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ABSTRACT— In this paper, a fuzzy control scheme for visual path-following of wheeled mobile robots
is presented. It relies on the feedback of a geometric constraint: the trifocal tensor (TT). The TT is com-
puted from the image currently seen by an onboard camera and the sequence of target images previously
acquired, which defines the visual path. Only one element of the TT is needed for feedback, which pro-
vides information of the robot’s deviation from the path. This is used in a set of Mamdani-type fuzzy rules
that mimics the human action of driving a vehicle. The translational velocity is also adapted by a fuzzy
system in function of the path’s curvature, inferred from the TT computed a priori using the set of target
images. The use of fuzzy control allows achieving an effective and simple controller that does not need
a time-varying reference to be tracked while the resultant robot velocities are smooth or piece-wise con-
stant. The validity and performance of the approach is shown through simulations using synthetic images.
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1. INTRODUCTION

The locomotion of most of service robots is based on a wheeled platform, so that, the strategies to
improve their navigation capabilities result of great interest for the robotics research community. In this
sense, machine vision has shown good advantages as sensor for robot control (visual servoing) [1] and
navigation [2]. In this paper, a control scheme for following a visual path is presented. The visual path is
extracted from a visual memory. The proposed scheme uses the trifocal tensor (TT) as feedback information.

The concept of visual memory means that there is a learning stage in which a set of target images are
stored. These key images define the path to be replayed in an autonomous stage. This strategy has been
introduced for omnidirectional images in [3]. Recently, there are contributions toward the development of
autonomous vehicles under this approach. Some of them are position-based approaches, in which, a 3D
reconstruction is carried out either using an EKF-based SLAM [4] or a structure from motion algorithm
through bundle adjustment [5]. A complete map building is avoided in [6] by relaxing to a local Euclidean
reconstruction from the essential matrix. In visual control, image-based approaches generally offer a faster
closed loop control with good performance. An approach that uses the centroid of the abscissas of the feature
points is presented in [7]. Most of the mentioned approaches suffer the problem of generating discontinuous
rotational velocities when a new key image must be reached. This problem is tackled in [8] for conventional
cameras, where the authors propose a varying reference instead of a constant one. The epipolar geometry
has been used as feedback information for mobile robot navigation [9]; however, this geometric constraint
is less robust than the TT and it presents the problem of short baseline.

Fuzzy logic control has been extensively used for the control of nonlinear systems by means of two main
approaches: the classical Mamdani-type control, e.g. [10], and the Takagi-Sugeno type control, e.g. [11].
Many works have exploited fuzzy logic for positioning control of nonholonomic mobile robots, e.g. [12].
The combination of fuzzy logic and computer vision has been successfully addressed for different problems,
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as in the problem of vision-based human motion analysis [13]. Particularly, fuzzy logic has been introduced
for visual servoing of robot manipulators in some works, e.g. [14]. Fuzzy control has been extended for
visual control of wheeled mobile robots in works such as [10, 15]. In those works, the approach relies
on the following of a lane painted on the floor, which is extracted and used as setpoint to steer the robot
accordingly. The visual memory approach is a natural way to model an environment avoiding the use of
artificial landmarks.

In this paper, Mamdani-type fuzzy controllers are proposed to solve the visual path-following problem
using a sequence of key images. Due to that the problem mainly consists in computing an adequate rotational
velocity to follow the path, a set of Mamdani-type fuzzy rules are an efficient way to infer the velocity value.
To the author’s knowledge, the benefits of fuzzy logic are exploited for the first time in this paper in the
framework of visual navigation based on a visual memory. A previous work proposed a qualitative visual
navigation scheme that is based on some deterministic rules instead of fuzzy rules [16]. Thus, a strong
motivation of this work was to evaluate a more natural and more flexible ruled-based approach than the
existing deterministic one. Because of the knowledge of the author on the problem of visual path-following
obtained from the previous work [17], it was feasible to address this problem by designing a fuzzy control.
The main motivation of the work herein was to achieve a simpler controller than the one presented in [17]
by avoiding the use of a time-varying reference to be tracked while the computed velocities remains smooth
or piece-wise constant.

