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Dept. Informática e Ingenierı́a de Sistemas - Instituto de Investigación en Ingenierı́a de
Aragón, Universidad de Zaragoza, 50018 Zaragoza, Spain

{hector.becerra, gonlopez, csagues }@unizar.es

Abstract

The precise positioning of robotic systems is of great interest particularly in mobile
robots. In this context, the use of omnidirectional vision provides many advantages thanks
to its wide field of view. This paper presents an image-based visual control to drive a mo-
bile robot to a desired location, which is specified by a target image previously acquired.
It exploits the properties of omnidirectional images to preserve bearing information by us-
ing the 1D trifocal tensor. The main contribution of the paper is that the elements of the
tensor are introduced directly in the control law and neither any a prior knowledge of the
scene nor any auxiliary image are required. Our approach can be applied with any visual
sensor obeying approximately a central projection model, presents good robustness to im-
age noise, and avoids the problem of short baseline by exploiting the information of three
views. A sliding mode control law in a square system ensures stability and robustness for
the closed loop. The good performance of the control system is proven via simulations and
real world experiments with a hypercatadioptric imaging system.

Key words: Visual control, Omnidirectional images, 1D trifocal tensor, Mobile robots.

1 Introduction

Visual servoing is an interesting research field that involves computer vision and
control theory in order to command the robot motion. In particular, visual servoing
allows mobile robots to improve their navigation capabilities in a single robot task
or in cooperative tasks. This paper describes an approach to drive a wheeled mo-
bile robot equipped with an omnidirectional camera on board to a desired location,
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which is specified by a target image previously acquired, i. e., using a teach-by-
showing strategy. On visual servoing, a robot is steered to a desired location by
minimizing an error function that relates visual data, typically from two images:
the current and the target one. We propose to take advantage of more information
by using three views.

Along the years, the research on visual servoing has dedicated important efforts
to find suitable error functions in order to obtain a desired behavior of the robotic
system in terms of stability and robustness of the closed loop control. The basic ap-
proaches are typically separated in image-based visual servoing (IBVS), in which
the error function consists of a set of features that are directly available in the image
data, and position-based visual servoing (PBVS), in which a set of 3D parameters
must be estimated from image measurements [1]. Subsequently, many approaches
have been proposed as hybrid schemes [2]. Among the advanced approaches, some
schemes that are based on a geometric constraint can be found. A geometric con-
straint is a robust way to relate features that are observed in different views of the
same scene. Nowadays, two geometric constraints have been exploited for mobile
robots control: epipolar geometry and the homography model. Examples of epipo-
lar visual control are [3] and [4]. In these works, the epipoles are directly used to
compute the control inputs for the robot. The homography model has been used in
several visual servoing schemes, for instance [5] and [6]. In the last, the elements of
the homography matrix are used directly in a control law for mobile robots. How-
ever, it is known that these both geometric constraints have serious drawbacks.
Epipolar geometry is ill-conditioned with short baseline and with planar scenes.
The homography model is not well defined if there are no dominant planes in the
scene.

Most of the visual servoing schemes have the drawback that the target may leave
the camera field of view during the servoing, which leads to failure because the
feedback error cannot be computed any more. In this context, the use of wide field
of view cameras becomes a very good option to overcome this issue, although some
strategies have been proposed for conventional cameras, for instance [7]. One ef-
fective way to enhance the field of view is to use mirrors in conjunction with lenses,
i. e. catadioptric image formation systems. Some of the pioneer works proposing
the use of catadioptric cameras for visual servoing are [8], [9]. The approach of
exploiting a geometric constraint has been also explored in omnidirectional visual
servoing using the epipolar geometry [10] and the homography model [11]. Addi-
tionally, there are different approaches for omnidirectional vision-based robot navi-
gation that exploit particular properties of omnidirectional images, for instance [12]
and [13]. More related work on omnidirectional vision can be found in publications
of the Omnivis workshop.

In order to overcome the drawbacks of the typical geometric constraints, we pro-
pose a novel approach based on the 1D trifocal tensor (TT) which allows us to
exploit the information given by three available images: the initial, the current and
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the target ones. The 1D TT completely describes the relative geometry of three
views and is independent of the observed scene [14]. The first work that proposes
a robotic application of a trilinear constraint is [15]. In that work, conventional
perspective cameras are converted to 1D virtual cameras through a transforma-
tion of bearing measurements. In the context of computer vision, the same idea
is introduced to wide-angle cameras as a tool for calibrating the radial distortion
in [16]. The same authors present a general hybrid trifocal constraint by represent-
ing conventional and omnidirectional cameras as radial 1D cameras in [17]. They
assert that the radial 1D camera model is sufficiently general to represent the great
majority of omnidirectional cameras under the assumption of knowing the center
of radial distortion. The effectiveness of applying the 1D TT to recover location
information has been also proved in [18]. It uses the TT with both conventional
and omnidirectional cameras for scene reconstruction, and proposes this approach
for initialization of bearing-only SLAM algorithms. The radial TT has been also
proposed for hierarchical localization exploting omnidirectional images in [19]. A
recent work presents a visual control for mobile robots based on the elements of a
2D trifocal tensor constrained to planar motion [20].

