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In this paper, we address the pursuit/evasion problem of capturing an unpredictable omnidirectional
evader using a Differential Drive Robot (DDR) in an obstacle-free environment. We present three main
contributions: i) We provide a state feedback-based time-optimal motion policy for the DDR. The motion
policy is based on a partition of the state space. One main contribution of this paper is to provide
algebraic equations of the regions’ boundaries of this partition in terms of the state space coordinates.
ii) We estimate the state of the evader based on images using the 1D trifocal tensor. We propose a
new formulation of the estimation of the evader’s state relative to the pursuer. iii) We present a bound,
for conventional cameras, over the pursuer’s field of view that guarantees that, if the evader is initially
visible, it will remain visible (inside the camera’s view) regardless of its motion strategy, until the capture
condition is achieved. We also present an implementation of the pursuer’s motion policy, the estimation
of the evader’s state and also present simulation results of the pursuit/evasion game.

Keywords: Visual Feedback; Unpredictable Evader; Visual Servo-control; State Estimation; Optimal
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1. Introduction

In Ruiz et al. (2013), we have considered the kinematic problem of capturing an omnidirectional
evader using a Differential Drive Robot (DDR) in an obstacle-free environment. The DDR is faster
than the evader, but it can only change its direction of motion at a maximum rate that is inversely
proportional to its maximal translational speed (Balkcom & Mason (2002)). The game is over
when the distance between the DDR and the evader is smaller than a critical value l. The DDR
wants to minimize the capture time while the evader wants to maximize it.
In that work, we presented closed-form representations of the motion primitives and time-optimal

strategies for each player in open-loop. We proposed a partition of the playing space into mutually
disjoint regions where the strategies of the players are well established. This partition is represented
as a graph which exhibits properties that guarantee global optimality. We also analyzed the decision
problem of the game and presented the conditions defining the winner.
In this paper, we also consider the problem of capturing an omnidirectional evader using a DDR,

but the players have different objectives. The DDR also wants to capture the evader in minimal
time but now we assume that the evader moves unpredictably. The main motivation of this work is
as following. Let us assume that the partition of the playing space is found. Let us also assume that
the pursuer executes its time-optimal policy1 but the evader moves unpredictably instead (i.e. its
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1A policy is a rule that tells each player the control it has to apply at each time instant.

1



September 17, 2014 International Journal of Control PaperIJC˙final

motion policy is unknown by the pursuer). If the pursuer executes its optimal policy in open-loop,
i.e. γ∗p(t) (without evader state feedback), and the evader follows a suboptimal policy, i.e. γe(t)
then the pursuer might not be able to capture the evader. A simulation of this situation is included
in Section 6.1. For this reason, in the case of an unpredictable evader, it is crucial for the pursuer
to execute a state feedback-based motion policy. Note that in the case of an unpredictable evader
the partition still provides a time-optimal pursuer motion policy, but the state x(t) of the evader is
needed by the pursuer to execute a state feedback-based time-optimal motion policy i.e. γ∗p(x(t)).
Thus, a novelty of this work is an approach that guarantees a pursuer’s time-optimal policy based
on visual feedback, for the case of an unpredictable evader.
In this work, we benefit from the work presented in Ruiz et al. (2013) and provide three new

contributions. These contributions are:
i) We provide a state feedback-based motion policy for a DDR pursuer to capture an unpre-

dictable evader. For a given state of the system, we provide a method to determine the pursuer’s
control that guarantees capture in minimal time. The main idea behind the approach is to obtain
a closed-form polar representation of the singular surfaces (Başar & Olsder (1999); Isaacs (1965))
and the regions defined by them. In Ruiz et al. (2013) we use the Isaacs’ methodology (Isaacs
(1965)) and we presented a partition of the state space where the dividing surfaces were functions
of the players’ optimal controls and time. In this work, we provide algebraic equations for the sur-
faces that depend only on the state space coordinates. Note that the Isaacs’ methodology provides
the boundaries of such regions as a function of the players’ optimal controls and time. But, that
methodology does not directly provide algebraic equations of the regions’ boundaries in terms of
the state space coordinates. In this paper one of our main contributions is to find these equations.
ii) We estimate the state of the evader based on images taken by the pursuer using the 1D trifocal

tensor (TT). The 1D TT has been used before for visual servoing purposes. In such problem the
location of the robot is estimated in a global reference frame, which is defined by the robot’s
goal. In this paper, the goal of the robot is not defined by a specific location, but the robot’s
goal is to capture the evader, that is to move closer than a given distance from the evader. This
requires defining the evader’s location in a local reference frame defined by the pursuer, which
makes necessary a new formulation for state estimation compared with the one proposed in Becerra
& Sagues (2013). Furthermore, our approach does not require precise camera calibration and it is
valid for different types of central cameras.
iii) We also present a bound over the pursuer’s field of view that guarantees that, if the evader is

initially visible, it will remain visible (inside the camera’s view) regardless of its motion strategy,
until the capture condition is achieved.

1.1 Related Work

The problem we consider in this paper is related to pursuit-evasion games. Many previous research
exists in the area of pursuit and evasion, particularly in the area of dynamics and control in
an environment without obstacles (Başar & Olsder (1999); Isaacs (1965)). The pursuit-evasion
problem is often framed as a problem in noncooperative dynamic game theory (Başar & Olsder
(1999); Shi (2014)).
A pursuit-evasion game can be defined in several ways. In one of them, one or more pursuers

could be given the task of finding an evader (Hollinger et al. (2009); Isler et al. (2005)). To
solve this problem, the pursuer(s) must sweep the environment so that the evader is not able to
eventually sneak into an area that has already been explored. Deterministic (Guibas et al. (1999);
Tovar & LaValle (2008)) and probabilistic algorithms (Chung (2008); Vidal et al. (2002)) have
been proposed to solve this problem. A recent survey of this kind of problem is presented in Chung
et al. (2011).
Alternatively, the pursuer(s) might have as a goal to capture the evader(s), that is, move to a

contact configuration, or closer than a given distance. In the classical differential game, called the
homicidal chauffeur problem (Isaacs (1965); Merz (1971)), a faster pursuer (w.r.t. the evader) has
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as its objective to get closer than a given constant distance (the capture condition) from a slower
but more agile evader in the Euclidean plane without obstacles.
Recent years have seen a growing interest in related problems within the robotics community.