The control scheme proposed in this paper uses the value of one element of the trifocal tensor as the only
required feedback information. Thus, this approach does not require explicit pose parameters estimation
unlike position-based schemes [4, 5]. In this work, the visual servoing problem is transformed in a reference
tracking problem for the selected tensor element. It avoids the recurrent problem of discontinuous rotational
velocity at key image switching of image-based schemes [6, 7, 16]. The use of the TT allows the gathering of
many visual features into a single measurement, so that, undesired pseudoinverse of matrices is not needed.
The TT as visual measurement improves the robustness of the control scheme against image noise [8] and it
avoids the problem of short baseline [9]. As used in this work, the TT gives the benefit of taking into account
valuable a priori information that is available in the visual memory and that is not exploited in previous
image-based approaches. This information is used to adapt the translational velocity and also to achieve
piece-wise constant rotational velocity according to the learned path. Additionally, the proposed scheme
can be applied not only to conventional cameras but also to any vision systems having approximately a
unique center of projection, which increase the applicability of the scheme.

The paper is organized as follows. Section 2 introduces the robot and camera model, and the TT for
generic cameras. Section 3 describes the control strategy exploiting the TT. Section 4 introduces a nonlinear
controller as preamble to the fuzzy control scheme detailed in Section 5. Section 6 presents the performance
of the visual navigation via realistic simulations using synthetic images and Section 7 concludes the work.

2. MATHEMATICAL MODELING

2.1 Robot Kinematics

Let χ = (x, y, ϕ)T be the state vector of a differential drive robot (Fig. 1(a)), where x(t) and y(t) are
the robot position coordinates in the plane, and ϕ(t) is the robot orientation. The kinematic model of the
robot expressed in state space can be written as follows:

 ẋ
ẏ

ϕ̇

 =

 − sinϕ 0
cosϕ 0
0 1

[ v
ω

]
, (1)

being v(t) and ω(t) the translational and rotational input velocities, respectively.
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(c)

Figure 1: Representation of the robot model and the camera model. (a) Robot frame definition. (b) Example of central catadiop-
tric vision system. (c) Example of an image captured by a catadioptric system. (d) Generic camera model of central cameras.

2.2 The Trifocal Tensor (TT) for Generic Cameras
The TT encapsulates all the geometric relations between three views independently of the structure of

the scene and depending nonlinearly on the motion parameters among the three views. The generic camera
model [18] allows the computation of a geometric constraint, like the TT, in the same way for any central
vision system, i.e., any imaging system having approximately a single center of projection. This model
allows us to represent from conventional cameras to catadioptric cameras like the one shown in Fig. 1(b-c).

The unified projection model [18] describes the image formation as a composition of two central pro-
jections. The first is a central projection of a 3D point onto a virtual unitary sphere and the second is a
perspective projection onto the image plane through a collineation K. Let denote a 3D point as X, and its
corresponding coordinates as X. Thus, point coordinates on the sphere Xc can be computed from point
coordinates on the normalized image plane x (refer to Fig. 1(d)) and the sensor parameter ξ as follows:

Xc =
(
η−1 + ξ

)
x̄, with x̄ =

[
xT 1

1+ξη

]T
, (2)

where η =
−γ−ξ(x2+y2)
ξ2(x2+y2)−1 and γ =

√
1 + (1− ξ2) (x2 + y2). In this work, the camera is assumed to be

calibrated, which allows us to exploit the representation of the points on the unitary sphere.
The TT has 27 elements and it can be expressed by three 3×3 matrices (T1, T2, T3). There are 26

independent ratios apart from the common overall scaling of the matrices. In this work, image points are
used as visual features. Consider three corresponding points projected on the unitary sphere p, p′ and p′′

and expressed in homogeneous coordinates. The incidence relation between these points is given by:

[p′]×

(∑
i

piTi

)
[p′′]× = 03×3,

where [p]× is the common skew symmetric matrix. This expression provides a set of nine equations, how-
ever, only four of them are linearly independent. Thus, seven triplets of point correspondences are needed
to compute the 27 elements of the tensor by solving a SVD problem for the set of linear equations.

In the case in which the three cameras are located in the same plane, for instance, with the same vertical
position from the ground, several elements of the tensor are zero and only 12 elements are in general non-
null. Fig. 2 depicts the upper view of three cameras with global reference frame in the third view, in such
a way that the corresponding locations are C1 = (x1, y1, ϕ1), C2 = (x2, y2, ϕ2) and C3 = (0, 0, 0).
Analytically, the TT can be deduced for this framework as done in [19], resulting in that the non-null
elements are given as:

Tm
111 = −tx1 cosϕ2 + tx2 cosϕ1, T

m
113 = tx1 sinϕ2 + ty2 cosϕ1,

Tm
131 = −ty1 cosϕ2 − tx2 sinϕ1, T

m
133 = ty1 sinϕ2 − ty2 sinϕ1,

Tm
212 = −tx1 , T

m
221 = tx2 , T

m
223 = ty2 , T

m
232 = −ty1 ,

Tm
311 = −tx1 sinϕ2 + tx2 sinϕ1, T

m
313 = −tx1 cosϕ2 + ty2 sinϕ1,

Tm
331 = −ty1 sinϕ2 + tx2 cosϕ1, T

m
333 = −ty1 cosϕ2 + ty2 cosϕ1, (3)
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Figure 2: Geometry between three camera locations in the plane. (a) Absolute locations with respect to a reference frame in
C3. (b) Relative locations.

where txi = −xi cosϕi − yi sinϕi, tyi = xi sinϕi − yi cosϕi for i = 1, 2 and the superscript m states that
they are the tensor elements given by metric information. In practice, the estimated tensor has an unknown
scale factor and this factor changes as the robot moves. A common scale can be fixed during the navigation
by normalizing each element of the tensor using Tijk = T e

ijk/TN , where T e
ijk are the estimated TT elements

obtained from point matches, Tijk are the normalized elements and TN is a suitable normalizing factor. It
can be seen from (3) that T212 and T232 are constant and non-null, assuming that the camera location C1 is
different to C3. Therefore, any of these elements is good option as normalizing factor.

3. CONTROL STRATEGY FOR MEMORY-BASED NAVIGATION

This section describes the proposed control strategy for wheeled mobile robot navigation based on the
visual memory approach. First, such approach is briefly described. Next, the way in which the TT is used
in this approach is presented.

3.1 The Visual Memory Approach

The navigation based on a visual memory consists of two stages. The first one is a learning stage where
the visual memory is built. In this stage, the user guides the robot along the environment where it is allowed
to move. A sequence of images are stored from the onboard camera during this stage in order to get a
representation of the environment. It is assumed that during learning, the translational velocity is never
zero. From all the captured images, a reduced set is selected as key images by ensuring a minimum number
of shared point features between two images. Thus, the visual memory defines a path to be replayed in
the autonomous navigation stage. It is assumed that n key images are chosen and that these images are
separated along the path in the Cartesian space by a minimum distance dmin. For more details about the
visual memory building and key images selection refer to [6].

3.2 The TT for Memory-Based Navigation

The TT has been exploited for the positioning of a mobile robot in [19] and [20]. In these works,
both, the rotational and the translational velocities are computed from the elements of the tensor, which are
driven to zero in order to accomplish the positioning task. The visual path-following problem only requires
a rotational velocity to correct the deviation from the desired path. Consider two images I1(K,C1) and
I3(K,C3) belonging to the visual path and the current view of the onboard camera I2(K,C2). As can be
seen in Fig. 3(a), the element T221 of the TT (3) provides direct information of the lateral deviation of the
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Figure 3: Memory-based navigation using the TT. (a) Relative locations between cameras up to a scale provided by the TT. (b)
Control strategy based on driving to zero the element of the trifocal tensor T221.

current location C2 with respect to the target C3. It is worth emphasizing that the 1D TT does not provide
this particular information of lateral error [20], so that, the 2D TT is chosen.

Assuming that the center of projection coincides with the rotational axis of the robot, the element T221

of the tensor is related to the current location of the robot as follows:

Tm
221 = tx2 = −x2 cosϕ2 − y2 sinϕ2.

It can be seen that if Tm
221 = 0 then ϕ2 = ϕt = − tan (x2/y2), and consequently the current camera C2

is looking directly toward the target. Thus, it is proposed to compute the rotational velocity from feedback
information given by the element T221. The control goal is to drive this element with smooth evolution from
its initial value to zero before reaching the next key image of the visual path. A reference tracking control
problem can be defined in order to avoid discontinuous rotational velocity in the switching of key images.
It is also possible to exploit the a priori information provided by the visual path to compute an adequate
translational velocity and a nominal rotational velocity according to the shape of the path.

4. NONLINEAR CONTROLLER FOR REFERENCE TRACKING

In this section, a control law that corrects the lateral deviation of the robot with respect to the learned
visual path for each key image is described. As indicated in Fig. 3(a) the tensor element T221 corresponds
to the relative lateral position between the current location C2 and the target location C3. As shown in Fig.
3(b), if T221 is zero, the camera at the current location is pointing directly toward the target location. Then,
the rotational velocity control must take to zero the tensor element T221, in such a way that this action drives
the robot to point toward the next target while remains moving forward. It is desirable that the evolution of
T221 will be smooth for each segment of the visual path to avoid discontinuities in the rotational velocity.
To achieve that, the fed back error has to be zero at each key image switching, so that a null rotational
velocity is obtained at switching instants and discontinuities are avoided. These are the reasons to transform
the visual path-following problem in a reference tracking problem. The following expression represents the
tracking error of the normalized tensor element T221 with respect to a desired reference T d

