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Abstract— In this letter, we propose a novel distributed vision-
based formation control operating in the image space, with
free-flying cameras in a three dimensional space as agents.
Two controllers are proposed, both formulated in terms of a
formation image error, without using a global reference frame
nor requiring the estimation of the 3D pose between agents.
The proposed formation scheme allows flexibility in defining the
desired formation, without constraining it to planar formations,
for example. We give formal stability guarantees based on
Lyapunov analysis and evaluate our approach in simulations
under a variety of initial and desired conditions, numbers of
agents and agents connectivity.

I. INTRODUCTION

Formation control of multi-agent systems (MAS) aims at
making a group of agents reach a predefined set of relative
positions, distances or bearings between one another [1].
Most works in formation control assume that some of this
geometrical information (e.g., relative positions) is available
for each agent, through measurements, and very few leverage
only information from the image space and communication
with neighboring agents. We fill this research gap with an
approach that allows formation control based on a single
camera onboard each agent using information directly from
the image space. This setup is appealing in the context of
Unmanned Aerial Vehicles (UAVs), with applications ranging
from monitoring to entertainment.

We tackle the formation control problem for free-flying
agents equipped with a camera in the 3D space without obsta-
cles, where they have to achieve a desired geometric pattern,
as illustrated in Fig. 1. The proposed scheme combines two
feedback-based control strategies; image-based visual servoing
(IBVS), which is a well known type of visual servo-control
(VS) [2], and consensus-based formation control [3], which
uses information from neighboring agents to reach a common
goal. As opposed to the large majority of approaches that solve
this problem in the Euclidean space, our distributed control
scheme solves the formation control problem directly in the
image space, which avoids the need for 3D measurements.

VS schemes are used to regulate the pose of a single camera,
with a desired pose specified by a previously captured refer-
ence image. Within VS algorithms, image-based VS (IBVS)
uses feedback information directly from the image space,
while position-based VS (PBVS) uses feedback from data in
the Euclidean space, estimated from image features. In the
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Fig. 1. A possible application of our approach: from a set of initial conditions
(blue), UAVs have to reach a replicate (green) of the reference cameras (red),
such that the set of replicates matches the set of references up to a geometric
similarity. 3D image points (blue dots) are seen by the agents and their image
projections are used to drive the agents to a formation.

context of formation control, an option where 3D information
is estimated from images is the use of unitary vectors known as
bearings, which indicate the direction among agents to define
a geometric shape. The bearing-based formation approach
allows to reach formations up to a scale. In [4], bearings and
a set of features related to the distance to the neighbors are
used to reach a desired formation. Also, in [5], a controller
enforces a desired relative pose to create a circular formation.

A common image-based approach for formation control
consists in placing a visual marker on a leader agent and in
specifying a desired view of that marker for the followers. For-
mation arises when all the followers reach their corresponding
reference poses. This approach has been used with UAVs [6],
differential-drive robots [7] and with a group of satellites [8],
where a leader-follower assignment is set to close a loop and
reach a circular formation. These works are straightforward
applications of IBVS but there is no communication between
the agents. In contrast, our approach leverages the exchange of
information between agents to improve the formation control.

Distributed vision-based formation control has been ad-
dressed using consensus-based approaches where communi-
cation between agents is essential. In [9], agents in formation
collaboratively track a target; each agent computes individual
steering actions from visual data and a global agreement for
these actions is reached through consensus. In [10], one leader
quadrotor uses IBVS to track a target and the other agents are
driven by a consensus-based formation algorithm, assuming
that the relative position between agents can be estimated.
In [11], within a coordinated visual tracking scheme for a



moving target with UAVs, each agent measures the phase
angles towards the target from image data to coordinate their
separation. In [12], IBVS-driven consensus is applied with
a fixed external camera for robot manipulators; an adaptive
observer estimates the visual velocities and uncertainties.

Some works on distributed formation control propose to
bypass the use of geometric 3D information by using visual
information and without the need of a global reference frame.
In [13], a consensus-based strategy for formation control of
quadrotors uses specific elements of the homography matrix
between views of two neighbor agents, each one carrying a
camera pointing toward a planar surface. In [14], IBVS is
used in a formation control scheme where followers track and
synchronize with a leader, which must be in view to match
each follower’s image with its corresponding reference image.
A consensus term formed from the image errors is included
to improve the convergence.

