
Visual Path Following With Obstacle Avoidance for Quadcopters in Indoor
Environments

Carlos A. Toro-Arcilaa,∗, Héctor M. Becerrab, Gustavo Arechavaletaa

aCentro de Investigación y de Estudios Avanzados del IPN,
Saltillo, Coahuila, México

bCentro de Investigación en Matemáticas (CIMAT), A.C.,
Jalisco S/N, Col. Valenciana, 36023, Guanajuato, Gto., México

Abstract

In this paper, we propose a hierarchical visual servo control scheme for following visual paths with quad-
copters in indoor environments. The control scheme is able to deal with three tasks simultaneously, consid-
ering as order of hierarchy: first, collision avoidance task, second visibility task (keep point features in the
camera’s field of view), and finally, visual servoing task. The strategy allows a commitment of active tasks
(also the smooth deactivation of tasks) for avoiding conflicts between them. The proposed scheme uses a
monocular RGB front-facing camera as single sensor, i.e., only 2D information is required for the control law
computation. That information is used for online reactive visual path following, i.e., no 3D reconstruction of
the environment is required, and no path or motion planning for obstacle avoidance is performed while the
robot follows the visual path. The effectiveness of the proposed control scheme is supported by a stability
analysis and experiments with a low-cost commercial quadcopter in scenarios with static obstacles.

Keywords: Visual servoing, image-based collision avoidance, visibility control, homography-based control,
unmanned aerial vehicles, monocular vision.

1. Introduction

Nowadays, quadcopters are increasingly used for
tasks such as surveillance, inspection of structures,
inventories, video filming, and fire detection. It has
caused greater interest in the research area in pro-
viding them with a higher degree of autonomy in
their navigation.
The goal of this work is to drive a quadcopter

to a target pose using visual feedback in indoor
environments. However, in some situations, other
tasks, such as collision avoidance and visibility
(maintenance of the target in the camera’s field of
view), could appear, and the different tasks must be
solved simultaneously without causing conflicts in
the flight behavior of the robot. Moreover, the tasks
must have an order of priority, for instance, if an
obstacle appears, it is more important for the quad-
copter not to collide than following the direction to

∗Corresponding author
Email address: carlos.toro@cinvestav.edu.mx

(Carlos A. Toro-Arcila)

the target. In this work, we adopt the strategy
defined by Lee et al. (2012) to manage the commit-
ment of active tasks (also the deactivation of tasks),
which consists in defining a strict hierarchy among
them.

The main control strategy used in this work relies
on visual servoing. That strategy addresses the task
of driving a robot to a target pose from an initial
one using visual information feedback, which can be
obtained through a camera mounted directly on the
robot. Therefore, the movement of the camera is in-
duced by the displacement of the robot (Chaumette
and Hutchinson, 2006).

Frequently, during navigation with aerial robots
in indoor spaces, the need to avoid static and mov-
ing obstacles arises. In Garcia et al. (2015), navi-
gation based on vanishing points is used to move a
quadcopter through corridors without hitting walls.
In Park and Kim (2015); Iacono and Sgorbissa
(2018); Mercado et al. (2018); Yang et al. (2021),
different sensors are used to obtain 3D information
about the environment, such as stereo, monocu-

Preprint submitted to Control Engineering Practice March 28, 2023

lar, and RGB-D cameras. In addition, they use
various techniques to reconstruct a map of the en-
vironment, such as simultaneous localization and
mapping (SLAM). These maps are used to perform
navigation and obstacle avoidance tasks using mo-
tion planning and potential fields. In Loianno et al.
(2017); Lin et al. (2020), stereo cameras are used as
the main sensor. Then the visual, depth, and iner-
tial information is combined to navigate and avoid
obstacles using motion planning and model predic-
tive control. In Lin and Peng (2021); Tang et al.
(2021); Chiang et al. (2021) optical flow is used for
obstacle detection and to estimate the velocity be-
tween the robot and the obstacles. Then path plan-
ning, visual and inertial information, and adaptive
control are used for navigation and obstacle avoid-
ance tasks.
Some works have addressed the vision-based nav-