For instance, other related problem, which has been extensively studied, consists of maintaining
visibility of a moving evader in an environment with obstacles (Bandyopadhyay et al. (2007);
Bhattacharya & Hutchinson (2010); Efrat et al. (2003); Jung & Sukhatme (2002); LaValle et
al. (1997); Murrieta et al. (2007); O’Kane (2008)). Game theory is proposed in LaValle et al.
(1997) as a framework to formulate the tracking of a target, and an online algorithm is presented.
In LaValle et al. (1997), an algorithm is presented that operates by maximizing the probability of
future visibility of the evader.
In Efrat et al. (2003), the authors show how to efficiently (low-polynomial) compute an optimal

reply path for the pursuer that counteracts a given evader movement. In O’Kane (2008), a robot
has to track an unpredictable target with bounded speed. The robot’s sensors are manipulated
to record general information about the target’s movements, and avoid that detailed information
about the target’s position be available if the robot’s sensors are accessed by other agent that can
damage the target.
Almost all existing work focuses on the 2-D version of the problem of maintaining visibility of an

evader, but there are just some few works that deal with the 3-D version of it. In Bandyopadhyay
et al. (2007), the authors present an online algorithm for 3-D target tracking among obstacles,
using only local geometric information available to the robot’s visual sensors.
The work presented in Bhattacharya & Hutchinson (2010) addresses the problem of maintaining

visibility of the evader as a game of degree (i.e. the emphasis is over the optimization of a given
criterion and not over the problem of deciding who is the winner). The pursuer and the evader are
omnidirectional (holonomic) systems in an environment containing obstacles. In Bhattacharya &
Hutchinson (2011), the problem of maintaining visibility of a moving evader is addressed as a game
of kind (deciding which player wins). Again, both the pursuer and the evader are omnidirectional
systems.
Others have studied an extended version of the problem involving multiple participants of each

kind (evaders and pursuers) (Bhadauria & Isler (2011); Jung & Sukhatme (2002); Parker (2002)).
For example, Parker (2002) developed a method that attempts to minimize the total time in which
the evaders escape surveillance.
Maintaining visibility of a moving agent may be used in a variety of applications. For example,

in Tekdas et al. (2010), the authors noticed the similarity between pursuit-evasion games and
mobile-routing for networking. Applying this similarity, they proposed motion planning algorithms
for robotic routers to maintain connectivity between a mobile user and a base station. That work
also includes a proof-of-concept implementation. Similarly, in Stump et al. (2011) the authors
consider the problem of deploying robots in formations that ensure network connectivity between
a fixed base station and a set of independent agents wandering in the environment. The authors
solved robots placements by finding mutually-visible configurations in a polygonal decomposition
of the environment map.
Our problem is also related to the problem of finding optimal paths for nonholonomic robots

(Balkcom & Mason (2002); Soueres & Laumond (1996); Wang et al. (2009)). These works
belongs to the group of optimal control methods that are executed in open-loop. Such methods
might benefit from results of the research on visual servoing of wheeled mobile robots (Becerra &
Sagues (2013)). The work herein is a contribution to the efforts of executing an optimal policy
in closed-loop, which is achieved for instance in Lopez-Nicolas et al. (2010). In that paper, the
authors present a visual servo controller that effects optimal paths for a nonholonomic differential
drive robot with field-of-view constraints. In the context of vision-based control, our work is related
to the position-based visual servoing approach (Chaumette & Hutchinson (2006)), given that the
proposed optimal policy relies on the estimation of the state of the system. However, in contrast
to the classical position-based visual servoing approach in our proposed approach, the goal for
the robot is not to reach a place where a target image is observed, but instead its objective is to
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bring the evader to a specific locus of points called the usable part (Isaacs (1965)). Furthermore,
the proposed state estimation using the 1D TT does not require precise camera calibration. In
the literature, the 1D TT has been used to estimate the pose of a robot from visual data for
visual servoing purposes (Becerra & Sagues (2013)). In this work a memoryless approach is used.
Memoryless means that the pose parameters are estimated at each iteration directly from the
current values of the tensor elements without using previous values of the estimated state.

2. System Model

We can describe the kinematics of the game in a global coordinate system (refer to Fig. 1(a)),
called in Isaacs (1965) the realistic space. The pose of the DDR is represented by (xp, yp, θp) and
the position of the omnidirectional evader by (xe, ye), both at time t. The state of the system is
denoted as (xp, yp, θp, xe, ye) ∈ R2 × S1 × R2.
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Figure 1. System models

2.1 Reduced space

To simplify the problem, we state the game in a coordinate system that is fixed to the DDR (see
Fig. 1(b)), called in Isaacs (1965) the reduced space. In the reduced space all the orientations are
measured with respect to the positive y-axis (DDR’s heading). We denote the state of the system
as x(t) = (x, y) ∈ R2. Using the coordinate transformation given by

x = (xe − xp) sin θp − (ye − yp) cos θp

y = (xe − xp) cos θp + (ye − yp) sin θp

v2 = θp − ψe

(1)

we obtain the following model of the kinematics in the reduced coordinate system (see Ruiz et al.
(2013) for details).

ẋ =

(
u2 − u1

2b

)
y + v1 sin v2

ẏ = −
(
u2 − u1

2b

)
x−

(
u1 + u2

2

)
+ v1 cos v2

(2)

where u1, u2 ∈ [−V max
p , V max

p ] are the DDR’s controls, and they correspond to the angular velocities
of its wheels, u1 is the angular velocity of the left wheel and u2 of the right wheel. v1 ∈ [0, V max

e ]
and v2 ∈ [0, 2π) are the evader’s controls associated to its speed and motion direction, respectively,
in the reduced coordinate system. We can express this set of equations in the form ẋ = f(x, u, v),

where u = (u1, u2) ∈ Û = [−V max
p , V max

p ]×[−V max
p , V max

p ] and v = (v1, v2) ∈ V̂ = [0, V max
e ]×[0, 2π).
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Also one has the following inequality (3), which gives the maximum rate of rotation ωmax for the
pursuer, given a specified linear speed ν (Balkcom & Mason (2002); Ruiz et al. (2013)).

ω =
u2 − u1

2b

ν =
u1 + u2

2

|ωmax| ≤ 1

b
(V max

p − |ν|)

(3)

where ν is the DDR’s translation speed and ω its angular speed.
We make use of the following definitions for the rest of the paper: ρv = V max

e /V max
p is the ratio

between the maximum translational speed of both players, and ρd = b/l is the ratio of the distance
between the center of the robot and the wheel location b and the capture distance l. Note that
l ≥ b, otherwise the capture distance would be located inside the robot.