We introduce a novel distributed vision-based formation
control for agents equipped with a camera (which we will
extend, in the future, to onboard cameras on quadrotors),
expressed as a consensus of errors in the image space. We
propose two controllers: the first one computes the cameras
velocities proportionally to the consensus error; the second
one includes an integral term to reduce steady state errors. In
contrast to most works in the state of the art, our approach
does not use a global reference frame or 3D relative poses
between agents or geometric constraints. To the authors’
knowledge, this is the first vision-based formation scheme
operating directly in the image space, allowing flexibility
in defining the desired formations, without limiting them to
planar formations. Our controllers are evaluated in simulations
for random initial and desired conditions, different numbers of
agents and connectivities of the set of agents.

II. PRELIMINARIES AND PROBLEM STATEMENT

Let G be a graph with a vertex set V(G) and an edge set
E(G). In our case, G represents the communication relations
(edges) between agents (vertices). The set of neighbors of a
vertex i is denoted as Ni(G) , {j ∈ V | (i, j) ∈ E(G)}.
The Laplacian matrix of G is LLL(G) , D − A ∈ RN×N
where A = [aij ] is the adjacency matrix of G with aij =
1 if i 6= j and (i, j) ∈ E(G) and aij = 0 otherwise,
and D = diag(d1, · · · , dN ) with di ,

∑N
j=1 aij . If G

is undirected, LLL(G) is positive semi-definite and symmetric.
If G is connected, LLL(G) has a null eigenvalue with algebraic
multiplicity one, paired with the eigenvector 1N = [1 · · · 1]T .

In this work, the agents are supposed to be cameras with
pose x = [pT ,θT ]T ∈ R6, where p = [x, y, z]T and θ =
[φ, θ, ψ]T , with φ roll, θ pitch and ψ yaw Euler angles. We
assume that the agent motion is described as a single integrator

ẋ(t) = v, (1)

where v = [vT ,ωT ]T , with v = [vx, vy, vz]
T the linear

velocity and ω = [ωx, ωy, ωz]
T the angular velocity of the

origin of the camera reference frame.
We assume that the cameras are standard pinhole cameras

and observe and track a set of M 3D points Xj for j ∈

{1, ...,M} (blue dots in Fig. 1). Then each point is projected
on the image plane and the coordinates of the projection are

sj = [xj , yj ]
T = [Xc

j /Z
c
j , Y

c
j /Z

c
j ]
T , (2)

also known as normalized image coordinates, where Xc
j =

[Xc
j , Y

c
j , Z

c
j ]
T are the points coordinates in the camera refer-

ence frame. These projections are easy to obtain in simulation,
and can be detected with fiducial markers or interest points in
real images. The relationship between the time derivative of
the image features coordinates s and the camera velocity is [2]:

ṡ = Lsv, (3)

being Ls ∈ R2M×6 the interaction matrix associated to the
points s. This matrix can be assembled by stacking M 2× 6
sub-matrices, corresponding to each point. They have the form:

Lsj =

[
− 1
Zc

j
0

xj
Zc

j
xjyj −(1 + x2j ) yj

0 − 1
Zc

j

yj
Zc

j
1 + y2j −xjyj −xj

]
,

(4)
where Zcj is the depth of feature j, and is often unknown
in practice. For desired image features s∗ associated with a
desired pose x∗, IBVS typically uses control laws of the form
v = γL̂+

s (s − s∗) with a gain γ > 0 and an approximate
interaction matrix L̂s since the features depths have to be
estimated. The + operator indicates the pseudoinverse matrix;
in this letter, the Moore-Penrose inverse B+ = (BTB)−1BT

is used. This control law yields s → s∗ [2], [15] and, under
ideal conditions, x → x∗. Even with an approximate inter-
action matrix, in practice this control shows local asymptotic
stability in a surprisingly quite large [2] neighborhood at x∗.