igation problem using a strategy called teach and
repeat without regard to obstacle avoidance (Cour-
bon et al., 2010; Do et al., 2015; Nguyen et al., 2016;
Warren et al., 2019; Kozák et al., 2021). This strat-
egy consists of capturing, storing, and ordering a
set of key images of the environment (visual path),
which is extracted from a visual memory (topologi-
cal map) of the environment. Then, the robot nav-
igation task is defined as a set of visual sub-tasks,
whereby the quadcopter moves from the pose asso-
ciated with the current image to the desired pose
associated with each target image. In Nitsche et al.
(2020), in addition to teach-and-repeat, they use vi-
sual information obtained from a stereo camera and
inertial information to perform a 3D reconstruction
of the environment. In Do et al. (2019), the teach
and repeat technique is used, including visual and
inertial information to generate the robot move-
ment, and also to avoid obstacles. The teach and
repeat strategy requires a learning stage to capture
the topology of the environment by means of key
images. Then, the quadcopter uses these key im-
ages to autonomously navigate in the same environ-
ment. Thus, the strategy can be applied for tasks
in which the quadcopter must follow the same path
several times, as it is demonstrated in the context
of security and surveillance (Ayub et al., 2018), in
logistic processes, particularly to make stock inven-
tory in warehouses (Škrinjar et al., 2018), in indus-
trial factory inspection (Fehr et al., 2018; Martinez-
Carranza and Rojas-Perez, 2022), and as a backup
navigation method in the event of failure of the
main navigation system (Warren et al., 2019).
Usually, during the execution of visual servo con-

trol tasks, point features might be lost as they get
out of the camera’s field of view. This is a well-
known issue of the visual servo control technique
due to the controller’s dependence on point fea-
tures. Therefore, a strategy is needed to maintain
the features in the field of view. In Gans et al.
(2011), visual servo control is used to keep multiple
targets in the field of view of a camera mounted
on a mobile ground robot. In Zheng et al. (2019),
an approach based on barrier functions is used to
satisfy visibility constraints while performing vi-
sual servo control tasks with a quadcopter with a
downward-facing camera. In Liu et al. (2020), an
anti-disturbance back-stepping restricted attitude
controller is used to keep an object in the camera’s
field of view while a simulated quadcopter executes
a visual servo control task. In Lim et al. (2020),
target tracking is performed and obstacle augmen-
tation is used to perform the avoidance task and
avoid occlusion of the target by the obstacle.

In this work, we propose a hierarchical visual
servo control scheme for visual path following tasks
of quadcopters in indoor environments. The con-
trol scheme is able to deal with three tasks, con-
sidering an order of hierarchy: first, collision avoid-
ance task, second visibility task, and finally visual
task. The proposed approach contributes to the
field of vision-based quadcopters’ navigation in the
following aspects: first, for all tasks, information
from a monocular RGB front-facing camera is used
as a single sensor. Therefore, there is no limit to
the sensing range of the sensor. Second, the con-
troller is based only on 2D information, and it is
not necessary to perform any 3D reconstruction of
the environment. Thus, our approach is not compu-
tationally demanding to calculate the control law.
Third, the controller is generic for any quadcopter
equipped with a monocular RGB front-facing cam-
era and a low-level controller whose inputs are ve-
locity commands in four degrees of freedom (linear
velocities on the x, y and z axes and angular ve-
locity in yaw). Fourth, the controller has been di-
rectly implemented on a low-cost commercial quad-
copter without any additional sensor. Finally, the
controller allows the quadcopter to perform online
reactive visual path following, i.e., path planning
or motion planning are not required. As a con-
sequence, the proposed control algorithm is able to
run at 55 Hz, with low power consumption and min-
imal hardware requirements.

To our knowledge, there is no hierarchical vi-
sual servo control for the visual path following that

2

involves collision avoidance, visibility, and visual
tasks applied to quadcopters. The hierarchical con-
trol approach has been usually applied to manip-
ulators; the proposed scheme contributes in the
visual path following of quadcopters to avoid the
switching between control laws each one dedicated
to solve one task, avoiding discontinuous input ve-
locities that can perturb the quadcopter motion.
Given the challenge of using only a monocular cam-
era and 2D information, the effective combination
of tasks solutions in such a control scheme allows to
ensure convergence of a visual servoing task, where
the maintenance of image points in the field of view
of the camera is crucial, but obstacle avoidance ac-
tions might jeopardize the task of reaching a des-
tination using only visual feedback. Moreover, for
the case where there are no obstacles in the prede-
fined visual path, we take advantage of the a priori
knowledge given by the predefined visual path to in-
clude a feed-forward component to the control law,
which allows the quadcopter to complete the path
in less time than just using a feedback component.
This paper presents an effective implementation

of a visual control of quadcopters. However, some
additional aspects could be addressed to improve
the approach, in particular by considering model-
ing errors, uncertainties, and the influence of dis-
turbances. To this end, an option is the use of
learning-based methods such as those in Jiang et al.
(2022); Song et al. (2022). Besides of the robustness
provided by these kinds of methods, visual control
could benefit from a better management of the con-
vergence rate and the possibility to predefine the
control performance.
The organization of the remaining sections is as

follows. In Section 2, we describe a visual servo
control applied to a quadcopter. In Section 3, we
present the formulation of the hierarchical visual
servo controller with three tasks and its respective
stability analysis. In Section 4, we show the for-
mulation of the controller for visual path follow-
ing, with and without the hierarchical visual servo
controller of Section 3. Finally, in Section 5, we
present a series of experiments that validate the
performance of the proposed control scheme.