We propose in this paper an image-based approach to perform visual servoing for
mobile robots. The visual control is performed using the value of the elements of
the 1D TT directly in the control law. The approach is suitable for all central cata-
dioptric cameras and even for fisheye cameras, since all of these imaging systems
present high radial distortion but they preserve the bearing information, which is the
only required data in our approach. This paper is an extension of [21], where a vi-
sual control based on the 1D TT obtained from metric information is introduced for
conventional cameras. However, since the constrained field of view of conventional
cameras, it is a need to use omnidirectional images for this approach. The exten-
sion presented here is justified along the paper and as part of the results, realistic
simulations with synthetic images, which are generated using the unified model for
central catadioptric cameras [22], are reported. We have tested the robustness of
the control law under image noise and the general performance is also analyzed
through real world experiments with images of a hypercatadioptric system. The ap-
proach does not require any a priori knowledge of the scene and does not need any
auxiliary image. We propose a two-step control law, the first step performs posi-
tion correction and the second one corrects orientation. Our approach ensures total
correction of the robot pose even for initial locations where epipolar geometry or
homography based approaches fail. In comparison with a typical IBVS approach,
the proposed scheme allows us to prove stability of the closed loop on the basis
of a square control system. Additionally, from a control theory point of view, we
have incorporated robustness properties to the system by using sliding mode con-
trol. The field of application of this approach is referred to differential-drive robots
constrained to planar motion. It results of great interest in many areas, specially
for service robots, for which our approach could be applied for navigation together
with a SLAM scheme like the ones in [23] and [24].
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The paper is organized as follows. Section 2 specifies the mathematical modeling of
the mobile robot and the 1D TT geometric constraint. Section 3 details the design
procedure of the control law. Section 4 presents the stability analysis. Section 5
shows the performance of the control system via simulations with synthetic images,
experimental analysis with real images and real world experiments in closed loop.
Finally, Section 6 provides the conclusions.

2 Mathematical Modeling

2.1 Robot and Camera Modeling

This work focuses on controlling a wheeled mobile robot through the information
given by an omnidirectional imaging system mounted onboard as shown in Fig.
1(a) and under the framework that is depicted in Fig. 1(b). The kinematic model of
this kind of robot as expressed in state space is the following
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Fig. 1. Description of the robot-camera configuration. (a) Our robotic platform with the om-
nidirectional camera on top. (b) Robot frame definition. (c) Omnidirectional vision system
with a Sony camera and Neovision mirror. (d) A generic central catadioptric system.

Thus, x = (x, y, φ)T represents the state of the robotic platform, where x and y are
the coordinates of the robot position in the plane and φ is the robot orientation. Ad-
ditionally, υ and ω are the translational and rotational input velocities, respectively.
From now on, we use the notation sβ = sin β, cβ = cos β. Note that the model (1)
also describes the camera motion, because of the fact that the robot frame is defined
in such a way that the optical axis coincides with the rotation axis of the robot, i.
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e. the camera is looking upward. Fig. 1(c) shows a detailed view of our omnidirec-
tional imaging system used in real experiments. It is a hypercatadioptric system,
for which we can assume that there exist a unique effective viewpoint (Fig. 1(d)).
This optic arrangement is popular for robotic applications because it is constructed
just with a perspective camera and a hyperboloidal mirror. These systems, as well
as those using paraboloidal and ellipsoidal mirrors, have been well studied in the
field of computer vision [25], and according to this theory, all of them satisfie the
fixed view point constraint. In practice, with a careful construction of the system,
it is realistic to assume a central configuration and many robotic applications have
proven its effectiveness [8], [9], [10], [18].

2.2 The 1D Trifocal Tensor

Our approach is based on a direct feedback of the information given by a geomet-
ric constraint, the 1D trifocal tensor. A similar idea has been exploited for mobile
robots control by using the epipolar geometry relating omnidirectional views [10].
The fundamental epipolar constraint is analogue for conventional perspective as
that for central catadioptric cameras if it is formulated in terms of rays which em-
anate from the effective viewpoint [26]. In a similar way, the 1D TT estimation is
basically the same for conventional and central catadioptric cameras. The 1D TT
particularly adapts to the property of omnidirectional images to preserve bearing
information regardless of the high radial distortion induced by lenses and mirrors.
Fig. 1(d) shows the bearing angle of an observed feature, which is measured with
respect to a frame centered in the principal point of the image. Thus, a bearing
measurement θ can be converted to its projective formulation in a 1D virtual retina
as m = (sin θ, cos θ)T . By relating this representation for three different views of
a feature that is expressed in a 2D projective space, it results in a trifocal constraint

2∑

i=1

2∑

j=1

2∑

k=1

Tijkuivjwk = 0, (2)

where u = (u1,u2)
T , v = (v1,v2)

T and w = (w1,w2)
T are the image coordinates

of a feature projected in the 1D virtual retina of the first, second and third camera
respectively, and Tijk are the eight elements of the homogeneous trifocal tensor.
The described representation of bearing measurements is sufficiently general to
model from pin-hole cameras to omnidirectional ones, as shown in [17]. Moreover,
it permits to compute a mixed trifocal constraint for heterogeneous cameras. In
our case, the three images are captured by the same omnidirectional camera, i. e.
the homogeneous case. In order to compute the eight elements of the 1D TT we
have to solve the linear system of equations obtained from seven stacked trifocal
constraints (2). Thus, in general, seven triples of matched features are required to
solve for the 1D TT linearly.

Let us define a global reference frame as depicted in Fig. 2(a) with the origin in the
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third camera. Then, the camera locations with respect to that global reference are
C1 = (x1, y1, φ1), C2 = (x2, y2, φ2) and C3 = (x3, y3, φ3) = (0, 0, 0). We assume
that the motion is constrained to be planar. The relative locations between cameras
are defined by a local reference frame in each camera as shown in Fig. 2(b).
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Fig. 2. Framework of the three-view geometry. (a) Global reference definition with origin
in the third view and bearing measurements θ of a feature. (b) Relative location between
cameras with a fixed reference frame on each view.