221(t):

ζ = T221 − T d
221(t). (4)

The normalization of the TT is done as defined at the end of Section 2 using TN = T232, which is
non-null assuming that C1 ̸= C3. The desired evolution of the tensor element is defined by the following
differentiable sinusoidal reference:

5



T d
221(t) =

T221(0)

2

(
1 + cos

(π
τ
t
))

, 0 ≤ t ≤ τ, (5)

T d
221(t) = 0, t > τ,

where T221(0) is the initial value of the normalized tensor element or the value at the time of key image
switching, and τ is a suitable time in which the tensor element must reach zero before the next switching
of key image. Thus, the time is restarted at each instant when a change of key image occurs. Notice that
because of the reference (5) has an initial value equals to the current value of T221, the fed back error ζ at
each key image switching is null, which avoids discontinuities. The proposed reference trajectory drives the
tensor element to zero in a smooth way from its initial value.

The tracking error is computed using information extracted from the ith key image as I3(K,C3), the
(i − 2)th key image as I1(K,C1) and the current image I2(K,C2). According to the expressions of the
trifocal tensor elements (3) and using the derivatives of the robot state as given by the model of the unicycle,
the time-derivative of T221 is obtained as follows:

Ṫm
221 = −ẋ2 cosϕ2 + x2ϕ̇2 sinϕ2 − ẏ2 sinϕ2 − y2ϕ̇2 cosϕ2,

= (x2 sinϕ2 − y2 cosϕ2)ω = Tm
223ω.

This time-derivative is also valid for normalized tensor elements and therefore, the differential equation
relating the rate of change of the error with the reference tracking (RT) velocity is as follows:

ζ̇ = T223ωrt − Ṫ d
221. (6)

Thus, the velocity ωrt is worked out from the error dynamics (6). The following rotational velocity
assigns a new dynamics through the auxiliary input δa = −kcζ:

ωrt =
1

T223

(
Ṫ d
221 − kcζ

)
, (7)

where kc is a control gain. This velocity yields the error dynamics ζ̇ = −kcζ, which is exponentially sta-
ble for kc > 0. This RT control is continuous with a sinusoidal behavior between key images. A nominal
rotational velocity (ω̄) can be added in order to obtain an RT+ control that is maintained almost constant
between key images, i.e., almost piece-wise constant rotational velocity during the navigation. So, the com-
plete velocity can be eventually computed as:

ω = ktωrt + ω̄, (8)

where kt > 0 is a weighting factor on the reference tracking control ωrt.

4.1 Nominal Velocity from the Memory
Previous image-based approaches for navigation using a visual memory only exploit local information

[4, 5, 6], i.e., the required rotational velocity is computed from the current and the nearest target images.
It is proposed to exploit the visual memory to have an a priori information about the whole path without
the need of a 3D reconstruction or representation of the path. A kind of qualitative map of the path can be
obtained from the tensor element T221 using three consecutive key images of the memory. The value of this
element, denoted as T ki

221, shows qualitatively the orientation of the camera in the (i− 1)
th key image with

respect to the ith one and so, the nominal rotational velocity that appears in (8) can be computed from T ki
221.

Recall that the tensor is computed between all consecutive triplets of key images with target in the ith one.
The nominal velocity ω̄ can be set proportional to the tensor elements T ki

221 as follows:

ω̄ =
kmυ

dmin
T ki
221, (9)
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where km < 0 is a constant factor. The factor υ/dmin is needed to normalize the values of the tensor T ki
221

for different conditions of a task regarding to the distance between key images. Although the translational
velocity υ required in (9) can be set to a constant value, it is desirable to adapt this velocity according
to the shape of the path, i.e., a large value of T ki

221 implies that the curvature of the path is large, which
demands to reduce the translational velocity. In any case, the value of the translational velocity is known. It
is worth noting that the nominal rotational velocity by itself is able to steer the robot close to the path, but
any deviation is corrected by (7) in (8).

4.2 Timing Strategy and Key Image Switching

The proposed control method is based on taking to zero the tensor element T221 before reaching the next
key image, which imposes a constraint for the time τ of the reference. Thus, a strategy to define this time is
related to the minimum distance between key images (dmin) and the translational velocity (υ) as follows:

τ =
dmin

υ
.