2. Visual servo control of a quadcopter

In this work, we consider a conventional quad-
copter that is a non-linear underactuated system, in
which four flat outputs (three position coordinates
and yaw angle) can be independently controlled

Figure 1: Parrot Bebop 2 quadcopter reference frames.
Taken from Spindler and Gaumerais (2019).

(Mellinger and Kumar, 2011). In the literature,
feedback linearization has been used to achieve de-
coupled control for each position coordinate of a
quadcopter (Spitzer and Michael, 2021). Feedback
linearization can be formulated in terms of veloci-
ties, accelerations, or thrusts as control inputs; in
the first case, relying on a low-level velocity con-
troller, the quadcopter dynamics for each position
coordinate can be modeled as a decoupled single-
integrator, as it has been done in Trujillo et al.
(2021); Vargas et al. (2022). In this work, we con-
sider modeling the position of the quadcopter and
the angle of yaw xxx = [x y z ψ]T through a single-
integrator for each coordinate and velocities as con-
trol inputs ννν = [vx vy vz ωz]

T , such that

ẋxx(t) = ννν(t) ∈ R4. (1)

According to Chaumette and Hutchinson (2006),
the visual servo control refers to the use of computer
vision data to control the movement of a robot.
We consider a quadcopter carrying a camera look-
ing forward such that the camera movement is in-
duced by the robot movement. This configuration
is known as eye-in-hand.

Consider a pose-regulation problem where the
quadcopter disposes of a target image I∗ associ-
ated with a desired pose, which must be reached
from the current quadcopter pose associated with
the current image I. Thus, the main objective
of a visual servo controller is to minimize a task
function eee(t) defined in terms of visual informa-
tion extracted from images I and I∗. We use im-
age points as visual information, which can be ob-
tained through classical detection and description

3

+

-

Figure 2: Visual servo control scheme for a quadcopter.

algorithms such as ORB, SIFT, SURF, etc. In this
work, we propose to use a homography-based visual
servo control (Benhimane and Malis, 2007) applica-
ble to quadcopters, where the elements of the task
function vector eee = [eeeTv eeeTw]

T ∈ R6 are defined as
follows:

eeev = (HHH − III)mmm∗,

[eeew]× = HHH −HHHT ,
(2)

whereHHH is the Euclidean homography matrix relat-
ing images I and I∗, mmm∗ = [x y 1]T =KKK−1ppp∗ with
ppp∗ any point in pixels homogeneous coordinates of
the target image belonging to the plane that de-
fines HHH. Note that we assume that the parame-
ters of the camera calibration matrixKKK ∈ R3×3 are
known. The operator [·]× ∈ R3×3 represents the
skew-symmetric matrix. Also, the time-derivative
of the task function can be written as ėee(t) = LLLνννc
where LLL ∈ R6×6 is an interaction matrix that de-
pends on 3D parameters (distance to the plane Z∗

and normal of the plane nnn∗). The camera twist is
νννc = [vvvT wwwT]T ∈ R6, which is composed by the lin-
ear and angular velocity vectors vvv ∈ R3 andwww ∈ R3,
respectively.
In Benhimane and Malis (2007), it is proposed

to linearize the relationship ėee(t) = LLLνννc around
eee = 0 to avoid calculating LLL. Accordingly, an
homography-based control law is as follows:

νννc =

[
vvv
www

]
= −

[
λvIII 000
000 λwIII

] [
eeev
eeew

]
, (3)

with λv > 0 and λw > 0. This control law depends
only of the task function eee, and can be computed us-
ing the expressions in (2) given the pair of images I
and I∗. It is shown in Benhimane and Malis (2007)
that the control law (3) yields a local exponential
convergence of the task function eee to zero. More-
over, the control law (3) has been successfully ap-
plied to control different robotic platforms equipped

with monocular vision systems such a six-degree-of-
freedom manipulator robot (Benhimane and Malis,
2007), and a humanoid robot (Delfin et al., 2014,
2016). The experimental results reported show that
the region of attraction of (3) is large despite the
theoretical local stability. In addition, there are
practical benefits of the control law (3); in partic-
ular, it does not depend on the 3D structure of
the scene (no depth measurements are required).
Also, it can be applied to general scenes by cal-
culating the homography from a virtual plane as
suggested by Malis and Chaumette (2000). Unlike
classical image-based visual servo control laws that
use an interaction matrix (Chaumette and Hutchin-
son, 2006), the control law (3) does not require to
be adapted when some points leave the camera’s
field of view. Thus, it is less sensitive to point loss
during task execution; however, a minimum num-
ber of points must be kept in view.