Under the framework previously described, the camera motion parameters are re-
lated to the 1D TT elements as follows

T1 =




T111 T112

T121 T122


 =




ty1sφ2−ty2sφ1 −ty1cφ2+ty2cφ1

ty1cφ2+tx2sφ1 ty1sφ2−tx2cφ1


 , (3)

T2 =




T211 T212

T221 T222


 =



−tx1sφ2−ty2cφ1 tx1cφ2−ty2sφ1

−tx1cφ2+tx2cφ1 −tx1sφ2+tx2sφ1


 ,

where txi
= −xicφi − yisφi, tyi

= xisφi − yicφi for i = 1, 2. Some details on
deducing the trifocal constraint (2) and the expressions in (3) can be seen in [18].
Two additional constraints accomplished when the radial TT is computed from a
calibrated retina are−T111+T122+T212+T221 = 0, and T112+T121+T211+T222 = 0.

These calibration constraints allow us to estimate the 1D TT from only five triplets
of point correspondences, which improves the estimation [18]. Fig. 3 shows an
example of the SIFT [27] point matches (34 good matches) used to compute the
tensor as will be described later in Section 5.
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Fig. 3. Robust SIFT matching between three omnidirectional images with translation and
rotation between them. The lines between images show 34 corresponding features, which
have been extracted using SIFT and matched robustly to be the entries for the 1D TT esti-
mation algorithm.

2.3 Values of the TT in Particular Locations

Let us define the initial location of the robot to be (x1, y1, φ1), the target location
(x3, y3, φ3) = (0, 0, 0) and (x2, y2, φ2) the current location, which varies as the
robot moves. It is worth emphasizing that C1 could be the moving camera and
similar overall results may be obtained. In order to design a controller to drive a
robot to a target location using only the tensor elements, we have to consider the
corresponding final tensor values as control objective. Initially, when the second
camera is in the starting location then C2 = C1, i.e., (x2, y2, φ2) = (x1, y1, φ1), the
relative location between these cameras is tx2 = tx1 , ty2 = ty1 and the values of the
tensor elements produce the following relationships

T111 = 0, T112 = 0, T221 = 0, T222 = 0, T121 + T211 = 0, T122 + T212 = 0. (4)

When the robot is in the goal C2 = C3, i.e., (x2, y2, φ2) = (0, 0, 0), the relative
location between these cameras is tx2 = 0, ty2 = 0, and it yields the following
relationships

T111 = 0, T122 = 0, T211 = 0, T222 = 0, T112 + T121 = 0, T212 + T221 = 0. (5)

2.4 Dynamic Behavior of the TT Elements

In order to carry out the control from the tensor elements, we have to obtain the
dynamic system that relates the change in the tensor elements exerted by a change
in the velocities of the robot. The dynamic system involves the robot model and is
obtained by finding the time-derivatives of the tensor elements in (3) (Appendix A).
In practice, the 1D TT has an unknown scale factor that varies as the robot moves.
We can set a common scale during the navigation by normalizing each element of
the tensor as follows
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Tijk =
T m

ijk

T m
N

, (6)

where Tm
ijk are the TT elements computed from point matches, Tijk are the nor-

malized elements and Tm
N is a suitable normalizing factor. Thus, the normalized

dynamic system is the following

Ṫ111 = sφ1

T m
N

υ + T121ω, Ṫ211 = cφ1

T m
N

υ + T221ω,

Ṫ112 = − cφ1

T m
N

υ + T122ω, Ṫ212 = sφ1

T m
N

υ + T222ω,

Ṫ121 = −T111ω, Ṫ221 = −T211ω,

Ṫ122 = −T112ω, Ṫ222 = −T212ω.

(7)

It is worth noting that in (7) there are four elements that are independent on the
translational velocity (T121, T122, T221 and T222). It means that a change in υ does
not produce a variation in these tensor elements and consequently, only orientation
correction can be performed using such elements. Additionally, the normalizing
factor is a kind of gain for the translational velocity and such factor must not be
zero. We can see from (3) that T121 6= 0, if the initial robot location has nonzero
longitudinal translation (ty1 6= 0) and |φ2| < π/2. So, the terms cos φ2 → 1 and
tx2 → 0, and consequently, T121 → ty1 as the robot reaches the target. Therefore, a
good option for the normalizing factor is Tm

N = Tm
121.

2.5 Selecting Suited Outputs

The problem of taking three variables to desired values (tx2 , ty2 , sin φ2) = (0, 0, 0)
may be completely solved with at least three outputs being controlled. However, it
is also possible to find two outputs to take two variables to their desired values and
then a third one is left as a DOF to be corrected a posteriori. We propose to use
only two outputs, because defining more than two generates a non-square dynamic
system, in which its non-invertibility makes difficult to prove stability of the control
system.

Under the definition of a global frame in the target view, we can define the longi-
tudinal error as the y coordinate and the lateral error as the x robot position. By
taking into account three premises: 1) the values of the tensor elements in the final
location, 2) the solution of the homogeneous linear system generated when the out-
puts are equal to zero, 3) the invertibility of the matrix relating the output dynamics
with the inputs, we can state:

• It is possible to design a square control system which can correct orientation
and longitudinal error. However, it leaves the lateral error as a DOF. This error
cannot be corrected later considering the nonholonomic constraint of the robot.
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Thus, this case does not have practical interest.
• It is not possible to design a square control system which allows us to correct

orientation and lateral error, leaving the longitudinal error as a DOF.
• It is feasible to design a square control system which can correct both longitudi-

nal and lateral error, leaving the orientation as a DOF. The orientation error can
be corrected in a second step considering that the robot uses a differential drive.
We concentrate in exploiting this option.

3 1D TT-Based Controller Design

We present the development of a two-step control law, which firstly drives the robot
to a desired position and then corrects its orientation. The first step is based on solv-
ing a tracking problem for a nonlinear system in order to correct x and y positions.
The second step uses direct feedback from one element of the tensor to correct
orientation.