A good compromise between this time and the settling time of the tracking error is to make kc = 12.5/τ .
By using the controller (7) with the reference (5), the time τ and the control gain kc as described above,
an intermediate location determined by dmin is reached. In the best case, when dmin coincides with the
real distance between key images, the robot reaches the location where the corresponding key image was
acquired. In order to achieve a good correction of the longitudinal position for each key image, the reference
(5) is maintained to zero, which implies that ω = 0, until the image error starts to increase. The image error
is defined as the mean squared error between corresponding image points of the current image (pi,j) and
points of the next closest target key image (pj), i.e.:

ϵ =
1

r

r∑
j=1

∥pj − pi,j∥ , (10)

where r is the number of used corresponding points. As shown in [16], the image error decrease monoton-
ically until the robot reaches each target view. In this work, the increment of the image error is used as the
switching condition for the next key image, which is confirmed by using the current and previous difference
of instantaneous values of the image error.

5. FUZZY CONTROL FOR VISUAL PATH-FOLLOWING

Taking advantage of the experience in the memory-based visual control of a mobile robot from the TT
obtained from the results reported in [17], Mamdani-type fuzzy rules are designed in this section to drive a
mobile robot following a visual path. This type of controller has an heuristic nature [21] that can be exploited
in a visual path-following task in order to mimic the human action as in other applications, e.g. helicopters
control [22]. First, as described at the end of Section 4.1, it is desirable to set the translational velocity
according to the curvature of the path, which can be carried out by a fuzzy inference system using T ki

221

as input. Second, and more important, to reach the final location, the robot must be steered appropriately
to move from one key image to the next, essentially by aligning its heading to the next key image. Given
that the TT provides a direct measurement of the disalignment with respect to the path through the current
value of T221, a set of heuristic rules can be designed to achieve the correction. The nature of the problem
is to provide an adequate value of the rotational velocity depending on the visual measurement. There
is no need of modeling a complex system as in the Takagi-Sugeno fuzzy approach [11], or dealing with
uncertainties in an estimation process as in fuzzy-type stochastic approaches [13]. Therefore, Mamdani-
type fuzzy control is selected as an adequate control technique for the problem. This type of fuzzy control
has been previously used for visual lane-following in [10], which is a similar problem to the one addressed
in this paper. However, the use of a visual memory instead of an artificial lane is more natural and flexible
in the sense that no modification of the environment is needed.
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5.1 Adapting the Translational Velocity
The a priori information available in the sequence of key images can be exploited to adapt the trans-

lational velocity according to the shape of the path encoded in T ki
221. The values of T ki

221 are obtained for
each triplet of consecutive key images from the set of images that defines the visual path. For each segment
between key images, these values give the notion of the path’s curvature. Therefore, a decision about an ad-
equate translational velocity can be derived from T ki

221. A single-input-single-output fuzzy inference system
is proposed to adapt the translational velocity.

• Fuzzy representation: Fig. 4(a) shows the input membership functions for the fuzzy inference system
that receive the magnitude of the values T ki

221 normalized by the minimum distance dmin, i.e., |T̄ ki
221|,

where T̄ ki
221 = T ki

221/dmin. The normalization is needed to have similar values of T ki
221 for different

conditions of distance between key images. Three membership functions are used, corresponding to
negative, zero and positive values of the input.

The output membership functions of the inference system are presented in Fig. 4(b). As shown below
in the fuzzy rules, one output membership function is used for each rule. The range of the output
membership functions is a user-defined parameter. In the figure, the minimum translational velocity
is defined to be 0.2 m/s and the maximum 0.4 m/s.
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Figure 4: Membership functions for inference of the translational velocity. (a) Input |T̄ ki
221|. (b) Output υ.

• Fuzzy rules: Given the magnitude of the normalized tensor between key images, the fuzzy system
infers an adequate translational velocity by using the following rules:

1. If |T̄ ki
221| is SMALL, then υ is FAST. 2. If |T̄ ki

221| is MEDIUM, then υ is MEDIUM.
3. If |T̄ ki

221| is LARGE, then υ is SLOW.
For instance, the interpretation of the first rule is that if the value of |T̄ ki

221| is small (meaning that
the curvature of the path is small in the segment), then, the translational velocity can be large and the robot
moves fast. Notice that for each visual path, there are as much values of |T̄ ki

221| as key images, and the output
given by the fuzzy system is changed at each key image switching. In order to smooth these transitions a
sigmoidal function can be used.