Consider a MAS composed of N cameras with joint state
x , [xT1 , . . . ,x

T
N ]T ∈ R6N , whose motion is modeled

as (1) and with an associated graph G modeling the network’s
connectivity. Let x∗ , [x∗T1 , . . . ,x∗TN ]T be an arbitrary
reference joint state, then we address a formation control
problem to design a distributed control law such that the
set Ξx∗ of equivalent formations to x∗ is asymptotically
stable with respect to the agent’s dynamics (1). We define
an equivalent formation to x∗ as a state x resulting from
applying a translation, rotation and scaling to x∗, such that
relative orientations are kept among agents.

III. PROPOSED VISION-BASED FORMATION APPROACH

To solve this problem, reference images are taken from ref-
erence poses x∗ to built the joint vector s∗ = [s∗T1 , ..., s∗TN ]T ∈
R2NM , with s∗i = [s∗T1i , ..., s

∗T
Mi]

T ∈ R2M . Note that this sets a
constraint on x∗, as the objects (points) used as features should
be visible. Similarly, from images taken at the current pose
x(t), the vector s(t) ∈ R2NM is built from the corresponding
visual features for each camera si(t) = [sT1i, ..., s

T
Mi]

T ∈
R2M .

Our controller is inspired from displacement-based ap-
proaches, for instance [3], that use the camera positions x to
calculate the displacement error for each agent i with respect
to a reference x∗. Instead, we define the image formation error
as a function of the image projections, as follows

ei(t) =
∑
j∈Ni

(
(sj(t)− s∗j )− (si(t)− s∗i )

)
∈ R2M . (5)



The joint image error vector e = [eT1 , ..., e
T
N ]T ∈ R2NM is

e = −(LLL ⊗ I2k)(s(t)− s∗), (6)

where ⊗ denotes the Kronecker product and Iq is the q × q
identity matrix. Using (3), the time dynamics of ei becomes

ėi =
∑
j∈Ni

(ṡj(t)− ṡi(t)) =
∑
j∈Ni

(Lsj
vj − Lsi

vi). (7)

Hereafter, the goal is to achieve e = 0, i.e., each camera
must be driven to reach zero image formation error. Next,
we describe a distributed control to drive the system to a
formation equivalent to the one where the reference images
were captured as seen in Fig. 1. Since this setup does not use
the 3D geometry between cameras, only image features, we
refer to our approach as formation control in the image space.

We make the following assumptions: 1) Every agent knows
the references s∗i . 2) Cameras motions are done in an obstacle-
free space and we neglect inter-agent collision. 3) The ob-
served 3D points are static. 4) G is undirected and connected.

A. Proportional control

Taking inspiration on the IBVS approach, we propose the
following control law that uses feedback from (5):

vi = λL+
si
ei, (8)

with λ > 0 a gain factor and Lsi
the true interaction matrix.

The closed loop dynamics (7) can be computed as:

ėi = λ
∑
j∈Ni

(Lsj
L+
sj
ej − Lsi

L+
si
ei). (9)

Let Msi , LsiL
+
si

and Ms = diag(Ms1 , . . . ,MsN
).

Then the joint system in closed loop is expressed as:

ė = −λ(LLL ⊗ I2M )Mse. (10)

Theorem 1: For the system (10) with e as in (6), obtained
by using the controller (8), the equilibrium point e = 0
is asymptotically stable if the matrices Msi

> 0, for i ∈
{1, ..., N} and LLL comes from a connected graph.

Proof: Let us choose V = 1
2e
TMse as a Lyapunov

candidate function for this. Then, since Ms is symmetric, its
time-derivative is V̇ = eTMsė, which is rewritten as

V̇ = −λeTMs(LLL ⊗ I2M )Mse.

From the spectral properties of the Laplacian matrix in
(LLL ⊗ I2M ), which is positive semi-definite for a connected
graph, we deduce V̇ ≤ 0. Let the invariant set making V̇ = 0
corresponds to e = 0 and Mse ∈ ker(LLL ⊗ I2M ). Both cases
are covered with the constraint Msiei = Msjej ∀i 6= j.