3.1 First-Step Controller - Position Correction

The initial location of the robot is (x1, y1, φ1), the target location (x3, y3, φ3) =
(0, 0, 0) and the current location (x2, y2, φ2), which varies as the robot moves. The
goal is to drive the robot to the target location, i.e., to reach (x2, y2, φ2) = (0, 0, 0).
Now we define the control objective as a function of the 1D TT elements. When
the robot reaches the target, it achieves the condition given in (5) and therefore, the
following sum of normalized tensor elements are selected as outputs

ξ1 = T112 + T121, (8)
ξ2 = T212 + T221.

We can see that these outputs go to zero as the robot moves to the target. When
ξ1 = 0 and ξ2 = 0 the following homogeneous linear system is given




T112 + T121

T212 + T221


 =




sφ1 cφ1

cφ1 −sφ1







tx2

ty2


 =




0

0


 .

This system has unique solution tx2 = 0, ty2 = 0 for any value of φ1 (det(·) = −1).
Thus, (tx2 , ty2 , sin φ2) = (0, 0, sin φ2) is accomplished, which ensures position cor-
rection (x2 = 0, y2 = 0). A robust tracking controller is proposed to take the
value of both outputs to zero in a smooth way. Let us define the tracking errors as
e1 = ξ1 − ξd

1 and e2 = ξ2 − ξd
2 . Thus, the error system is given as

9






ė1

ė2


 =



− cφ1

T m
N

T122 − T111

− sφ1

T m
N

T222 − T211







υ

ω


−




ξ̇d
1

ξ̇d
2


 . (9)

This system has the form ė = M (T, φ1)u − ξ̇d, where M (T, φ1) corresponds to
the decoupling matrix and ξ̇d represents a known disturbance. We need to invert the
system in order to assign the desired dynamics using the inverse matrix

M−1 (T, φ1) = 1
det(M)




T222 − T211 T111 − T122

sφ1

T m
N

− cφ1

T m
N


 , (10)

where det (M) = 1
T m

N
[(T122 − T111) sφ1 + (T211 − T222) cφ1] and Tm

N = Tm
121. At

the final location T221 = −αtx1 , T212 = αtx1 , T121 = αty1 , T112 = −αty1 , where
α is an unknown scale factor, and the other tensor elements are zero. The pro-
posed normalizing factor is never zero in our framework as described in Section
2.4; however, det(M) = 0 at the final location. This entails the problem that the
rotational velocity (ω) increases to infinite as the robot reaches the target. We face
this problem by switching to a bounded control law, as described later.

We treat the tracking problem as the stabilization of the error system in (9). We
propose a robust control law to solve the tracking problem using sliding mode con-
trol [28], which has been already applied in visual control [4]. A common way to
define sliding surfaces in an error system is to take directly the errors as sliding
surfaces, in such a way that, if there exist switched feedback gains that make the
states to evolve in s = 0, then the tracking problem is solved.

s =




s1

s2


 =




e1

e2


 =




ξ1 − ξd
1

ξ2 − ξd
2


 . (11)

We use these sliding surfaces and the equivalent control method in order to find
switched feedback gains to drive the state trajectory to s = 0 and maintaining it
there for future time. From the equation ṡ = 0, the so-called equivalent control is

ueq = M−1ξ̇d. (12)

A control law that ensures global stabilization of the error system has the form
usm = ueq + udisc, where udisc is a two-dimensional vector containing switched
feedback gains. We propose these gains as follows

udisc = M−1



−ksm

1 sign (s1)

−ksm
2 sign(s2)


 , (13)

where ksm
1 > 0 and ksm

2 > 0 are control gains. Although usm can achieve global
stabilization of the error system, high gains may be needed, which can cause unde-
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sirable effects in real situations. We add a pole placement term in the control law to
alleviate this problem

upp = M−1



−k1 0

0 −k2







s1

s2


 , (14)

where k1 > 0 and k2 > 0 are control gains. Finally, a decoupling-based control law
that achieves robust global stabilization of the system (9) is as follows

udb =




υdb

ωdb


 = ueq + udisc + upp = M−1




u1

u2


 , (15)

where u1 = ξ̇d
1 − ksm

1 sign (s1) − k1s1, and u2 = ξ̇d
2 − ksm

2 sign (s2) − k2s2. Note
that this control law depends on the orientation of the fixed auxiliary camera φ1.
This orientation has to be computed only in the initial location and can be obtained
from the epipoles that relate the initial and target images. Any uncertainty in the
estimation of the initial orientation can be overcome given the robustness properties
of our control law, which justify the application of sliding mode control. Moreover,
φ1 can be fixed to zero as shown in Table 1 of Section 5.1.

3.1.1 Solving the Singularity

We use the inverse of the decoupling matrix (10) to compute the control inputs,
which causes a singularity problem at the final condition. The singularity affects
the computation of both velocities, however υ tends to zero as the robot reaches the
target. To keep ω bounded and the outputs tracking their references, we propose the
commutation to a direct sliding mode controller when det(M) is near to zero. This
kind of controller has been studied for output tracking through singularities [29],
and has been previously applied in the context of visual servoing [4]. For this case,
a bounded sliding mode controller is as follows

ub =




υb

ωb


 =




M sign (s1)

−N sign(s2 g(T))


 , (16)

where M and N are suitable gains, and g(T) will be defined through the stability
analysis in Section 4, and it is found by achieving the negativeness of a Lyapunov
function derivative. The control law in (16) locally stabilizes the system (9) and is
always bounded.