5.2 Rotational Velocity Controller for Reference Tracking
Under the same framework described in Section 4, where the visual path-following problem is treated

as a reference tracking problem, in this section a fuzzy controller is proposed to accomplish the navigation
task. As introduced previously, the problem of following a sequence of key images can be faced by moving
forward and rotating appropriately when an error expressed in terms of image data increases. The control
goal for each segment between key images is to drive T221 to zero before reaching the next key image. To
achieve that, the same timing strategy and the condition of key image switching detailed in Section 4.2 is
used for the fuzzy control. The proposed two-input-one-output fuzzy controller is able to solve the reference
tracking problem described in Section 4. Thus, an RT control is obtained from the fuzzy inference system
described next.

8



• Fuzzy representation: Given that a reference tracking problem is faced, the inputs of the fuzzy con-
troller are the tracking error ζ (4) and its time-derivative ζ̇ (6). Fig. 5(a) displays the proposed input
membership functions for ζ. To avoid the input to leave the membership functions range, trapezoidal
functions with large range are used. In Fig. 5(b) the input membership functions for ζ̇ are shown. As
the robot motion is smooth with a reference tracking control, the range of ζ̇ is small. Membership
functions corresponding to negative, zero and positive values are proposed for both inputs.

Fig. 5(c) presents the proposed output membership functions. One output membership function is
used for each rule. The labels for each output membership function are from W1 to W9, representing
the possible values for the RT control. For example, W1 represents the largest negative value, W9 the
largest positive value and W5 is the membership function for zero output.
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Figure 5: Membership functions for the reference tracking controller. (a) Input ζ . (b) Input ζ̇ . (c) Output ω.

• Fuzzy rules: Given a value of the tracking error and its time-derivative, the fuzzy inference system
provides a rotational velocity to keep the error around zero by using the following nine rules:

1. If ζ is NEG and ζ̇ is NEG, then ωrt is W1. 2. If ζ is ZERO and ζ̇ is NEG, then ωrt is W2.
3. If ζ is NEG and ζ̇ is POS, then ωrt is W3. 4. If ζ is NEG and ζ̇ is ZERO, then ωrt is W4.
5. If ζ is ZERO and ζ̇ is ZERO, then ωrt is W5. 6. If ζ is POS and ζ̇ is ZERO, then ωrt is W6.
7. If ζ is POS and ζ̇ is NEG, then ωrt is W7. 8. If ζ is ZERO and ζ̇ is POS, then ωrt is W8.
9. If ζ is POS and ζ̇ is POS, then ωrt is W9.

These rules are derived heuristically by analyzing the behavior of the RT control of equation (7) reported
in [17]. The interpretation of the first rule is as follows: if the tracking error is negative and its negativeness
is increasing because the time-derivative of the error is negative, then, a large negative rotational velocity
is required to reduce the error. The other rules can be similarly explained. Notice that the RT control given
by this fuzzy controller can be used alone to accomplish the visual path-following task or can be combined
with (9) as defined in (8) to obtain a piece-wise rotational velocity.

5.3 Integrating Nominal Velocity and Deviation Correction in a Single Fuzzy Con-
troller

In this section, a novel fuzzy controller for visual path-following is presented. Based on the idea of
the RT+ control given by (8), this new approach integrates the two components of this control in a single
fuzzy controller. This means that instead of adding the nominal velocity and the component that corrects
deviation as in (8), both components are integrated by a fuzzy inference system to generate the required
rotational velocity for path-following. The controller relies on the timing strategy and switching condition
of key images described in Section 4.2.

• Fuzzy representation: This controller takes the normalized tensor element between key images T̄ ki
221

and the current value of the tensor element T221 as inputs. Fig. 6(a) and Fig. 6(b) show the member-
ship functions for the Mamdani controller for both inputs. The membership functions are similar for
each input and their range is defined large enough. The proposed membership functions correspond to
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negative, zero and positive values for both inputs. Fig. 6(c) presents the output membership functions
of the controller. One membership function is used for each rule and the values are defined on the
basis of the results with the nonlinear control of Section 4 [17].
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Figure 6: Membership functions for the single fuzzy controller. (a) Input T̄ ki
221. (b) Input T221. (c) Output ω.

• Fuzzy rules: Nine rules are proposed for this controller and one output membership function is used
for each rule. The fuzzy inference system gives an adequate rotational velocity to correct any devia-
tion from the visual path by taking T̄ ki

221 and T221 as described in the following cases:

1. If T̄ ki
221 is NEG and T221 is NEG, then ω is s4. 2. If T̄ ki

221 is ZERO and T221 is NEG, then ω is s3.
3. If T̄ ki

221 is NEG and T221 is POS, then ω is s8. 4. If T̄ ki
221 is NEG and T221 is ZERO, then ω is s9.

