezxperiments with Dynamic Robot Simulation

Experiments have been conducted with the widely used Webots simulator. The
set-up is the following one: A Pioneer 2 robot with a single perspective camera is
simulated, included the dynamics of the robot, not involved in the previous simula-
tions. Dynamic simulation induces for example a small sway motion of the camera,
that introduces errors in the model deduced until here from the planar assumption.
The environment is made of textured walls on which the feature points used for the
evaluation of the trifocal tensor are found. The images taken by the robot camera
are 640 x 480. A reference image is chosen beforehand, at some position Cj inside
the scene. This reference image is depicted in Fig. 11(b). Then, the robot is settled
at an initial configuration Cy, where the taken image is depicted at Fig. 11(a). After
that, it performs an arbitrary forward motion up to a configuration Cs.

At C,, and as described in Section 3, we proceed to the generation of the vir-
tual target. For this, we first detect multiple scale interest points between views
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C,, C,, Cs. Given the viewpoint change at view Cgs, a multiple scale detector is nec-
essary. Here, we used SIFT points for that task [21]. Then, point matches are deter-
mined among the three views by using SIFT descriptors around each detected point
and forming pairwise matches (between Cy, Cs, first, and Cy, Cs, then). Three-fold
matches p, p’(0), p” are formed by selecting pairs of pairwise matches sharing the
same points in configuration Cy. With these matches, a RANSAC strategy is used
to estimate T'T(0) (the tensor at time 0). From Eq. 5, we deduce the tensor TT(0)
associated to the virtual target.

For the estimation of the tensor for subsequent frames, we have chosen to avoid
using the costly multiple-scale point detection at each time step. Instead, we used
KLT [22] features q, detected at Cy, tracked into Cy as @'(0) and transferred into
C; as @” with TT(0) (see 3.2). At each subsequent frames, the tensor TT(t) is
evaluated by tracking the KLT points q' ().

Also, to make the task of the tensor estimation easier, we make use of the fact
that ¢, stays a priori constant over the sequence. From Eq. 5, this makes 3 degrees
of freedom disappear from the 27 original ones. Given also that seven other elements
are zero-valued, then the Direct Linear Transform (DLT) linear estimation can be
reduced to 17 a priori non-null matrix elements. Since each three-fold match gives
four constraints, we need 5 matches for each RANSAC iteration.

——————— 0.1 ————
0.2 Visual tensor Visual tensor
0 Metric tensor - 0.05 Metric tensor
Vv ‘ T
-0.2 P 0
5 .04 // & .0.05 Vel
= 0. < -LU —
& i / N
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—//
-0.8 -0.15
-1 -0.2
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(a) (b)

Figure 12: Evaluation of the quality of the visual tensor estimation along time in the Webots
simulation, comparing our visual estimation with a ground truth value. (a) Evolution of the term
TT(t)115- (b) Evolution of ¢5(t), computed as in Eq. 6.

In Fig. 12, we give an illustration of the quality of the visual tensor estimation
TT(t), through the evolution of two estimated quantities derived from it vs. their
ground truth values. The ground truth value is computed by using the theoretical
tensor given the true planar pose of the robot. The two depicted elements are
TT(t)113 and ¢5(t), both derived from TT(t). As it can be seen, the estimation is
fair, although it becomes noisier when time goes on, mainly because of the loss of
visible interest points. In Fig. 13, we depict the evolution of the visual measurements
used in our control scheme, & and &. In both cases, we compare the estimated value
to the ground truth value that should be applied to the controller if we knew the
real robot pose. In Fig. 14(a), we show in one particular run, the evolution of the
robot pose. It can be verified that position and orientation all converge smoothly
to the desired position, namely zero.
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Figure 13: Behavior of the visual measurements along time in the Webots simulation. In blue, the
measurements extracted from the estimated visual tensor. In red, the ground truth measurements
estimated based on the current real robot pose.

7. Conclusions

We have presented a novel approach for image-based visual servoing that per-
forms robot pose regulation based on a few elements of the trifocal tensor relating
the initial view from the robot, the current one and the target view. Contrary to
other approaches using the trifocal tensor or the epipolar geometry, we manage to
avoid singularities in the control scheme by defining a virtual target, easily deduced
from the real one by a vertical translation. Thus, a single controller, tracking ad-
equate trajectories, is able to solve the pose regulation problem without the need
of switching to a different controller. Moreover, we have introduced the use of
super-twisting control, developed elsewhere, in visual servoing. We have illustrated
the pertinence of these two aspects with convincing results obtained in simulation,
with comparisons against the classical pole-placement control, and with experiments
using dynamic robot simulation.
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