3.1.2 Desired Trajectories

The goal of the reference tracking is to take the outputs to zero in a smooth way in
such a way that the robot performs a smooth motion in a desired time. We propose
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the following references

ξd
1 =

T ini
112+T ini

121

2

(
1 + cos

(
π

τ
t
))

, 0 ≤ t ≤ τ (17)

ξd
1 = 0, t > τ

ξd
2 =

T ini
212+T ini

221

2

(
1 + cos

(
π

τ
t
))

, 0 ≤ t ≤ τ

ξd
2 = 0, t > τ

where τ is the time to reach the target and T ini
∗ are the values of the tensor elements

at t = 0. The choice of these trajectories obeys just to the requirement of a smooth
zeroing of the outputs along a fixed temporal horizon. Indeed, a parabolic function
may be used without difference in the resulting behavior. By defining τ , we fix the
duration of the first part of the control and the time to switch to correct orientation.
Note that, although initially the current image is the same than the starting one,
there is enough information in the 1D TT (4) to have well defined references.

3.2 Second-Step Controller - Orientation Correction

Once position correction has been reached in t = τ , we can use any single tensor
element whose dynamics depends on ω and with desired final value zero to correct
orientation. We select the dynamics Ṫ122 = −T112ω. A suitable input ω that yields
T122 exponentially stable is

ω = kω
T122

T112
, t > τ (18)

where kω > 0 is a control gain. This rotational velocity assigns the following dy-
namics to T122, which is exponentially stable

Ṫ122 = −T112

(
kω

T122

T112

)
= −kωT122. (19)

Note that (18) never becomes singular because T112 = −ty1 cos φ2 for t = τ and
it tends to −ty1 6= 0 as final value. Although only a rotation is carried out in this
second step, we keep the translational velocity υb given in (16) in order to have
closed loop control along the whole motion.

4 Stability Analysis

The control action in the first step is based on zeroing the defined outputs. So,
when these outputs reach zero, the so-called zero dynamics in the robot system is
achieved. Zero dynamics is described by a subset of the state space which makes
the output to be identically zero [30]. In the particular case of the robot system (1)
with output vector (8), this set is given as follows
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Z∗ =
{
(x2, y2, φ2)

T | ξ1 ≡ 0, ξ2 ≡ 0
}

=
{
(0, 0, φ2)

T , φ2 ∈ R
}

.

Zero dynamics in this control system means that, when the chosen outputs are zero,
the x and y-coordinates of the robot are corrected, but orientation may be different
to zero. This zero dynamics yields T122 = ty1 sin φ2 and, therefore, when we make
T122 = 0 then φ2 = nπ with n ∈ Z, and the orientation is corrected. It is clear the
exponential stability of T122 in the second step (19) for any kω > 0, and we focus
on proving stability for the tracking control law.

Proposition 1 Global stabilization of the system in (9) is achieved with a com-
muted control law applied for t ≤ τ , which starts with the decoupling-based con-
trol in (15) and switches to the bounded control in (16) if

|det (M (T, φ1))| < Th, (20)

where Th is a suitable threshold value.

PROOF. As mentioned above, the switching between the decoupling-based con-
trol to the bounded one happens only when the robot is near to the target location.
For a sliding mode controller we have to prove the existence of sliding modes. This
means to develop a stability proof to know if the sliding surfaces can be reached in
a finite time and the state trajectory can be maintained there. Let us use the natural
Lyapunov function for a sliding mode controller

V = V1 + V2, V1 = 1
2
s2
1, V2 = 1

2
s2
2, (21)

which accomplishes V (s1 = 0, s2 = 0) = 0 and V > 0 for all s1 6= 0, s2 6= 0.

V̇ = V̇1 + V̇2 = s1ṡ1 + s2ṡ2. (22)

Now, we analyze each term of (22) for the decoupling based controller (15). After
some simple mathematical simplifications we have

V̇1 = s1

(
u1 − ξ̇d

1

)
= s1

(
ξ̇d
1 − ksm

1 sign (s1)− k1s1 − ξ̇d
1

)
= −ksm

1 |s1| − k1s
2
1,

V̇2 = s2

(
u2 − ξ̇d

2

)
= s2

(
ξ̇d
2 − ksm

2 sign (s2)− k2s2 − ξ̇d
2

)
= −ksm

2 |s2| − k2s
2
2.

V̇1 and V̇2 are negative definite iff the following inequalities are guaranteed for all
s1 6= 0, s2 6= 0.

ksm
1 > 0, k1 ≥ 0, ksm

2 > 0, k2 ≥ 0. (23)

Therefore, V̇ < 0 iff both inequalities in (23) are fulfilled. So, global convergence
to the sliding surfaces is achieved.
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Now, let us develop the existence conditions of sliding modes for the bounded
controller (16). The same Lyapunov function in (21) is used, and for each term of
(22) we have

V̇1 =−M cos φ1

T m
N

|s1|+ s1

(
(T122 − T111) (−N sign(s2 g(T)))− ξ̇d

1

)
,

V̇2 = s2

(
−M sin φ1

T m
N

sign (s1)− ξ̇d
2

)
−N |s2| (T222 − T211) sign (g(T)) .

Let us define A = −N (T122 − T111) sign(s2 g(T)) − ξ̇d
1 and B = −M sin φ1

T m
N

sign (s1) − ξ̇d
2 . In order to enforce negativeness of V̇2 for some value of N , the

function g(T) has to be g(T) = T222 − T211. Hence, we have

V̇1 = −M cos φ1

T m
N

|s1|+ s1A, V̇2 = −N |s2| |T222 − T211|+ s2B.

We can see that

V̇1 ≤ −
(

M cos φ1

T m
N

− |A|
)
|s1| , V̇2 ≤ − (N |T222 − T211| − |B|) |s2| .

V̇1 and V̇2 are negative definite iff the following inequalities are assured for all
s1 6= 0, s2 6= 0.

M >
T m

N |A|
cos φ1

, N > |B|
|T222−T211| . (24)

Therefore, V̇ < 0 iff both inequalities in (24) are fulfilled. The bounded controller
does not need any information of system parameters and thus, its robustness is
implicit.