5. If T̄ ki
221 is ZERO and T221 is ZERO, then ω is s5. 6. If T̄ ki

221 is POS and T221 is ZERO, then ω is s1.
7. If T̄ ki

221 is POS and T221 is NEG, then ω is s2. 8. If T̄ ki
221 is ZERO and T221 is POS, then ω is s7.

9. If T̄ ki
221 is POS and T221 is POS, then ω is s6.

The interpretation of the first rule is that if T̄ ki
221 is negative, meaning that the robot must rotate in positive

sense according to the key images, and if T221 is also negative, meaning that the robot is currently rotating
in the desired positive sense, then the rotational velocity is small negative to keep a small rotation in the
current sense, which is the correct action. All the other rules can be similarly explained.

Notice that this controller provides the complete required velocity to keep the robot following the path
or to steer it into the path if it is not. Besides, as the inputs are direct measurements obtained from the
images, this controller presents good robustness against image noise.

6. EVALUATION OF THE FUZZY VISUAL CONTROL SCHEME

In this section, Matlab simulations of the proposed navigation scheme are presented. The generic camera
model [18] is used to generate synthetic key images from the 3D scene of Fig. 7(a) according to the robot
motion on the predefined path shown in the same figure. This learned path starts in the location (5,-5,0o) and
finishes just before to close the loop of 54m long. The vision system is hypercatadioptric with parameters
αx = 950, αy = 954, x0 = 512, y0 = 384 all of them in pixels, ξ = 0.9662 and the size of the images
is 1024×768 pixels. The TT is estimated using the typical 7-point algorithm introduced in Section 2.2 and
using the projected points on the sphere. Fig. 7(b) shows an example of a triplet of catadioptric images
projected onto the unitary sphere. Regarding to the fuzzy inference systems, they are implemented using
the Fuzzy Logic Toolbox of Matlab with the following features: product for AND method, maximum for
OR method, product for implication, sum for aggregation and centroid for defuzzification.

First, the performance of the proposed fuzzy controller for reference tracking detailed in Section 5.2 is
evaluated. The robot task is to follow a visual path of 36 key images distributed randomly along the learned
path. The random distance between consecutive key images is between 1.42m and 1.6m, in such a way
that a minimum distance dmin = 1.4m is assumed. The translational velocity is bounded between 0.2m/s
and 0.4m/s. Results for two cases are presented: 1) only reference tracking (RT control) given by the fuzzy
controller of Section 5.2, and 2) reference tracking + nominal velocity (RT+) as given by (8).
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Figure 7: Virtual scene and example of the synthetic images used. (a) Tridimensional scene and predefined path. (b) Example
of a triplet of images projected onto the unitary sphere.
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Figure 8: Simulation results for a navigation task using the fuzzy controller for reference tracking and nominal velocity for 36
key images. (a) Resultant paths and key images distribution. (b) Velocities and evolution of the element T221. (c) Image error
and path-following errors.

It can be seen in Fig. 8(a) that the resultant path of the autonomous navigation stage is almost similar to
the learned one in both cases; however, as expected, the performance is better for the RT control that is able
to steer the robot into the path if it starts out of path. The RT+ control is only able to drive the robot close
to the path in such condition. The first plot of Fig. 8(b) shows how the translational velocity effectively
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changes according to the shape of the path. For instance, between 55 s and 85 s the higher velocity is
applied, which corresponds to the almost straight part of the path.

The second plot of Fig. 8(b) shows the behavior of the rotational velocity. On one hand, the velocity
given by the RT control is smooth, performing cycles that start from zero and return to zero for each key
image. On the other hand, the piece-wise constant velocity given by the RT+ control is more natural. The
rotational velocity given by the RT+ when the robot starts out of the path is almost the same to the one given
by the RT+ starting on the path and it is not presented. The third plot of Fig. 8(b) shows the behavior for the
reference tracking of T221. It can be seen that the tensor element does not present unstable behavior when
a key image is reached (T221 reaches zero), which means that the problem of short baseline is not present.
Additionally, the current value of T221 tracks the desired reference (5) really close, which is enough to solve
effectively the visual path-following problem.