3. Partition Method for a State Feedback-based Motion Policy

In this section a partition of the state space into mutually disjoint regions is presented. This
partition was found using Isaacs’ methodology (Isaacs (1965)), which combines the theory of
optimal control and differential games (Shi (2014)).
In Fig. 2(a), we have a graphical representation of the regions integrating the partition of the first

quadrant of the reduced space. The frontiers between regions are called singular surfaces (Isaacs
(1965)). In this partition, there are 4 singular surfaces (Ruiz et al. (2013)): universal surface (US,
black bold line), transition surface (TS, red curve), the barrier surface (BS, magenta straight line)
and dispersal surface (DS, orange line). If the pursuer applies its time-optimal motion policy the
barrier cannot be crossed by the evader. The universal surface has the property that whenever the
evader is located at US the time-optimal motion policy for the pursuer is to move in a straight
line to capture it. The limit of the US is at yc = l/ρv (see Fig. 2(a)). The transition surface is
the place where a control variable abruptly changes its value. A dispersal surface (DS) is defined
in Isaacs (1965) as the locus of initial conditions along which the optimal strategy of one player
or the optimal strategies of both players are not unique. At the DS, the choice of the control
of one player must correspond to the choice of the control of the other player. In this problem,
the DS corresponds to configurations where the pursuer’s heading (orientation of the wheels) is
perpendicular to the evader’s location, and the DDR has the option to rotate either clockwise or
counterclockwise to catch the evader. To avoid the selection problem, the instantaneous velocity
vector of both players should be known, but in this problem, it is assumed that this information
is not available. Therefore, a solution will be to employ an instantaneous mixed strategy (Isaacs
(1965)), which means the randomizing of a player’s decision in accordance with some probabilistic
law until the system is no longer on the DS. The trajectories generated by the correct pair of
controls will lead to the same optimal time-to-go. A more detailed description of each singular
surface in the partition is presented in Ruiz et al. (2013). The partition also contains the terminal
surface and the usable part (UP). The terminal surface is the set of points that represents an
opportunity for the DDR to capture the evader (Isaacs (1965)). In this game it is a circle of radius
l. The usable part (UP, black bold arc in Fig. 2(a)) is the portion of the space where the pursuer
guarantees capture of the evader regardless of the choice of controls by the evader (Isaacs (1965)).
The boundary of the usable part is the point BUP shown in Fig. 2(a).
The regions are equivalence classes under a relation given by the control, i.e. in the interior of

each region the pursuer applies always its feedback-based time-optimal motion policy based on the
location of the evader over the reduced space. This policy for the first quadrant is summarized in
Table 1. In the remaining quadrants the pursuer time-optimal motion policy is analogous.
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Figure 2. Partition of the first quadrant

Evader in the reduced space u1, u2
US u1 = +V max

p , u2 = +V max
p

I u1 = +V max
p , u2 = +V max

p

II u1 = +V max
p , u2 = −V max

p

III u1 = +V max
p , u2 = −V max

p

DS Randomized strategy

Table 1. Pursuer’s feedback-based time-optimal motion policy in quadrant 1.

If the evader is located in Region I then the DDR moves in a straight line in the realistic space to
capture the evader. Region II corresponds to configurations in the realistic space where the DDR
initially rotates in place, but it is not necessary to align completely the DDR’s heading with the
segment joining the positions of both players in order to capture the evader. Region III in the
reduced space corresponds to configurations in the realistic space where the DDR also rotates in
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place until it aligns its heading with the segment joining the players’ position. The frontier between
Region II and Region III is established by the tributary trajectory2 (green dashed line) shown in
Fig. 2(a).
From Table 1, we see that the US and Region I have associated the same optimal controls, and the

same happens with regions II and III. Therefore, for the purposes of this work the partition shown
in Fig. 2(a) might be simplified to one in which the US and Region I are merged and Region II and
Region III are merged too. Furthermore, in this work it is assumed that no a priori information is
available about the evader’s motion policy and that it cannot be learned by the pursuer –i.e., the
evader is totally unpredictable–. Therefore, the dispersal surface is also merged with region II and
III. Hence, let RS= US ∪ Region I and RR= Region II ∪ Region III ∪ DS. Refer to Fig. 2(b). In
the remaining of this paper, we shall provide algebraic equations for the singular surfaces in terms
of the reduced space polar coordinates (r, ϕ). Such equations are used to identify the region, either
RS or RR, of the reduced space partition where the evader belongs.
For convenience, a state (x, y) in the reduced space is represented in polar coordinates (r, ϕ);

recall that the orientations are measured with respect to the positive y-axis.

r =
√
x2 + y2

ϕ = tan−1 x

y

(4)

To make this paper self-contained, we include an Appendix with four lemmas obtained in Ruiz
et al. (2013), which are used in this work. Below, notation established in Ruiz et al. (2013) is used
too. Specifically, τ = tf − t denotes the retro-time, in which tf is the termination time of the game.

Vx and Vy denote the partial derivatives ∂V
∂x and ∂V

∂y of V , the value of the game. Vx and Vy can be

interpreted as Lagrange multipliers. In Ruiz et al. (2013), the angle s denotes the angle measured
from the positive y-axis to a point in the usable part, and S denotes a bound in s corresponding
to the boundary of the usable part (BUP). Finally, λ is a constant value.
The idea behind the approach presented here is comparing the distance r from the origin of the

reduced space to a given state (x, y) (evader’s location over the reduced space) with the distance
from the origin to the singular surfaces delimiting the regions RS and RR in the reduced space. In
Fig. 2(b), one can observe that if ϕ = 0 then the state does not belong to region RR. Note that the
US is easily characterized by ϕ = 0 and r ≥ yc. One can also observe that Region RR is bounded
by the transition surface, the barrier and the terminal surface. Hence, if ϕ ∈ (0, π/2] we have three
possible choices: one has to compare the distance r with (1) the distance from the origin to the
transition surface or (2) the distance rB from the origin to the barrier or (3) the distance l from
the origin to the terminal surface.
In Fig. 2(b), one can also observe that the transition surface is bounded by the positive y-axis

and the barrier. Once one finds the point (x, y) in the reduced space delimiting the transition
surface and the barrier, it is straightforward to find the orientation of this point, by simply using
ϕ = tan−1(xy ). This is the upper bound orientation that has to be compared with the transition

surface. In an analogous way, using the point of the barrier over the terminal surface (BUP) with
respect to angle ϕ, one can find the upper bound orientation that has to be compared with the
barrier. The remaining states have to be compared with the terminal surface.
In Lemma 1 the state (x, y) delimiting the transition surface and the barrier surface is established.

In Lemma 2, an equation defining the transition surface in terms of the reduced space coordinates
(r, ϕ) is found. In Lemma 3, the distance from the origin to the barrier rB is found in terms of the
reduced space coordinates (r, ϕ).

2A tributary trajectory is an optimal trajectory of the system in the reduced space that reach the (US).
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Lemma 1: The state (x, y) delimiting the TS and the BS is given by x = − bV max
e cosS
V max
p

+ l sinS and

y = − bV max
e cos2 S

V max
p sinS + b cosS

sinS + l cosS.