The control gains λv and λw in (3) must be posi-
tive values, in many cases constant values are suffi-
cient. However, in experiments with a quadcopter,
we have found that as soon as the task error eee
approaches zero, the pose of the quadcopter oscil-
lates because the velocities obtained from the con-
trol law are not sufficient to keep a error low. This
makes it difficult for the quadcopter to complete
the task with accuracy. According to Kermorgant
and Chaumette (2013) a way to mitigate this is-
sue is through the use of an adaptive gain, which
depends on ∥eee∥, and is given by:

λ(∥eee∥) = (λ0 − λ∞)e−
λ
′
0

λ0−λ∞ ∥eee∥ + λ∞, (4)

where eee is the task error vector calculated from
equation (2). ∥eee∥ is the norm of the task error
vector, λ0 is the zero gain, to very low error val-
ues, λ∞ = lim∥eee∥→∞ λ(∥eee∥), λ′

0 is the slope of λ at
∥eee∥ = 0. In this work, we compute a single adap-
tive gain using the error vector eee, and apply this

4

gain to each coordinate. However, in some cases, a
constant value or scaling can be added in order to
obtain the desired behavior of the quadcopter.
It is worth noting that the output of the visual

control scheme νννc obtained from the equation (3) is
the instantaneous velocity of the camera, expressed
in the reference frame of the camera {c}. We as-
sume that the quadcopter has a low-level velocity
control able to execute the commanded velocities
expressed in the robot reference frame {e}. As de-
fined in (1) and as happens in typical experimental
platforms (Giernacki et al., 2020), only four veloci-
ties constitute the control inputs of a conventional
quadcopter. The performance of the low-level ve-
locity control is important for the accuracy of the
visual servo control and we will detail some aspects
of it in the experimental section. Figure 1 depicts
the definition of the camera and quadcopter refer-
ence frames. Then, it is needed to transform the
velocities given by the visual control from the cam-
era reference frame to the robot reference frame.
The following spatial motion transformation (6× 6
matrix) allows expressing the vector νννc in the ref-
erence frame {e}:

eTTT c =

[
eRRRc [etttc]×

eRRRc

0003×3
eRRRc

]
, (5)

where eRRRc ∈ R3×3 is the rotation matrix between
the camera reference frame {c} and the quadcopter
reference frame {e} (see Figure 1), which is defined
as:

eRRRc =

0 0 1
1 0 0
0 1 0

 ,
and etttc ∈ R3 is the translation vector existing
between the camera reference frame {c} and the
robot reference frame {e}, which is defined as etttc =[
0.09 0 0

]T
for the Bebop 2 quadcopter.

Although the errors (2) and the control law (3)
are formulated for 6 degrees of freedom, the quad-
copter must be controlled by only four variables as
expressed in (1) due to its underactuation. Then,
the motions finally considered in the control are the
decoupled motions of the quadcopter: x, y, z and
yaw. We use the following selection matrix to have
the velocities to control these motions:

νννe =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1

 eTTT cνννc =


vx
vy
vz
wz

 . (6)

Therefore, νννe ∈ R4 is the velocity vector com-
manded to the quadcopter.

Finally, a condition is defined to determine the
achievement of the visual task. We selected a mea-
surement that provides information directly from
the image space. The mean square error between
the l corresponding points per image pair measured
in pixels, denoted by ε, is computed as follows:

ε =
1

l

l∑
j=1

∥pppj − ppp∗j∥ < Tε, (7)

where pppj and ppp
∗
j are the corresponding image points

in pixels of the current and target images, respec-
tively. Then, when the error ε reaches a value less
than a threshold Tε, the visual task is finished.
Figure 2 shows the complete visual servo control
scheme of a quadcopter.

3. Hierarchical visual servo control

This section presents a control law that integrates
three tasks: visual servo control of the previous
section, collision avoidance, and visibility (mainte-
nance of features in the field of view). The three
tasks are defined in terms of visual information
without requiring an additional sensor. In this
work, we use the strategy defined by Lee et al.
(2012) to manage the commitment of active tasks
(also deactivation of tasks), which consists in defin-
ing a strict hierarchy among them (see Figure 3).

In the following subsections, each of the afore-
mentioned tasks, and its corresponding individual
controller, are detailed as well as their integration in
a hierarchical visual servo control for a quadcopter.