The performance of the approach for the same experiment is presented in Fig. 8(c). The first plot of the
figure shows the behavior of the image error for the RT case. It can be seen that the image error exhibits a
monotonic decay before reaching each key image. Only the image error for the RT control with the robot
starting out of the path is shown given that a similar behavior can be seen for each case. The largest peaks
in the image error correspond to the sharp curves in the path, which also causes the highest error in the
path-following, as can be seen in the second and third plot of Fig. 8(c). Nevertheless, the path-following
errors to reach each key image are small and comparable for both controllers.
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Figure 9: Simulation results for a navigation task using the fuzzy controller for reference tracking and nominal velocity for 28
key images. (a) Resultant paths and key images distribution. (b) Velocities and evolution of the element T221. (c) Image error
and path-following errors.
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In order to evaluate the performance of the scheme using harder conditions, 28 key images are placed
randomly along the predefined path separated from 1.8m to 2.0m. Therefore, a minimum distance dmin =
1.75m is assumed. The path-following is really good along the whole path for the RT control and reasonably
good for the RT+ (Fig. 9(a)). The RT+ control is slightly sensitive to longer distance between key images
along sharp curves. Although the number of key images is less than in the previous simulation, Fig. 9(b)
presents a similar behavior of the robot velocities with respect to the results for 36 key images. As can be
seen in Fig. 9(c), the image error is in general larger than in Fig. 8(c) due to the larger distance between key
images. However, the errors to reach each key image are still comparable for the three cases shown.

Next, the fuzzy controller described in Section 5.3 is evaluated and compared with the nonlinear con-
troller introduced in Section 4 and detailed in [17]. In this case the simulated vision system is changed for
a paracatadioptric one. The size of the images is 800x600 pixels. Additionally, Gaussian noise of standard
deviation of 1 pixel is added to the synthetic images. In Fig. 10(a) can be seen that the navigation is carried
out with good performance by using the single fuzzy controller even for the presented case where the robot
starts out of the path. Although the nonlinear controller also achieves to accomplish the navigation task, the
path is better followed using the fuzzy controller. The effect of the image noise can be seen in the robot
velocities shown in Fig. 10(b), however, it does not affect significantly the rotational velocity given by the
fuzzy controller as in the case of epipolar control [9] or nonlinear control with the TT [17], where large
peak values of the velocity may appear. As appreciated in Fig. 10(c), the estimation of the current value
of T221 is not free of noise for both controllers, however, the fuzzy controller is less affected. The filtering
property of the TT as a geometric constraint is useful to mitigate the effect.
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Figure 10: Simulation results for a navigation task using the single fuzzy controller in comparison to the nonlinear controller
in [17]. (a) Resultant paths and key images distribution. (b) Robot velocities. (c) Controllers inputs. (d) Image errors and
path-following errors.
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A quantitative comparison between the fuzzy and nonlinear controllers is shown in Fig. 10(d). A lower
image error can be seen for the fuzzy controller during all the navigation. Also, the position and angular
errors to reach each key image show the good performance of the fuzzy controller in the path-following
task. It is worth emphasizing that the design of the single fuzzy controller is also a good contribution from
a theoretical point of view, because such controller does not require the use of a time-varying reference to
be tracked in contrast to the nonlinear controller presented in (8) and evaluated previously in [17]. Thus, the
fuzzy controller is simple and effective for the goal of computing a smooth or piece-wise constant rotational
velocity.

In order to show the behavior of the visual information, Fig. 11 presents two examples of the motion of
the image points along the whole navigation. Although 12 points are used to compute the tensor, only the
motion of 7 points is shown. It is appreciable the advantage of using a central catadioptric system looking
upward, which is able to see the same scene during the whole navigation task.
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Figure 11: Motion of the points in the images along the navigation for (a) case of Fig. 8 and (b) case of Fig. 10. Markers: “·”
initial image, “O” final key image, “×” image at final reached location.

7. CONCLUSIONS

In this paper, a fuzzy control scheme for wheeled mobile robot navigation based on a visual memory has
been proposed. The value of one element of the trifocal tensor computed from image points is the unique
required information by the approach. The proposed image-based scheme does not need pose parameters
decomposition. In this context, the scheme avoids discontinuous rotational velocity when a new target image
must be reached providing piece-wise constant velocities as desired. The translational velocity is adapted
according to the curvature of the path by a fuzzy inference system and the approach is independent of this
velocity. To the author’s knowledge, it is the first time that fuzzy logic is exploited for visual memory-based
navigation. The use of fuzzy control has achieved an effective and simpler controller than the nonlinear
controller in [17] by avoiding the need of a time-varying reference to be tracked. Additionally, the proposed
scheme is valid for any central camera (from conventional to wide field of view cameras), which increases
its applicability. The control scheme has presented good performance according to simulation results using
synthetic images.
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