Proof. From Lemma 5 in Appendix A, we know that the barrier starts (ends in retro-time) at
τ = (b cosS)/(V max

p sinS), where S = cos−1(V max
e /V max

p ). The trajectory of the barrier in the first
quadrant is given by

x(τ) = −τV max
e sinS + l sinS

y(τ) = −τV max
e cosS + V max

p τ + l cosS
(5)

Hence, we have that the state delimiting the TS and BS is given by

x = −bV
max
e cosS

V max
p

+ l sinS

y = −bV
max
e cos2 S

V max
p sinS

+
b cosS

sinS
+ l cosS

(6)

The orientation ϕTS of this state is given by ϕTS = tan−1 x
y . The result follows.

In contradistinction to the US and the BS, the TS is not a trajectory traveled by the system
in the reduced space, and it cannot be directly obtained from the backward integration of the
motion equations. In this work, we construct an implicit representation in polar coordinates (r, ϕ)
using the expressions from the player’s optimal controls. In the first quadrant, the TS represents
the locus of points where the DDR switches one of its controls, in particular from Lemma 6 in
Appendix A, we found that u∗2 switches from the value V max

p to −V max
p . The expression defining

the control u∗2 at the moment of the switch characterizes the conditions that must satisfy the points
(x, y) in the reduced space. In this work, the control expressions give us a relation between the
polar coordinates (r, ϕ) of the points (x, y) and the values of the adjoint variables Vx and Vy at the
moment of the switch (see Lemma 7 in Appendix A). Using this characterization of the TS we can
determine if a point (r, ϕ) belongs to the surface or if it is above or below it.

Lemma 2: If the left term of Eq. (7), presented below is greater than zero then the state is above
the transition surface and it belongs to Region RR.

r4 sin2 ϕ cos2 ϕ+ r4 sin4 ϕ+ 2br3 sin3 ϕ

+ b2r2 sin2 ϕ− V max
e

2

V max
p

2 b
2r2 cos2 ϕ+ 2

V max
e

V max
p

blr2 sinϕ cosϕ

+ 2
V max
e

V max
p

b2lr cosϕ− l2r2 sin2 ϕ− 2bl2r sinϕ− l2b2 = 0

(7)

Proof. In the first quadrant, the TS represents the locus of points where the DDR switches one of
its controls, from Lemma 6 in Appendix A, we know that for the first quadrant, u∗2 switches first,
therefore along the TS the expression defining the control u∗2 is given by

yVx − xVy − bVy = 0 (8)

where (x, y) are the coordinates of the system in the reduced space when the DDR switches controls.
In Lemma 7 in Appendix A, from the backward integration of the adjoint equation starting at the
UP, we find that Vx = λ sin s and Vy = λ cos s just before the switch. Therefore Eq. (8) takes the
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form

yλ sin s− xλ cos s− bλ cos s = 0 (9)

where s is the angle of the point in UP, whose optimal trajectory from the UP to the TS intersects
the point (x, y). Doing some algebraic manipulation of Eq. (9), we find that

tan s =
x+ b

y
(10)

From Lemma 8 in Appendix A, we know that all retro-time straight line trajectories in the reduced
space that have an initial orientation s ∈ (tan−1(ρvρd), cos

−1(ρv)] in the UP, reach the TS. The
straight line trajectories in the reduced space starting at UP are given by

x(τ) = −τV max
e sinS + l sinS

y(τ) = −τV max
e cosS + V max

p τ + l cosS
(11)

From Lemma 6 in Appendix A, we know that the DDR switches u∗2 at τ = (b cos s)/(V max
p sin s).

Thus, the x-coordinates along the TS are given by

x =
−bV max

e cos s

V max
p

+ l sin s (12)

Recalling that sin(arctan(x)) = x√
1+x2

and cos(arctan(x)) = 1√
1+x2

, and substituting Eq. (10) into

Eq. (12), we have that

x =
−bV

max
e

V max
p

+ l
(
x+b
y

)
√

1 +
(
x+b
y

)2
(13)

Doing some algebraic manipulation of the expression above, and recalling that x = r sinϕ and
y = r cosϕ, we find that

r4 sin2 ϕ cos2 ϕ+ r4 sin4 ϕ+ 2br3 sin3 ϕ

+ b2r2 sin2 ϕ− V max
e

2

V max
p

2 b
2r2 cos2 ϕ+ 2

V max
e

V max
p

blr2 sinϕ cosϕ

+ 2
V max
e

V max
p

b2lr cosϕ− l2r2 sin2 ϕ− 2bl2r sinϕ− l2b2 = 0

(14)

The result follows.

In the next lemma an equation establishing the distance rB is found. Using this equation, one
can compare the distance r and the distance rB to identify if the evader’s state belongs to region
RR.

Lemma 3: The distance rB from the origin of the reduced space to a point (r, ϕ) ∈ BS is given by
Eq. (15):

rB =
V max
p l sinS

V max
p sinϕ− V max

e sin(ϕ− S)
(15)

9



September 17, 2014 International Journal of Control PaperIJC˙final

Proof. We know that the barrier in the first quadrant is given by

x = −τV max
e sinS + l sinS (16)

y = −τV max
e cosS + τV max

p + l cosS (17)

where S = cos−1(V max
e /V max

p ) From Eq. (16), we have that

τ =
l sinS − x

V max
e sinS

(18)

and from Eq. (17), we have that

τ =
l sinS − y

V max
e sinS − V max

p

(19)

Equating Eq. (18) and Eq. (19), we obtain

−V max
p l sinS + xV max

p = −V max
e y sinS + V max

e x cosS (20)

Substituting x = r sinϕ and y = r cosϕ in the equation above, and applying some trigonometric
identities, we have that

rB =
V max
p l sinS

V max
p sinϕ− V max

e sin(ϕ− S)
(21)

The result follows.

The next theorem establishes which are the controls that the pursuer must apply to capture the
evader in minimum time according to the region in the reduced space where the evader is located.

Theorem 1: The optimal controls for the pursuer are u1 = +V max
p , u2 = −V max

p if

(r, ϕ) ∈ RR or equivalently


ϕ ∈ (0, ϕTS) and Eq.(7) > 0 or

ϕ ∈ [ϕTS , ϕB] and r > rB or

ϕ ∈ (ϕB,
π
2 ] and r ≥ l

(22)

Otherwise the optimal controls are u1 = +V max
p , u2 = +V max

p , except when r < l establishing that
the evader capture has been achieved.

Proof. The transition surface (TS) is delimited in ϕ by the interval (0, ϕTS). By Lemma 1, ϕ = ϕTS

represents an upper bound of the transition surface with respect to ϕ. By Lemma 2 , if the left term
of Eq. (7) is greater than zero then the evader state (r, ϕ) is above the transition surface. Hence,
if the left term of Eq. (7) > 0 and ϕ ∈ (0, ϕTS) then the evader state (r, ϕ) belongs to region RR.
The barrier (BS) is delimited in ϕ by the interval [ϕTS , ϕB]. By Lemma 3, the distance from the
origin of the reduced space to a point in the barrier is given by Eq. (15). By Lemma 5 in Appendix
A, ϕB = cos−1(V max

e /V max
p ) (Ruiz et al. (2013)). Therefore, if r > rB and ϕ ∈ [ϕTS , ϕB] then the

evader state (r, ϕ) belongs to region RR. Finally, the portion of the terminal surface corresponding
to a boundary of region RR is delimited by the interval (ϕB,

π
2 ). Hence, if r ≥ l and ϕ ∈ (ϕB,

π
2 )

then the evader state (r, ϕ) belongs to region RR. This completes the proof.