Due to the Laplacian matrix property of zero row sums
for a connected graph, we have

∑
ei = 000. The sum in the

invariant set can be transformed as (
∑

M−1si
)Msk

ek = 000 for
any k ∈ [1, N ] since we assume Msi

positive definite, as in
most IBVS formulations [2]. Hence, both constraints require
e = 000 to be the largest invariant set yielding V̇ = 0, the
desired equilibrium. By LaSalle’s invariance principle [16, p.
115], e = 000 is an asymptotically stable equilibrium point.
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Fig. 2. Example scenario. 3D motion of each frame of reference (continuous
lines) from the initial conditions (triangles) towards the formation reached
at time 2000; the reference poses (crosses) are superposed with the final
positions. Dashed lines show z-coordinate magnitude.
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Fig. 3. Example scenario. Evolution in time of the 3D metrics and superposed
scaled cameras at final poses (green) and reference poses (red).

B. Proportional-Integral (P-I) controller

As previously studied in [15], we should note that the as-
sumption Msi

> 0 might not always hold. As a consequence,
the formulation is prone to local minima, i.e., steady state
errors where ei ∈ ker(L+

si
). We propose to tackle this issue

by using an integral control component: εi ,
∫ t
0
ei(τ)dτ . The

error dynamics becomes of second order:[
ėi
ε̇i

]
=

[
0
ei

]
+

[
−|Ni|Lsi

0

]
vi +

∑
j∈Ni

[
Lsj

vj
0

]
, (11)

for which, we propose the following feedback control:

vi = L+
si

(γeei + γεεεεi) , (12)

with γe > 0, γε > 0 control gains. In closed loop, we get:[
ė
ε̇εε

]
=

[
−γe(LLL ⊗ I2M )Ms −γε(LLL ⊗ I2M )Ms

I 0

] [
e
εεε

]
. (13)

Theorem 2: For the system (13) with e as in (6), obtained
by using the controller (12), the equilibrium point e = 0,
Msi

εεεi = Msj
εεεj ,∀i 6= j, is asymptotically stable if the

matrices Msi
> 0, for i ∈ {1, ..., N} and LLL comes from

a connected graph.



Proof: Let V = 1
2γε(εεε+ e)TMs(LLL⊗ I2M )Ms(εεε+ e) +

1
2e
TMse+ 1

2 (γ2ε+γeγε)εεε
TMs(LLL⊗I2M )Ms(LLL⊗I2M )Msεεε be

a Lyapunov candidate function with the following derivative:

V̇ =γε(εεε+ e)TMs(LLL ⊗ I2M )Ms(ε̇εε+ ė) + eTMsė

+ (γ2ε + γeγε)εεε
TMs(LLL ⊗ I2M )Ms(LLL ⊗ I2M )Msε̇εε

=− γ2εεεεTMs(LLL ⊗ I2M )Ms(LLL ⊗ I2M )Msεεε

− (γe − γε)eTMs(LLL ⊗ I2M )Mse

− γeγεeTMs(LLL ⊗ I2M )Ms(LLL ⊗ I2M )Mse.

Under the condition γe > γε, we have V̇ ≤ 0 due to
(LLL ⊗ I2M ) being positive semi-definite and the fact that all
the components are symmetric matrix products. In this case,
the invariant set where V̇ = 0 needs to fulfill the condition
eTMs(LLL⊗I2M )Mse = 0. Similar to the proportional case, we
have that the solution for that constraint is e = 0. However,
another condition Msi

εεεi = Msj
εεεj ∀i 6= j also describes

the invariant set for V̇ = 0. Then, by LaSalle’s invariance
principle [16, p. 115], the set e = 0; Msiεεεi = Msjεεεj ∀i 6= j
is an asymptotically stable equilibrium point.

Our approach only guarantees local asymptotic stability.
However, convergence seems to be attained in a large neigh-
borhood of the equilibrium point, as we will see in Sect. IV.

C. Formation Metrics

To assess how far a given state x is from a formation
equivalent to x∗, we use the following metrics:

εt = 1
N min
α>0

N∑
i=1

||α(p̄i)− p̄∗i ||
2
, (14)

εθ = 1
N

N∑
i=1

acos
{

1
2 (trace(RT (θ̄θθ

∗
i )R(θ̄θθi))− 1)

}2

, (15)

where the bar operator indicates a normalization process in
which: (1) the centroids are placed at the origin; (2) the
average distance of the cameras to the origin is 1; (3) ||p̄i−p̄∗i ||
is minimized by rotation using the method in [17]. The
notation R(θ) represents the rotation matrix built from the
camera pose parameters θ.