According to the existence conditions of sliding modes, the bounded controller (16)
is able to locally stabilize the system (9). Its attraction region is bigger as long as
the control gains M and N are higher. Because of the bounded control law is also a
switching one, the commutation from the decoupling-based control to the bounded
one does not affect the stability of the closed loop system. The first controller en-
sures entering to the attraction region of the second one. Once the sliding surfaces
are reached for any case of control law, the system’s behavior is independent of
matched uncertainties and disturbances [28]. Uncertainties in the system (9) due to
φ1 fulfill the so-called matching condition, and as a result, robustness of the control
system is accomplished.
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5 Experimental Evaluation

5.1 Simulation Results

In this section, we present some simulations of the overall control system as es-
tablished in the Proposition 1 for the first step, and using ω (18) and υb (16) for
the second one. Simulations have been performed in Matlab. The results show that
the main objective of driving the robot to a desired pose ((0,0,0o) in all the cases)
is attained just from image measurements and even with noise in the images. The
1D TT is estimated from more than five point correspondences in virtual omnidi-
rectional images of size 1024×768. These images have been generated from a 3D
scene (Fig. 4(a)) through the generic model for central catadioptric cameras [22].
We report results with hypercatadioptric, paracatadioptric and also fisheye cam-
eras, which can be approximately represented with the same model [31]. Besides,
the computation of the 1D TT has been studied for fisheye cameras in [16], which
supports the claim that our approach is robust to small deviations of the central
camera configuration. It is worth noting that, although analytically we can deduce
values of the tensor elements by substituting in (3) the relative location between
cameras, in practice, it is troublesome when the image coordinates of two images
are exactly the same. It causes that the linear estimation of the trifocal constraint
degenerates for such condition. We avoid this issue by moving the robot forward
for a short time before to start the control. When the robot reaches the target, there
is always a minimum error between image coordinates that is enough to prevent
numeric problems to solve for the 1D TT even in simulations. Without loss of gen-
erality, the projection center is zero for all the simulations. For the controllers, the
time to reach the target position τ is fixed to 100 s, the threshold to switch to the
bounded control Th (20) is fixed to 0.04, and the control gains are set to k1 = 1,
k2 = 2, ksm

1 = 0.02, ksm
2 = 0.02, kω = 0.3, M = 0.1, N = 0.05.

Fig. 4 shows the paths traced by the robot and the state variables evolution from
four different initial locations. The thick solid line starts from (5,-5,45o), the long
dashed line from (-5,-12,-30o), the solid line from (0,-8,0o), and the short dashed
line from (1,-14,-6o). In the paths of Fig. 4(b) we can differentiate between three
kind of autonomously performed robot motions. The solid lines correspond to a
rectilinear motion to the target, while the long dashed line and the short dashed
line both describe an inner curve and an outer curve before reaching the target
respectively. The rectilinear motion is obtained when the initial rotation is such
that tx1 = tx2 = 0, which implies that the robot is pointing toward the target. The
inner curve is generated when the initial rotation is such that tx1 = tx2 > 0 and
the outer curve when the initial rotation is such that tx1 = tx2 < 0. In both later
cases the robot rotation increases autonomously, and it is efficiently corrected in
the second step after 100 s, as shown in Fig. 4(c).
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Fig. 4. Simulation results with synthetic images. (a) 3D scene. (b) Paths on the plane. (c)
State variables of the robot.

We can see in Fig. 5(a) that both outputs are driven to zero in 100 s for all the
cases. This is achieved by using bounded inputs, which are presented in Fig. 5(b)
for the case (-5,-12,-30o). Both control inputs commute to a bounded value around
86 seconds because the determinant of the decoupling matrix falls under the fixed
threshold. We can also see how the rotational velocity presents an exponential decay
after 100 s, which takes the element T122 to zero as can be seen in Fig. 6. This
forces the orientation to decrease with a fixed exponential rate, whose settling time
is approximately 16.7 s (5/kω). This time or a threshold for T122 may be used to
stop both of the control inputs and finish the task.
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Fig. 5. Control law performance. (a) Controlled outputs for the four cases of Fig. 4. (b)
Example of the computed velocities for initial location (-5,-12,-30o).

The previous results have been obtained for three different kind of omnidirectional
cameras. Fig. 7(a) shows the motion of the image points for the case (-5,-12,-30o),
in which a hypercatadioptric camera is simulated. Fig. 7(b) corresponds to the case
(1,-14,-6o) with a paracatadioptric camera and Fig. 7(c) is a fisheye camera for the
initial location (0,-8,0o).

Table 1 shows that the target location is reached with good accuracy. The results
in the first part of the table are obtained considering that the initial orientation φ1

is known for each case. On the other hand, the second part of the table shows that
the precision is preserved even if the initial orientation is fixed to φ1 = 0 in the
controller for all the cases. We can assert that similar accuracy is obtained by fixing
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Fig. 6. Tensor elements evolution for the four cases of Fig. 4. (a) Behavior of the elements
of T1. (b) Behavior of the elements of T2.
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Fig. 7. Motion of the points in the image plane for three different kind of omnidirectional
virtual images. (a) Hypercatadioptric. (b) Paracatadioptric. (c) Fisheye. The images depict
the point features from the initial, current and target views.

Table 1
Final location for the paths in Fig. 4.