10
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4. State Determination Using Visual Information and the 1D Trifocal Tensor

In this section, we define an adequate framework to retrieve from the 1D Trifocal Tensor (TT) the
relative geometry between a pursuer carrying a camera and an omnidirectional evader that can be
seen by the pursuer’s camera along the game. The 1D TT is a geometric constraint that relates the
visual information from three views of the same scene, with the corresponding camera positions
and orientations, in the frame of planar motion.
In general, having two images of an adequate pattern of 3D points, which are captured from

two collinear camera locations in a plane where the relative distance between them is known, it is
possible to estimate the location and orientation of the third camera in the same plane from the
image of the pattern in this camera through the 1D TT relating the three images.
First, we present the general framework of the 1D TT and next, we formulate the particular case

for the pursuer-evasion game. The 1D TT has two main advantages that make it interesting for
robotics applications: 1) the 1D TT can be estimated without a precise camera calibration, and
2) the estimation method based on the 1D TT is similar for conventional cameras and for central
catadioptric systems assuming that all of them approximately obey the generic central camera
model (Geyer & Daniilidis (2000)).

(a)

(b)

Figure 3. Formulation to obtain bearing measurements as a one-dimensional projection valid for different types of central
cameras. (a) Omnidirectional camera looking upward. (b) Conventional camera looking forward. The right panels depict bird-

eye’s views of the cameras

Under the 1D projective formulation shown in Fig. 3, let us consider three 1D projective points
in homogeneous coordinates u = [u1,u2]

T , v = [v1,v2]
T and w = [w1,w2]

T , which are bearing
measurements that represent the projections of a point X2D

c from three different camera locations.
We assume that the camera locations are constrained to the x-y plane. For an omnidirectional
camera, each one of the 1D projective points is given as u1D

i = [sin θ, cos θ]T (see the right panel

of Fig. 3(a)). For a conventional camera, the 1D projective points are given as ui = [un, 0]
T , where

un is the x-coordinate of the normalized image point (see the right panel of Fig. 3(b)). un can be
obtained from the image x-coordinate u in pixels as follows:

un =
1

fx
(u− u0) (23)

11
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where fx is the focal length of the camera in terms of pixel dimensions in the x-direction and u0
is the x-coordinate of the principal point in pixels. Both parameters fx and u0 can be estimated
as proposed in Faugeras et al. (2000) from 3 images obtained from 3 different camera locations.
This may be done off-line in the initialization phase of the procedure (see Algorithm 1).
The TT establishes a relation between the homogeneous image coordinates u,v,w and the

corresponding camera locations (Becerra & Sagues (2013); Guerrero et al. (2008)). Consider
a point X in a 2D space given in homogeneous coordinates as shown in Fig. 4. Three camera
locations are represented with a global reference frame attached to the second view, and the point
X is expressed in that frame. For each view, the line parallel to the local x-axis represents the bird-
eye’s view of the image plane if the camera is conventional and the circle represents the bird-eye’s
view of the image plane if the camera is omnidirectional. The 1D projective formulation of the point
X for each view results in the bearing observations u = [u1,u2]

T , v = [v1,v2]
T and w = [w1,w2]

T ,
obtained as explained in Fig. 3 for different types of cameras.

Figure 4. Bearing observations u, v, w in the framework of the 1D TT

Note that, the position vector of the point X from each local reference frame can be expressed as
λ1u, λ2v and λ3w, respectively, where λ1, λ2 and λ3 are scale factors related to the corresponding
magnitude of the position vectors. The following trifocal constraint relates the visual data u, v
and w:

2∑
i=1

2∑
j=1

2∑
k=1

Tijkuivjwk = 0 (24)

where the tensor elements Tijk are given by:

Tijk =



T111
T112
T121
T122
T211
T212
T221
T222


=

1

α



ty1
sϕ3 − ty3

sϕ1
ty1

cϕ3 + tx3
sϕ1

ty3
cϕ1 − ty1

cϕ3
ty1

sϕ3 − tx3
cϕ1

−ty3
cϕ1 − tx1

sϕ3
tx3

cϕ1 − tx1
cϕ3

tx1
cϕ3 − ty3

sϕ1
tx3

sϕ1 − tx1
sϕ3


(25)

where α is the scale factor introduced by the estimation of the 1D TT from visual data and
txi

= −xicϕi − yisϕi and tyi
= xisϕi − yicϕi for i = 1, 3. Notice that txi

and tyi
are the relative

positions between cameras by defining local reference frames in each camera as depicted in Fig. 5.

12
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Figure 5. Relative locations from local reference frames C1 and C3 to C2

The proposed strategy for determining the relative location and pose between the pursuer and
evader entails solving the expression in Eq. (24). Since Eq. (24) is a homogeneous equation, the
eight elements of the 1D TT can only be estimated up to a scale factor. Thus, the 1D TT has
seven degrees of freedom and we have to stack at least seven Eqs. (24) and solve the resultant
linear system of equations. Therefore, in general, seven triplets of image point correspondences are
needed to estimate the 1D TT. Note that in general this system of linear equations does not have
full rank, so that one must use methods like SVD for solving it.
Our goal is to estimate the evader’s position in the reduced space (a local reference frame defined

over the pursuer’s location; see Fig. 1(b)) using the 1D TT. To do so, it is necessary to have, in
addition to the image obtained by the pursuer at the current location, –which in what follows
will correspond to the image taken from the camera C3– two additional images taken as part of
the initialization procedure; i.e., images taken from camera positions C1 and C2. These auxiliary
locations are determined with respect to the evader: a first image is taken at a distance de directly
in front of the evader. Then, the pursuer’s camera moves backward and a second image is taken at
a distance di from C2. Note that these 2 images are taken only once and do not change.
In the local reference frame C2, which is attached to the evader and hence moves and rotates

together with it, the position and orientation of camera C1 are ϕ1 = tx1
= 0; ty1

= di, and the
evader’s position is (0, de), see Fig. 6.
To obtain the position (x, y) of the evader in the local reference frame attached to C3 –i.e., its

position in the reduced space of the pursuer– one uses first the 1D TT to obtain the pose parameters
of the current pursuer’s location C3 with respect to C2, measured with respect to a local reference
frame attached to C3, i.e. tx3

, ty3
and ϕ3 in Fig. 6.