3.1. Collision avoidance

The collision avoidance task allows the quad-
copter to overcome obstacles in its path. In this
work, we consider regular shaped obstacles placed
vertically, large enough to stand out in front of the
quadcopter. Their dimensions must be uniform, i.e.
of constant width, and their two lateral edges must
always be visible in the camera’s field of view. To
avoid a collision, the robot must keep a security
distance from the obstacle. It is achieved by main-
taining a reference distance between two points in
the image plane. In this work, we use one point
on each edge of the obstacle (ppp1 and ppp2) as shown
in Figure 4. Obstacle detection could be done with
simple image segmentation (details are given in Sec-
tion 5).

5

+
-

+

+

-

-

Figure 3: Hierarchical visual servo control scheme for a quadcopter.

Figure 4: A green column obstacle detected by means of
color segmentation. Above binary image with bounding box
and below the image showing the detected obstacle.

The collision avoidance error is computed as fol-
lows:

ea =
√
(x1 − x2)2 + (y1 − y2)2 − σ, (8)

where σ ∈ R is a constant reference distance. Sim-
ilarly to the homography-based control law, we
use normalized coordinates for other tasks, that is,

[x1 y1 1]T = KKK−1ppp1 and [x2 y2 1]T = KKK−1ppp2. De-
riving (8) with respect to time gives the following:

ėa =
1

d


(x1 − x2)
(y1 − y2)
(x2 − x1)
(y2 − y1)


T 

ẋ1
ẏ1
ẋ2
ẏ2

 ,
where d =

√
(x1 − x2)2 + (y1 − y2)2 and

[
ẋ1
ẏ1
ẋ2
ẏ2

]
=

− 1
z1

0
x1
z1

x1y1 −(1 + x2
1) y1

0 − 1
z1

y1
z1

(1 + y2
1) −x1y1 −x1

− 1
z2

0
x2
z2

x2y2 −(1 + x2
2) y2

0 − 1
z2

y2
z2

(1 + y2
2) −x2y2 −x2

vx
vy
vz
wx
wy
wz

 ,
where {z1, z2} ∈ R corresponds to the distance be-
tween the camera reference frame and the obstacle.
Estimated values of z1 and z2 can be used, since
they are unknown in our monocular framework.

The task function is then composed by the fol-
lowing Jacobians and velocity vector:

JJJ1 =
[
(x1 − x2) (y1 − y2) (x2 − x1) (y2 − y1)

]
,

JJJ2 =


− 1

z1
0 x1

z1
x1y1 −(1 + x21) y1

0 − 1
z1

y1

z1
(1 + y21) −x1y1 −x1

− 1
z2

0 x2

z2
x2y2 −(1 + x22) y2

0 − 1
z2

y2

z2
(1 + y22) −x2y2 −x2

 ,
JJJa =

1

d
JJJ1JJJ2,

νννa =
[
vx vy vz wx wy wz

]T
,

6

such that the collision avoidance controller is:

νννa = −λaĴ̂ĴJ+
a ea. (9)

The collision avoidance controller must be acti-
vated when the distance d is greater than σ, that
is, when ea > 0. This controller ensures the conver-
gence to ea = 0, which means that the quadcopter
stops when the obstacle size in the image becomes
σ. The combination of collision avoidance and vi-
sual servoing tasks produces an obstacle avoidance
behavior that allows the quadcopter to follow the
path towards the target pose.

3.2. Visibility control

Figure 5: Visibility task.

Figure 5 describes the components of the visi-
bility task. The light-green crosses represent the
feature points in the target image, and the light-
red crosses represent the feature points in the cur-
rent image (which is the image shown). The yel-
low rectangle defines the safety area for the cur-
rent points (light-red crosses). If any current point
leaves the yellow rectangle, the visibility task is trig-
gered. Thus, the objective of the visibility task is to
keep all current points in the camera’s field of view
by maintaining them centered on the image plane.
For this purpose, the controller takes the mean of
the cloud of current points, represented by the large
dark red cross, to the desired mean, represented by
the large dark green cross. The visibility task is
performed through the control of a virtual point
(large dark red cross) calculated from the mean of
the points in the current image (light-red crosses)
as follows:

cccm(t) =
1

k

k∑
i=1

mmmi, (10)

where k is the number of normalized feature points
in the current image. The visibility error is calcu-
lated as follows:

eeem = cccm(t)− ccc∗m, (11)

where ccc∗m contains the coordinates x and y of the
desired mean in the normalized image plane.

The visibility control law in charge of keeping the
points in the camera’s field of view is calculated as
follows:

νννm = −λmĴ̂ĴJ+
meeem, (12)

where Ĵ̂ĴJm is an approximation of the interaction
matrix, which stands for:

JJJm =

[
− 1

z 0 x
z xy −(1 + x2) y

0 − 1
z

y
z (1 + y2) −xy −x

]
,

with z ∈ R as the distance between the camera
reference frame and the scene captured in the target
image. Then, an estimated value of z is used.