These metrics handle the difference in scaling between the
desired and reached formations. The scaling is not an issue,
as it is a typical feature of vision-based schemes [13]. In
our approach, as in bearing-based formation schemes, the
formation scale can be set by using a pair of leader agents
acting as formation anchors. Moreover, the free scaling factor
may be an advantage when a formation has to move in
constrained environments with obstacles.

IV. SIMULATION RESULTS

A simulation environment was developed in Python. Each
agent is simulated as a pin-hole camera with intrinsic parame-
ters encoded in the camera calibration matrix K ∈ R3×3 with
entries K13 = K23 = 512 and K11 = K22 = 200.

Then, the normalized image coordinates sj as expressed in
(2) can be obtained from pixel coordinates ζj as [sTj , 1]T =

K−1[ζTj , 1]T . Note that the depth Zcj in (4) can not be obtained

from pixel coordinates and in our simulations, we use the real
Zcj . The use of approximate depths will be explored in future
research. Approximate depths should not modify the positive
definiteness of Lsi

L̂+
si

[2]. Each camera has 6 degrees of
freedom (DOF) as described in Sect. II. We use two types of
failure tests regarding the camera Field of View (FOV). The
first test verifies that all M features are in front of the camera.
In the following, a simulation is said to be a failure if it violates
the condition ZCj > 0 for any 1 ≤ j ≤ M . The second test
is used to select the reference and initial configurations, and
checks if all the features projections are inside the camera
image sensor.
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Fig. 4. Example scenario. Image formation errors ||ei|| for each agent along
time (top). Control inputs for one camera for the first 10 seconds (bottom-left)
and for the whole simulation, using a wider y range (bottom-right).

The initial conditions are the poses of the cameras at t = 0.
For testing, 100 scenarios are defined by a set of reference
cameras and a set of M = 30 3D points. The reference
cameras are sampled uniformly from Σr , {x ∈ [−2,−2], y ∈
[−1, 2], z ∈ [0, 3], ψ ∈ [−π, π]}, with φ = θ = 0 to
emulate final poses of the cameras on a hovering quadrotor.
The 3D points are selected randomly and uniformly in Σp ,
{[−2,−2], [−1, 2], [−1, 0]}.

In all the simulations, the roll and pitch control gains are
diminished by a 1:2 gain ratio with respect to the other
components, in order to reduce the occurrence of failures due
to large rotations. The initial conditions are spawned randomly
from the reference cameras as x(0) = x∗+εεε, with εεε a random
vector with a distribution described in the next sections.

A. Example scenario

Let us present a typical scenario where the desired perfor-
mance is achieved using the proportional controller (8). Four
cameras are simulated with a fully connected communication
graph. The initial conditions are taken from a sample with
entries of εεε bounded by ±2 (translations), ±π6 (roll) and
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Fig. 5. Performance for initial conditions increasingly far from the reference camera pose. Each group of 5 box-plots represents the final error values for
the three controllers (8), (12) and (16). The x-axis indicates the increment with respect to the initial conditions, i.e., the boundaries of εεε. The maximum and
average values for each box-plot are shown in red and cyan, respectively. The number of failure cases for each set is displayed below each box-plot.
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Fig. 6. Performance for different graph sizes and random connectivity. Each group of 4 box-plots represents the final errors values for the three controllers,
similar than in Fig. 5. In this case, each step along the x-axis represents an increment in the graph size.

0 (pitch) to emulate initial poses of cameras on a hover-
ing quadrotor, and ±π2 (yaw). The yaw limits are used to
avoid undesired effects due to large rotations on the optical
axis causing unbounded motions, a problem known as the
Chaumette Conundrum [18]. Fig. 2 shows the 3D motion of
the cameras reference frames; their final positions (crosses)
are superposed with the reference cameras. Clearly, the set of
reference cameras poses is an equilibrium point of the MAS
that is expected; in practice, convergence to a broader class of
equivalent formations in the sense defined in Sect. II has been
observed. A deeper analysis of the set of possible equilibrium
points in the 3D space is part of our future work and out
of the scope of this paper. Fig. 3 presents the evolution of
the 3D metrics along time, which reach values below 10−2.
Fig. 4, shows that each component ||ei|| converges to zero,
being consistent with the behavior of the control velocities.