The tensor elements in Eq. (25) now become



T111
T112
T121
T122
T211
T212
T221
T222


=

1

α



disϕ3
dicϕ3

ty3
− dicϕ3

disϕ3 − tx3

−ty3

tx3

0
0


(26)

The pose parameters of the current pursuer’s location C3 measured from a local reference frame
attached to C3 are given by:

13



September 17, 2014 International Journal of Control PaperIJC˙final

evader

y

x

y

x

C3

C

y

x

φ 3

t x3

t y

t

3

1y = d i

d e

C1

2

tx
1
= 0

φ 1 = 0

Figure 6. Geometric configuration for estimation of the relative locations between evader and pursuer in the framework of the
1D TT

ϕ3 = tan−1 (T111/T112) (27)

tx3
= αT212

ty3
= −αT211

where the overall scale factor can be computed as:

α = (di cosϕ3) /T112 (28)

The evader’s position in the local reference frame C3 (i.e. the evader’s coordinates in the reduced
space of the pursuer) are then:

x = tx3
− sinϕ3de

y = ty3
+ cosϕ3de (29)

Which may be transformed to polar coordinates using Eq. (4), and then to determine the regions
of the state space partition of Fig. 2(b) where the system is located and hence, the optimal control
policy for the pursuer according to Theorem 1.
In the case of conventional cameras, the parameters u0 and fx that appear in Eq. (23) must be

estimated as part of the initialization procedure. If the procedure of Faugeras et al. (2000) is used
the only thing one needs, in addition to the images taken from the camera locations C1 and C2 is
a third image taken from an arbitrary location, provided that this camera’s orientation is different
from the ones of C1 and C2. In the case of omnidirectional cameras this step is not needed.
A necessary condition for the good estimation of the 1D TT is that at least seven of the used

image points have different bearings, otherwise, the estimation is unstable and the resultant tensor
is not a valid constraint. Since the 1D TT is estimated from image points detected over the body

14



September 17, 2014 International Journal of Control PaperIJC˙final

of the evader, it can be ensured to have different bearing measurements by using an appropriate
visual pattern over the evader.
It is worth noting that during the pursuer motion, it might happen (although with a very low

probability) that the current image becomes the same as one of the auxiliary images. This situation
is a degenerated case of the 1D TT formalism and the state estimation will fail. This case can be
detected by using an error value defined in Guerrero et al. (2008), which is the average difference
between the observed coordinates and the coordinates estimated from transfer of points using the
trifocal tensor.
Algorithm 1 summarizes the whole proposed time-optimal motion policy based on state estima-

tion from images, including a strategy for dealing with degenerated cases where two images become
the same. Notice that if a degenerated situation happens then the current position of the evader
is directly in front of the pursuer, which means that the evader is at the US in the reduced space.
Therefore, the controls corresponding to the US must be applied.

Initialization:
1. Take the images I1 and I2 associated to C1 and C2;
2. Measure the distances di and de;
3. For conventional cameras, estimate the camera parameters u0 and fx, using images I1, I2 and a third
image I3 taken from a different location and orientation using the method of Faugeras et al. (2000).
Input: Image I3 associated to C3, di and de;
Output: Pursuer’s optimal controls u1 and u2;
4. Automatic matching of n > 7 image points from I1, I2 and I3;
5. 1D projective formulation of the n corresponding image points to have um, vm and wm for
m = 1, ..., n;
while capture ̸= true do

6. Estimate the 1D TT through an SVD approach;
if E >threshold (E as defined in Guerrero et al. (2008)) then

7. Apply u1 = +V max
p and u2 = +V max

p ;
else

8. Compute r and ϕ from the estimated evader position given by Eq. (4);
9. Apply the pursuer’s optimal controls u1 and u2 according to Theorem 1;

end if
10. Track the corresponding image points on the new I3 and formulate wm for m = 1, ..., n;

end while
Algorithm 1: Algorithm for the time-optimal motion policy based on state estimation from
images.

5. A bound for the angle delimiting the field of view of the pursuer and other
sensing issues

In this section, we will show that if the pursuer’s sensor is a pinhole camera with field of view
(FOV) that includes the boundary of the usable part (BUP), then if the evader is visible at the
beginning of the game and the pursuer follows the optimal feedback policy then the evader will
remain visible until the capture is achieved regardless of the evader’s motion strategy.
Without loss of generality assume that the evader is in the first quadrant of the reduced space

(the proofs for the remaining quadrants are analogous), and assume that the pursuer’s FOV is
delimited by a line in the reduced space with angle ϕv (measured from the positive y-axis). The
angle defining the boundary of the usable part (BUP) is S = cos−1(ρv) (Ruiz et al. (2013)) and
assume that S < ϕv (see Fig. 7). We then have the following.

Theorem 2: If the evader is in position (r0, ϕ0) in the reduced space at the beginning of the game
with ϕ0 < ϕv and S < ϕv then, if the pursuer applies its time-optimal feedback policy the evader’s
position (r, ϕ) will satisfy ϕ < ϕv at all times until the capture is achieved regardless of the evader’s
motion strategy.
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Figure 7. Angle S and angle ϕv

To prove this theorem, we need the following lemma.

Lemma 4: If the evader is at position (L, ϕ) in region RR with L ≥ l and the pursuer applies its
time-optimal feedback policy then ϕ̇ < 0 regardless of the evader’s motion strategy.

Proof. The Cartesian coordinates of the evader in the reduced space are given by:

x = L sinϕ

y = L cosϕ
(30)

Assuming that the pursuer does not move, its velocities are given by:

ẋ = v1 sin v2

ẏ = v1 cos v2
(31)

Using Eqs. (30) we obtain an expression for tanϕ, and we differentiate this to obtain an expression
for ϕ̇e, which represents the rate of change of ϕ when the pursuer does not move.

d

dt
tanϕ =

d

dt

x

y

ϕ̇e sec
2 ϕ =

yẋ− xẏ

y2

ϕ̇e =
cosϕẋ− sinϕẏ

L

(32)

Substituting Eq. (31) in Eq. (32), we obtain

ϕ̇e =
v1 sin(v2 − ϕ)

L
(33)

The evader’s controls that maximize ϕ̇e are v1 = V max
e and v2 = ϕ+ π

2 so that
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ϕ̇e
max

=
V max
e

L
(34)

On the other hand, the optimal feedback policy of the pursuer in region RR dictates that it
rotates in place at maximal angular velocity ωmax. From the DDR control model (refer to Eq. (3)),
one has that if the DDR pursuer does not translate and it rotates at maximal angular velocity in
the direction that makes ϕ decreases as much as possible then

ωmax =
V max
p

b
(35)

Subtracting this pursuer’s maximal angular velocity from ϕ̇e
max

, one has the resulting ϕ̇ in the
reduced space.