3.3. Hierarchical control law

We propose using a hierarchical combination of
the task functions defined in the previous sections,
aiming for the quadcopter to reach a visual target
while obstacles are avoided when is needed, and
keeping the image points in the camera’s field of
view. Clearly, the visual servoing task always re-
mains active.

The hierarchy of tasks has been defined as: first,
the collision avoidance task, second, the visibility
task, and third, the visual task. As a consequence,
the control law for computing the velocity vector of
the camera is defined as follows:

νννch = νννa + νννm + νννv, (13)

where νννa, νννm and νννv are collision avoidance, vis-
ibility maintenance, and visual servo-control com-
ponents, respectively. They stand for:

νννa = Ĵ̂ĴJ+
a ė

i
a, (14)

νννm = (Ĵ̂ĴJmNNNa)
+(ėeeim − Ĵ̂ĴJmνννa), (15)

νννv = (Ĵ̂ĴJvNNNm)+(ėeeiv − Ĵ̂ĴJv(νννa + νννm). (16)

The corresponding projectors to the null space of
the higher-priority tasks are as follows:

NNNa = III6×6 − Ĵ̂ĴJ+
a Ĵ̂ĴJa,

NNNm = NNNa − (Ĵ̂ĴJmNNNa)
+(Ĵ̂ĴJmNNNa).

7

The intermediate values of the combined task
functions are given by (Lee et al. (2012)):

ėia =− ha(t)λaea + (1− ha(t))Ĵ̂ĴJa(−hm(t)λmĴ̂ĴJ
+
meeem

− hv(t)λvĴ̂ĴJ
+
v eeev),

(17)

ėeeim =− hm(t)λmeeem + (1− hm(t))Ĵ̂ĴJm(−ha(t)λaĴ̂ĴJ+
a ea

− hv(t)λvĴ̂ĴJ
+
v eeev),

(18)

ėeeiv =− hv(t)λveeev + (1− hv(t))Ĵ̂ĴJv(−ha(t)λaĴ̂ĴJ+
a ea

− hm(t)λmĴ̂ĴJ
+
meeem),

(19)

where ha(t), hm(t), and hv(t) are time-dependent
functions in the closed interval [0, 1]. They are cal-
culated as follows:

h(t) =

{
1
2

(
1− cos (π(t−t0)

tf−t0
)
)
, to ≤ t ≤ tf ,

1, t > tf ,
(20)

where t0 is the initial time and tf is the final time.
tf − t0 is the duration of the task activation. The
deactivation of tasks is done by computing 1−h(t),
and the time that each task is active may be dif-
ferent. The collision avoidance task remains active
as long as the distance d is greater than σ, that
is, when ea > 0. The visibility task remains ac-
tive as long as any of the current points are outside
the safety area, and the visual task remains always
active.
The following theorem analyzes the convergence

of the hierarchical control law with intermediate
values to combine tasks as in (13).

Theorem 1. Consider the three-task stack: colli-
sion avoidance, visibility, and visual servo control,
which can be represented by the following extended
kinematics:

ėee′ =

JJJa

JJJm

JJJv

νννch , (21)

where eee′ =
[
ea eeeTm eeeTv

]T
, with ea, eeem and eeev

given by (8), (11), and (2) respectively. The con-
trol law (13) ensures asymptotic convergence to the
origin eee′ = 000.

Proof. A candidate Lyapunov function consider-
ing the three tasks with intermediate values (13)
is:

V (eee′) =
1

2
eee′Teee′. (22)

The derivative of (22) with respect to time is as
follows:

V̇ (eee′) = eee′T ėee′ = eee′T

JJJa

JJJm

JJJv

νννch . (23)

By substituting (13) into (23) and organizing the
terms in matrix form, we obtain the following:

V̇ (eee′) = −eee′TMMMeee′, (24)

where

MMM =

MMMa MMM b MMM c

MMMd MMMe MMMf

MMMg MMMh MMM i

 . (25)

The mathematical development to obtain the
sub-matrices of the matrix MMM can be found in Ap-
pendix A. Using the following properties of the null
space projectors defined in Obregón-Flores et al.
(2021), we get:

JJJa(Ĵ̂ĴJmNNNa)
+ ≈ 000,

JJJa(Ĵ̂ĴJvNNNm)+ ≈ 000,

JJJm(Ĵ̂ĴJmNNNa)
+ ≈ III,

JJJm(Ĵ̂ĴJvNNNm)+ ≈ 000,

JJJv(Ĵ̂ĴJvNNNm)+ ≈ III,

(26)

and by considering Ĵ̂ĴJa ≈ JJJa, Ĵ̂ĴJm ≈ JJJm, Ĵ̂ĴJv ≈ JJJv,
and JJJaĴ̂ĴJ

+
a ≈ 1, we get the following:

MMMa = ha(t)λa,

MMM b = (1− ha(t))hm(t)λmĴ̂ĴJaĴ̂ĴJ
+
m,

MMM c = (1− ha(t))hv(t)λvĴ̂ĴJaĴ̂ĴJ
+
v ,

MMMd = (1− hm(t))ha(t)λaĴ̂ĴJmĴ̂ĴJ
+
a ,

MMMe = hm(t)λm,

MMMf = (1− hm(t))hv(t)λvĴ̂ĴJmĴ̂ĴJ
+
v ,

MMMg = (1− hv(t))ha(t)λaĴ̂ĴJvĴ̂ĴJ
+
a ,

MMMh = (1− hv(t))hm(t)λmĴ̂ĴJvĴ̂ĴJ
+
m,

MMM i = hv(t)λv.

(27)

On the one hand, when ha = 1, hm = 1 and hv =
1, the matrix MMM becomes a diagonal matrix with
eigenvalues that depend on λa > 0, λm > 0 and
λv > 0. In that condition, the error eee′ converges to
the origin asymptotically.

On the other hand, the continuity during the
transition of hierarchical tasks is defined in Lee

8

et al. (2012). In this case, it is worth noting that
the visual servoing task is active all the time, and
consequently hv = 1,∀t. Then, the submatrices
MMMg = 000 and MMMh = 000. This allows us to ex-
press the time-derivative of the Lyapunov function
as V̇ = −eee′TMMM trgeee

′ − eeeTmMMMdea, where MMM trg is an
upper triangular matrix with the same blocks on
the diagonal as the matrix MMM . Thus, the closed-
loop system can be seen as a perturbed system sub-
ject to a bounded perturbation eeeTmMMMdea. The effect
of this perturbation constrains the convergence of
the system to a region around the origin eee′ = 0
(Khalil, 2002)(Chapter 9). However, this condition
is bounded to a relatively short finite time tf − t0,
and the system eventually resumes its asymptotic
convergence condition at the end of the transition.
Hence, convergence of the hierarchical control law
with smooth transitions is ensured. □

The proposed control law (13) is valid for 6 de-
grees of freedom, since it is formulated to yield the
vector of velocities in R6, therefore, it might be ap-
plied for fully actuated quadrotors as the ones de-
scribed in Zheng et al. (2020). However, in the case
of conventional quadrotors, as the one that we con-
sider, it is not possible to control them in the 3D
space including roll-pitch-yaw, and we have to re-
move the two velocities not required. Then, it is
necessary to transform the velocity vector νννch from
the camera to the quadcopter reference frame and
apply the selection matrix as in the equation (6).
Moreover, given the underactuation of the quad-
copter considered, it must initiate flying in hover,
i.e., with null pitch and roll angles to start static.

4. Visual path following

The previous sections are dedicated to cope with
pose-regulation of a quadcopter considering a sin-
gle reference image. In this section, we propose to
extend the visual servo-controllers for visual path
following, where the desired path is represented by
a set of images previously taken by the robot in a
teach-by-showing fashion. In that case, the quad-
copter is asked to solve a sequence of visual servoing
tasks, which implies moving from one target image
to the next. It is then assumed that the visual path
is given and that the robot starts near the first tar-
get image of the path.

4.1. Visual path following using hierarchical visual
servo control

Besides that the quadcopter has to follow a visual
path, collision avoidance and visibility tasks can be
activated if needed. When a visual servo-control is
used to solve a visual path following problem, it is
important to take into account the sudden change
of control objectives for different reference images.
In other words, when the quadcopter completes a
visual servoing task, just at the moment when the
next target image is given (from I∗k to I∗k+1), the vi-
sual servoing error eee given in (2) changes abruptly.
The consequence is that discontinuous velocities are
generated and undesired oscillatory movements of
the quadcopter appear. To avoid this issue, we pro-
pose to introduce a smooth transition function ht(t)
in the control scheme (13), so that the camera ve-
locity vector is computed as:

νννct1 = ht(t)νννch , (28)

where ht(t) is a transition function, which is calcu-
lated according to Delfin et al. (2014) as follows:

ht(t) =

{
h0 + 1

2

(
1 − h0

)(
1 − cos

(
π(t−t0)
tf−t0

))
, to ≤ t ≤ tf ,

1, t > tf .

(29)

The function ht(t) has a minimum value h0, from
which it increases smoothly up to the unity. The
value h0 allows the robot to keep its motion when
changing the reference image, while the discontinu-
ities in the velocities are mitigated.