(5,-5,45) (-5,-12,-30) (0,-8,0) (1,-14,-6)

(m,m,o) (m,m,o) (m,m,o) (m,m,o)

Final locations considering the initial orientation φ1 as known.

x (cm) -0.28 0.85 0 0.91

y (cm) 0.59 0.71 0.11 -0.47

φ (o) 0.10 0.02 0 0.08

Final locations fixing φ1 = 0 in the controller.

x (cm) -0.51 0.77 0 0.98

y (cm) 0.86 0.39 0.11 -0.25

φ (o) 0.11 0.01 0 0.07

φ1 in the range −30 ≤ φ1 ≤ 30, since that the sliding mode control law is robust to
parametric uncertainty. For all the experiments, the mean squared tracking error is
very low, in the order of 1× 10−5.

17



Fig. 8(a) shows the good performance of the approach under image noise for initial
pose (5,-10,35o). The added noise has a standard deviation of 1 pixel and the time
to reach the target (τ ) is set to 60 s. The control inputs are affected directly by the
noise, as can be seen in Fig. 8(b). Nevertheless, the outputs are regulated properly
to the desired reference as shown in Fig. 8(c). The presence of the noise can be
observed in the image points motion of Fig. 9(a), which results in the behavior of
the tensor elements that is presented in Fig. 9(b)-(c).
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Fig. 8. Control law performance with image noise. (a) Resultant robot path. (b) Control
inputs. (c) Controlled outputs.
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Fig. 9. Visual measurements from synthetic images with image noise. (a) Motion of the
image points. (b) Behavior of T1. (c) Behavior of T2.

5.2 Experiments with Real Data

This section describes an analysis of the behavior of the proposed control scheme
through experiments with omnidirectional images. Two techniques of extracting
the required features are employed. The first case corresponds to the use of the
well known SIFT features [27] and, in the second case, we use the Lucas-Kanade
pyramidal algorithm [32], [33]. These experiments are performed off-line, which
means that a sequence of images were taken and then used to compute the 1D TT
and the control inputs to analyze the effect of the feature extraction. This analysis is
a key factor toward the real world experimentation of the next section. Sliding mode
control requires a relatively high closed loop frequency, around 10 Hz as minimum,
and consequently, the computational cost of the feature extraction and the matching
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process becomes very important. For these experiments, we use an omnidirectional
system with a camera Sony XCD-X7101CR and a mirror Neovision H3S (Fig.
1(c)) to capture images of size 1024×768. The image data is acquired using the
free software tool Player. The commanded robot motion is a slight curve going
forward and finishing with a rotation.

An important parameter required to obtain the bearing measurements is the projec-
tion center. We have tested the singleness of this point in our imaging system by
estimating the projection center along a sequence. Like in [34], the center is ro-
bustly estimated using a RANSAC approach from 3D vertical lines, which project
in radial lines for central imaging systems. Results have shown that our imaging
system properly approximates a single view point configuration, with standard de-
viation of around 1 pixel for each image coordinate of the estimated center. For
the size of images that we are using, these deviations have a negligible effect in the
computation of bearing measurements and thus, we have fixed the projection center
to (x0 = 541, y0 = 405).

5.2.1 Behavior using SIFT Features

We have implemented a 1D TT estimation algorithm by solving the trifocal con-
straint for at least five points that are extracted using SIFT and robustly matched
using RANSAC. The five-point method reduces the number of iterations required
for the robust estimation, however, the computation time of the 1D TT with this
method is still very high (approximately 5 seconds per iteration). Moreover, as
can be seen in Fig. 10, the 1D TT estimation is very unstable even having correct
matches. It happens because in some cases the matches are concentrated in a region
of the image. Besides, due to the property of SIFT features of being a region in the
image, the effective coordinates of the features may change discontinuously along
the sequence. We can see that the elements of T2 are the most unstable, in particular
when the current image is close to the target image (around 35 seconds), however,
after this time the first control step is finishing and the noisy elements are not used
any more. Fig. 11(a) shows how the reference trajectory for the first output is well
approximated while output two is not close to its reference. Fig. 11(b) presents the
computed control inputs. The translational velocity approximately describes the
forward motion; however, the rotational velocity is very noisy.

5.2.2 Behavior using Tracking of Features

In order to achieve an adequate closed loop frequency, we evaluate the strategy of
tracking a set of chosen points using the Lucas-Kanade algorithm [32], [33]. The
tracking of features has been extensively applied for visual servoing purposes [35].
It allows us to have the matching between features for each iteration without addi-
tional computations, which makes the scheme feasible for real world experimenta-
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Fig. 10. Performance of the 1D TT estimation using SIFT features. (a) Behavior of the
elements of T1. (b) Behavior of the elements of T2.
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Fig. 11. Behavior of the control law using SIFT features. (a) Outputs and their references.
(b) Computed velocities.

tion. Additionally, the smooth motion of the image features with the Lucas-Kanade
tracker results in a stable tensor estimation. We have defined 12 point features to
be tracked along the same image sequence and then, the corresponding point coor-
dinates are used to estimate the 1D TT and the velocities as given for our control
law. Fig. 12 displays some of these tracked points and their motion in the image.
The resulting behavior of the TT elements (Fig. 13) shows that they are more stable
than in the case of SIFT features. However, a similar behavior is obtained at the end
for the elements T212 and T221. According to Fig. 14 both of the outputs are close to
their reference trajectories, and consequently, the computed velocities in Fig. 14(b)
actually describe the real motion of the camera.