ϕ̇ ≤ ϕ̇e
max − ωmax (36)

Therefore, one will have that ϕ̇ < 0 if ϕ̇e
max − ωmax < 0, i.e.,

V max
p

b
>
V max
e

L
(37)

but this inequality always holds, since by the definition of this pursuit/evasion problem V max
p >

V max
e , l ≥ b, and if L < l then the capture occurs.

Based on Lemma 4, the proof of Theorem 2 is provided:

Proof. First, if the evader at position (L, ϕ) is in region RR, with ϕ < ϕv, by Lemma 4 ϕ̇ < 0 in this
region, so it will eventually falls into RS . In this case, since the time-optimal feedback policy for
the pursuer dictates that it moves in a straight line in RS , it is possible that ϕ̇ > 0 in this region;
however, ϕ never becomes greater than S since to do so, the evader should either move in region
RR having ϕ̇e

max
> ωmax (that is ϕ̇ > 0), which from Lemma 4 is impossible, or cross the barrier

surface (BS) which is also impossible (see Ruiz et al. (2013)). This completes the proof.

Remark 1: In Theorem 2, both ϕ0 < S or ϕ0 > S are allowed.

Remark 2: The proposed method is able to estimate the correct evader’s position on the reduced
space of the pursuer, even if the evader rotates, provided that at least seven points of the visual
target are visible to the pursuer.

Another sensing issue is that the pattern of points on the evader (visual target), which is used to
estimate the state of the evader, can be occluded by the evader’s body. Whether or not some (or
even all) points on the visual target will be occluded from the pursuer’s location by the evader’s
body depends on the evader’s appearance and on the evader’s motion over the reduced space (i.e.
relative to the pursuer). In this work we assume that enough points for the evader’s state estimation
(at least 7) belonging to visual target will not be occluded during the game.
However, we consider that it may be feasible to relax this assumption using several visual targets

on the evader’s body. If the evader can be marked with several visual targets then it is possible to
guarantee that at least one visual target is always visible to the pursuer. In many cases, this may
be ensured simply by placing copies of this target symmetrically around the center of the evader’s
body. In this case only two auxiliary images are needed as before at the initialization phase.
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Finally, it is interesting to notice that whenever an omnidirectional camera is used and the evader
lies outside the set of angles delimited by angle S, the complete state of the evader does not need
to be estimated. The bearing measurement of the visual target computed directly in the image
can be used to detect this case e.g. by computing the center or mass (or first moment) of the
point features. The pursuer must rotate in place at maximal speed to bring the evader within the
bound established by angle S. Then, when the evader lies within the bounded field of view the
state estimation is performed as explained above.

6. Simulations

In this section, we present some simulation results of the pursuit-evasion game. We use m/s as
units for velocities, meters for distance, and seconds for time. In the realistic space, we will describe
trajectories for both the pursuer and the evader over a global reference frame in a Cartesian plane.
In the reduced space, we will refer to trajectories of the system, i.e., relative motions of the evader
with respect to the pursuer in a local reference frame defined by the pursuer.
First, we show the case in which the pursuer does not use a closed-loop motion policy. Second,

we present simulations where the pursuer uses a conventional camera to obtain point features that
allow it to estimate the evader’s state. Finally, we show simulation where the pursuer uses an
omnidirectional camera.
We present five simulation experiments, in all the simulations the parameters were V max

p = 1,
V max
e = 0.5, b = 1 and l = 1.We have included a video, which is available at the multimedia material

of this paper, showing the simulation results presented in the third (Figs. 10-12(c)), fourth (Figs.
13(a)-15(b)) and fifth (Figs. 16-18(c)) experiments.

6.1 Open-loop pursuer motion policy

The two simulations presented in this subsection have as objective to show that it is crucial for
the pursuer to use a state feedback-based motion policy in the case of an unpredictable evader. In
both simulations the evader is initially located at (x = 1.08, y = 0) in the reduced space.
In the first simulation, we will show an example where both players apply their optimal strategies.

The pursuer wins by capturing the evader. The pursuer captures the evader in 3.71 sec.
Fig. 8(a) shows in the realistic space the trajectories of the evader and the pursuer. In Fig. 8(a),

PI and EI are the initial positions of the pursuer and the evader, and PF and EF the positions
where capture is attained.
Figure 8(b) shows the system trajectory on the reduced space for the same experiment. In this

figure, the initial position of the evader in the reduced spaces is denoted by an I and the final one
by an F.
In Fig. 9(a), we can see the trajectories of both players when the evader follows a suboptimal

strategy and the pursuer applies the open-loop optimal strategy, i.e., the pursuer does not use
a feedback strategy based on the evader’s location. The same maximal players’ speeds and initial
configurations, as in Fig. 8(a), were used.
In this case, we can observe that when the DDR uses an open-loop policy, it cannot capture the

evader after 3.71 sec., indeed the distance between both players has increased.
Fig. 9(b) shows the system trajectory on the reduced space. Again, the initial position of the

evader in the reduced spaces is denoted by an I and the final one by an F.
Below, we present several simulations for omnidirectional and conventional cameras. We do not

compare the proposed approach with other feedback-based motion policy, because to our knowledge
there is not other feedback-based approach that guarantees to capture the evader in minimal time.
Note that a leader-follower control formulation does not guarantee to capture the evader.
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(a) The DDR captures the evader with a forward motion
in the realistic space.

(b) The DDR captures the evader in the reduced space.

Figure 8. Open-loop pursuer motion policy and predictable evader

(a) Open-loop pursuer strategy. (b) Open-loop pursuer on the reduced space.

Figure 9. Open-loop pursuer motion policy and unpredictable evader

6.2 Conventional Camera

In this subsection, we present two simulations where the pursuer applies its feedback-based strategy
using a conventional camera to estimate the evader’s state. In the first one (Figs. 10-12(c)), both
the evader and the pursuer follow their time-optimal motion strategies. At the beginning of the
game the evader is located at position (x = 1.07, y = 1.97) over the reduced space. The time needed
to capture the evader is 3.51s. Fig. 10(a) and Fig. 10(b) show the two auxiliary images taken to the
evader before the game starts. Recall that these two images are used to avoid ambiguity about the
distance separating the evader and the pursuer during the game. The image shown in Fig. 10(a)
was taken from 1 meter to the evader and the image shown in Fig. 10(b) was taken from 2 meters
to the evader. In both cases the pursuer’s heading points to the evader’s center as described in
Section 4.
Fig. 11(a) shows the players’ trajectories in the realistic space and Fig. 11(b) shows the corre-

sponding trajectory in the reduced space (I indicates the initial evader’s state and F the evader’s
state when the capture is achieved).
Fig. 12(a) shows an image of the pattern used as target at the beginning of the game and Fig.