In comparison with the closely related works [13], [14], our
approach works under different conditions and can achieve a
wider range of formations. The method in [13] relies on the
estimation of a geometric constraint valid for planar scenes
and can only solve planar formations, whereas our approach
works for general scenes and can achieve planar and non-
planar formations. In [14], each agent is constrained by IBVS

to reach a fixed pose relative to a leader and the reached
formation is indeed globally predefined, unlike our approach
that can reach equivalent formations that are not limited to be
tied to a common reference.

B. Performance under different initial conditions

To study the extent of the attraction region due to the
local stability, 100 scenarios are defined by a set of reference
cameras and image points. The entries of εεε are given for an
incremental sequence of k steps, leading to boundaries of ± 2k

5

for translations, ±kπ30 for roll, ±π2 for yaw and 0 for pitch. A
fully connected graph is used. For each k, the performance is
assessed with the final image formation error, the 3D metrics
at time 8000s and the amount of failure cases.

The Proportional and P-I controllers are compared using
λ = 0.1, γe = 0.1 and γε = 0.005. Those values were
determined empirically as follows: A series of tests were
performed with different positive values while satisfying the
condition γe > γε. Then, the values leading to the best
performance were selected. The results are depicted in Fig. 5.
As seen in the middle plots, the P-I control reaches lower
values for the image error formation and the 3D metrics, but



failures occur in 3 cases (among 500). Also, both the number
of failures and the final errors increase as the initial conditions
are farther from the references. We attribute these failures
to the large velocities at the beginning of the simulations, a
usual effect of consensus-based controllers which is an issue in
practice due to maximum allowable control inputs. To handle
this, a bounded version of the P-I controller is tested and
compared to the other schemes (right plots):

vi = tanh
(
L+
si (γeei + γεεεεi)

)
. (16)

The results in Fig. 5 show that the bounded control (16)
performs better and reduces the number of failure cases.

C. Influence of the graph size and topology

We have also evaluated our approach under different graph
topologies, with randomly placed reference cameras and in-
creasing the numbers of agents (from 4 to 7). In total, 100
scenarios are used for each graph size with different values
of εεε, bounded as described in Sect. IV-A. The edges are set
randomly as follows. Starting from an empty edge set E , a
random number of edges is chosen from a uniform variable
bounded by the amount of possible edges that can form a
connected graph. Then, an element of the complement of E is
selected with a uniform distribution and added to E . Last, we
filter out the unconnected graphs. Note that isomorphic graphs
may exist. The results in Fig. 6 are consistent when comparing
the different proposed controllers between each other. We note
a decrease in the final errors as |V| increases. This might be an
effect of the average algebraic connectivity, which is related
to the velocity of convergence in consensus systems [3].

D. No reference feature implies consensus

We experimented with the trivial scenario s∗ = 0 where
the system should converge in the image space to si = sj
for all i, j, meaning that all cameras reach the same pose
in the Euclidean space. To evaluate this case, we use the
same scenarios from Sect. IV-C. In all scenarios not ending
in failure, the errors reach 0 values. Overall, only 4/400
experiments end up in failure for the proportional controller
and 5/400 for the P-I controller. In those scenarios, at least
one camera had opposing z-axis to the rest of the agents while
maintaining the features in front of the cameras, leading to a
problem similar to the Chaumette Conundrum [18] and the
controller local solution sends the cameras to infinity.

V. CONCLUSIONS

We have presented a novel distributed vision-based for-
mation approach for agents equipped with a camera, where
the control is done in the image space. Two controllers are
proposed, both relying on relative errors between image points:
proportional and proportional-integral. Local asymptotic sta-
bility has been proven for both controllers. Our approach
provides flexibility in the selection of the target formation,
unlike existing methods that only work for planar formations
or take a leader agent as a common reference. Both controllers,
together with a bounded version of the P-I controller have been

evaluated in simulations for a large set of random scenarios of
initial and reference conditions, different number of agents and
connectivities. The results show the validity of the proposed
controllers to achieve formations only from visual information.

Our future work involves a deeper analysis on the reach-
able equivalent formations. Besides, we plan to extend our
approach to implement it in real scenarios, which requires
detection and matching of image points, an strategy to keep
them in the FOV, as well as a collision avoidance strategy.
With these features, experiments with quadrotors with onboard
cameras could be realized.
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