5.3 Real World Experiments

The proposed approach has been tested in closed loop with real conditions using the
Pioneer 3-AT robot that is shown in Fig. 1(a). The same hypercatadioptric imaging
system of the previous section is used, but now the images are acquired at a size
of 800×600 pixels. The projection center has been fixed according to a calibration
process to (x0 = 404, y0 = 316). The observed scene has been set up with fea-
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Fig. 12. Some of the tracked points (stars) and their motion in the image along a sequence.
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Fig. 13. Performance of the 1D TT estimation using tracking of point features. (a) Behavior
of the elements of T1. (b) Behavior of the elements of T2.
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Fig. 14. Behavior of the control law using tracking of point features. (a) Outputs and their
references. (b) Computed velocities.

tures on three different planes in order to ensure a sufficient number of points in
the scene. However, points not belonging to these planes are also used to achieve
a total of 15 points, which are manually matched in the three initial images. We
have implemented these experiments using the tracking of features because its low
computational cost. It gives good closed loop frequency, which leads to a good
behavior in the 1D TT estimation, as described in the previous section. Fig. 15(a)
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presents the resultant path, given by odometry, of the closed loop control from the
initial location (-0.55 m,-1.35 m,-35o) for one of the experimental runs. The dura-
tion of the task is almost 14 s, the final longitudinal error is around 2 cm, the lateral
error around 3 cm and the orientation error is practically negligible. The time τ
for the execution of the first step is set to 9.4 s through fixing a number of itera-
tions in our control software. Before that, we can see in Fig. 15(b) that the bounded
sliding mode control law is applied due to the singularity of the decoupling-based
controller. Fig. 15(c) shows that the behavior of the outputs is always close to the
desired one but with a small error. The reason of the remaining error is that our
robotic platform is not able to execute commands at a frequency higher than 10 Hz,
and consequently the performance of the sliding mode control is not the optimum.
According to Fig. 16(a) the motion of the image points along the sequence does not
exhibit a damaging noise, in such a way that the tensor elements evolve smoothly
during the task, as presented in Fig. 16(b)-(c). Fig. 17 shows a sequence of some
images taken by the robot camera.
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Fig. 15. Experimental results with the control law in closed loop. (a) Resultant path. (b)
Computed velocities. (c) Controlled outputs. The data to plot the path is given by the robot
odometry.
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Fig. 16. Behavior of the visual measurements for the real experiments. (a) Motion of the
image points. (b) Evolution of T1. (c) Evolution of T2.

In accordance to the results and the methodology presented along the paper, we can
state that the main advantages of using the 1D TT on visual servoing are that the
geometric constraint improves the robustness to image noise by filtering the data,
allows applying the control approach with any visual sensor obeying approximately
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Fig. 17. Sequence of some of the omnidirectional images taken from the hypercatadioptric
robot camera during the real experiments. The first is the target image, the second is the
initial and the last is the image at the end of the motion.

a central projection model and avoids the problem of short baseline by exploiting
the information of three views. Thus, total correction of both position and orienta-
tion is ensured without switching to any visual constraint other than the 1D trifocal
tensor. Since we assume planar motion and the camera is placed looking upward,
the use of the 1D TT particularly adapts to the central omnidirectional case. Due
to the property of this imaging process of preserving bearing information, we have
achieved an algorithm that is independent of the radial distortion induced by lenses
and mirrors.

From a control theory point of view, an additional advantage of our approach with
respect to the basic IBVS schemes is that the selected outputs allow us to prove
stability on the basis of a square control system. Additionally, we have incorpo-
rated robustness properties to the closed loop by using sliding mode control. The
lack of clear stability properties and robustness has been a serious concern in IBVS
approaches [1]. However, the cost to prove stability is to be limited to the appli-
cation of our approach on differential drive robots, for which the final remaining
orientation can be corrected.

6 Conclusions

Along this paper we have presented a novel image-based approach to perform vi-
sual control for mobile robots using the elements of the 1D trifocal tensor (TT)
directly in the control law. It allows exploiting the properties of omnidirectional
images of preserving bearing information. In this sense, our approach is valid for
any visual sensor obeying approximately a central projection model. To the authors’
knowledge, this is the first application of the 1D TT for visual servoing. The visual
control utilizes the usual teach-by showing strategy without requiring any a priori
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knowledge of the scene and does not need any auxiliary image. The proposed two-
step control law ensures total correction of position and orientation without need of
switching to any visual constraint other than the 1D TT. In the first step, we correct
position by solving a tracking problem for a non-linear square system using sliding
mode control. This provides stability and robustness properties to the closed loop.
In the second step, a single tensor element is used to perform orientation correc-
tion. The effectiveness of our approach is tested through simulations and real world
experiments with a hypercatadioptric camera.
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A Derivation of the Dynamic Behavior of the 1D TT Elements

We show two examples of the procedure to obtain the time-derivatives of the tensor
elements presented in (7). The unnormalized tensor is denoted by Tm

∗ . From (3)
and using the rates of change of the state variables in (1) for T111 we have

Tm
111 = ty1sφ2 − (x2sφ2 − y2cφ2) sφ1

Ṫm
111 = ty1φ̇2cφ2 −

(
ẋ2sφ2 + x2φ̇2cφ2 − ẏ2cφ2 + y2φ̇2sφ2

)
sφ1

= ty1ωcφ2 − (−υsφ2sφ2 + x2ωcφ2 − υcφ2cφ2 + y2ωsφ2) sφ1

= υsφ1 + ω (ty1cφ2 + tx2sφ1) = υsφ1 + Tm
121ω

By applying (6) in both sides of the equation, it results in the normalized time-
derivative of T111

Ṫ111 = sφ1

T m
N

υ + T121ω

The same procedure is carried out for each element. Thus, for T121

Tm
121 = ty1cφ2 + (−x2cφ2 − y2sφ2) sφ1

Ṫm
121 =−ty1φ̇2sφ2 +

(
−ẋ2cφ2 + x2φ̇2sφ2 − ẏ2sφ2 − y2φ̇2cφ2

)
sφ1

=−ty1ωsφ2 + (υsφ2cφ2 + x2ωsφ2 − υcφ2sφ2 − y2ωcφ2) sφ1

= ω (−ty1sφ2 + ty2sφ1) = −Tm
111ω

By normalizing, the result is Ṫ121 = −T111ω.
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