12(b) shows the image of the target when the pursuer captures the evader. Note that these images
are different to the auxiliary images shown in Fig. 10(a) and (b).
Fig. 12(c) shows the trajectories in the image of the 3 vertex points of the target triangular
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(a) (b)

Figure 10. (a) Auxiliary initial image taken to one meter from the evader. (b) Auxiliary initial image taken to two meters
from the evader.

(a) Trajectories realistic space. (b) Trajectories reduced space.

Figure 11. Players’ trajectories for a predictable evader

(a) Target image at the beginning of
the game

(b) Target image at the end of the
game

(c) Points’ trajectories in the image of
the 3 vertex points of the triangular
pattern

Figure 12. Images from the pursuer’s view using a conventional camera

pattern. It can be verified that the points are never located outside the image.
In the second simulation (Figs. 13(a)-15(b)), the evader moves unpredictably (not optimally)

and the DDR follows its feedback-based time-optimal motion strategy. At the beginning of the
simulation, the evader is located at the same position over the reduced spaced as in the previous
simulation, that is (x = 1.07, y = 1.97). The time needed to capture the evader is smaller compared
with the simulation in which the evader moves optimally, that is 3.46 sec.
Fig. 13(a) shows the players’ trajectories in the realistic space and Fig. 13(b) shows the corre-

sponding trajectories in the reduced space (I indicates the initial evader’s state and F the evader’s
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state when the capture is achieved).

(a) Trajectories realistic space. (b) Trajectories reduced space.

Figure 13. Players’ trajectories for an unpredictable evader

Fig. 14(a) shows an image of the target’s pattern at the beginning of the game and Fig. 14(b)
shows it at the end of the game.

(a) (b)

Figure 14. (a) Target image at the beginning of the game (b) Target image at the end of the game

A snapshot of the game is shown in Fig. 15(a). The white lines in the image are used to depict
the limited field of view of the conventional camera used by the pursuer.
Fig. 15(b) shows the trajectories in the image of the 3 vertex points of the triangular target

pattern used as visual target.

6.3 Omnidirectional Camera

In the following simulations the pursuer uses an omnidirectional camera to detect the target. An
omnidirectional camera provides a field of view of 360◦. The game begins with the target located
at (x = 1.5, y = 0.75) in the reduced space. The evader moves unpredictably (not optimally) and
the pursuer applies its feedback-based time-optimal motion policy. The time to capture the evader
is 3.42 sec.
Fig. 16(a) shows the auxiliary triangular pattern taken to 1 meter from the evader. Fig. 16(b)

shows the auxiliary triangular pattern taken to 2 meters from the evader. The center of the evader
is aligned with the pursuer heading.
Fig. 17(a) shows the trajectories of the players in the realistic space. Fig. 17(b) shows the tra-

jectory of the evader relative to the pursuer (trajectory of the system in the reduced space).
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(a) Snapshot of the game (b) Points’ trajectories in the image of the 3
vertex points of the triangular pattern

Figure 15. Snapshot of the game and points’ trajectories in the image

(a) (b)

Figure 16. (a) Auxiliary triangular pattern taken to 1 meter from the evader. (b) Auxiliary triangular pattern taken to 2
meters from the evader.

Fig. 18(a) shows the pattern of points used as visual target at the beginning of the game.
Fig. 18(b) shows it at the capture time (end of the game). Fig. 18(c) shows the 3 vertex points’
trajectories of the triangular pattern in the omnidirectional image.

7. Conclusions and Future Work

In this paper, we have proposed a state feedback-based motion policy for a DDR, which allows
the robot to capture an unpredictable omnidirectional evader in minimum time. A main novelty
of this work compared with the classical position-based visual servoing approach is that in our
proposed approach, the goal for the robot is not to reach a place where a target image is observed
but instead its objective is to bring the evader to a specific locus of points in the reduced space
representation of the problem called the usable part.
One contribution of this paper is to provide algebraic equations of the regions’ boundaries in

terms of the reduced space coordinates. We estimate the state of the evader based on images taken
by the pursuer using the 1D trifocal tensor. To capture the evader, the evader location is defined in
a local reference frame, which makes necessary a new formulation of the estimation of the evader’s
state. Furthermore, our approach does not require precise camera calibration and it is valid for
different types of central cameras. Finally, we have presented a bound over the pursuer’s field of
view for conventional cameras. If the evader is initially visible, it will remain inside the camera’s
view regardless of its motion strategy. This work presents an extension to classical optimal control
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(a) Trajectories realistic space. (b) Trajectories reduced space.

Figure 17. Players’ trajectories for an unpredictable evader

(a) Pattern of points at the beginning
of the game

(b) Pattern of points at the end of the
game

(c) Points’ trajectories in the image of
the 3 vertex points of the triangular

pattern

Figure 18. Images from the pursuer’s view using an omnidirectional camera

problems by proposing a time-optimal motion policy based on visual feedback.
As future work, we would like to consider the problem of capturing an evader with multiple

appearances. We would like to visually estimate the state of the evader without using artificial
marks. For this problem, we believe that is feasible to use a set of images which correspond to
different views of the evader, finding the one that is most similar to the one observed by the
pursuer. In this scheme each visual pattern is related to an evader aspect. Thus, instead of having
a pair of auxiliary initial images, a pair of them would be used for each evader aspect to estimate
the evader’s state. We would also like to explore the problem of generating closed-loop motion
policies based on information directly taken from the image space without state estimation. In
this paper, it is assumed that the evader moves unpredictably, we would like to address the case
in which some information about the evader’s motion is known, and to study the effect of this
additional information on the time-optimal pursuer motion policy.
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Appendix A. Previous supporting results

In this appendix, we present four lemmas obtained in Ruiz et al. (2013), which are used in this
work. For the proofs please refer to Ruiz et al. (2013).

Lemma 5: The barrier consists of a straight line segment, and it intersects the y-axis in the first
quadrant if ρv ≥ | tanS|/ρd where S = cos−1(ρv) is the angle at the BUP.

This Lemma implies that for S = cos−1(Ve/Vp) then τ = (b cosS)/(Vp sinS). See Ruiz et al.
(2013) for more details.

Lemma 6: The DDR switches controls and it starts a rotation in place in the realistic space, at
τs = | b cos s

V max
p sin s |. If s ∈ [0, π], u∗2 switches first, otherwise u∗1 does.

Lemma 7: Let the adjoint equation be:

d

dt
∇V [x(t)] = − ∂

∂x
H(x,∇V, u∗1, u∗2, v∗1 , v∗2) (A1)

The solution of the adjoint equation (A1) starting at the usable part is

Vx = λ sin s, Vy = λ cos s (A2)

Lemma 8: The straight lines trajectories that have an orientation s ∈ (tan−1(ρvρd), cos
−1(ρv)] in

the UP of the first quadrant terminate when the DDR switches controls.
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