The algorithm 1 describes the sequence of steps
by which the quadcopter solves the visual task
while avoiding obstacles and keeping the key points
in the camera’s field of view. The function
matchingKeyPoints of Algorithm 1 matches the
features obtained with the SIFT-type feature detec-
tor and descriptor based on Lowe (2004), which are
invariant to scale and rotation, so that the match-
ing process is robust to the quadcopter orientation.
Then, both the features and the descriptors of the
features of both images (Ii, I∗k) are passed to a
robust matcher, which makes use of the RANSAC
algorithm (Fischler and Bolles, 1981). The matched
key points are ordered to obtain three points, which
maximize the area of a triangle. These points are
used to build a virtual plane, needed to estimate the
generic homography matrixHHH as proposed by Malis
and Chaumette (2000). The function sortPoints
orders the matched keypoints according to their co-
ordinates (x, y). That is, the first and third points
have the highest values on the axes x (purple) and

9

y (orange), respectively (see Figure 5). The sec-
ond is the one with the smallest value on the x-axis
(blue). The other points remain in the same order
as they come out of the matcher (red). The function
tracking tracks paired feature points through an
iterative version of the Lucas-Kanade pyramid op-
tical flow method, based on (Bouguet et al., 2001).
The function checkPoints verifies that all points
in the current image I (red crosses in Figure 5)
are within the safety area (yellow rectangle), based
on their image coordinates u and v. The function
lowLevelControl refers to a low-level velocity con-
trol, assumed existing in the quadcopter to execute
the velocities vx, vy, vz and wz given by the hierar-
chical visual servo control scheme. More details will
be given in the experimental section. The function
imgChVerif is in charge of verifying the condi-
tions to perform the target image change. If k ̸= n
and error εk < Tε, then partialTarget = true,
i = 0, and k = k + 1. If k = n and εk < Tε, then
partialTarget = true, k = k+1 and the quadcopter
is stopped finishing the navigation. It is worth not-
ing that the threshold Tε allows to control the accu-
racy to follow the visual path but also the smooth-
ness of the quadcopter motion. A low Tε yields
good accuracy but no constant motion, since the
quadcopter reduces its speed when reaching each
target image. A high Tε reduces the accuracy, but
yields a smooth motion. Since the ultimate goal is
the safe navigation of the quadcopter towards the
position associated with the last reference image,
the accuracy can be slightly sacrificed in order to
get a fluent motion.

4.2. Visual path following using visual servo control

In this subsection, we consider that only the vi-
sual servoing task is used, the collision avoidance
task, and the visibility task will not be present. In
that situation, we describe two control schemes for
visual path following. The first uses the visual servo
control scheme (3), which, due to the reasons de-
scribed in Section 4.1, a smooth transition function
must be included, as follows:

νννct2 = ht(t)νννc. (30)

Given that the visual path contains valuable in-
formation about the route that the quadcopter has
to follow, we propose a second scheme that uses the
concept of feed-forward, which is integrated to the
visual servo control (30), as follows:

νννef = pνννe + (1− p)νννp, (31)

Algorithm 1 : hierarchicalVisualPathFollow-
ing allows the robot to solve the n visual subtasks
to execute the visual path following while solving
the obstacle avoidance task and keeping the key
points in the camera’s field of view.

Require: visual path III∗ = {I∗1 , I
∗
2 , I

∗
n−1, I

∗
n}.

Ensure: visual path following.
1: i← 0
2: k ← 1
3: t← 0
4: ha(t)← 0
5: hm(t)← 0
6: hv(t)← 1
7: partialTarget← true
8: while k ≤ n do
9: Ii ← getNewImage
10: if partialTarget = true then
11: I∗k ← III∗[k]
12: keyPoints← matchingKeyPoints(I∗k , Ii)
13: sortedMat← sortPoints(keyPoints)
14: partialTarget← false
15: t← 0
16: else
17: sortedMat← tracking(Ii, Ii−1, sortedMat)
18: end if
19: HHHk ← computeHomography(sortedMat)
20: eeevk ← computeVisualTaskError(HHHk) ▷ (2)

21: λ
(
∥eeevk∥

)
← computeAdaptiveGain(eeevk) ▷ (4)

22: νννv ← visualTaskVelocities(eeevk) ▷ (16)
23: ea ← computeAvoidanceTaskError(ppp1, ppp2) ▷ (8)
24: if ea > 0 then
25: ha(t)← activationFunction(t) ▷ (20)
26: else
27: ha(t)← 1− activationFunction(t)
28: end if
29: νννa ← avoidanceTaskVelocities(ea) ▷ (14)
30: eeem ← computeMeanTaskError(cccm(t)) ▷ (11)
31: outsideBB ← checkPoints(sortedMat)
32: if outsideBB > 0 then
33: hm(t)← activationFunction(t) ▷ (20)
34: else
35: hm(t)← 1− activationFunction(t)
36: end if
37: νννm ← meanTaskVelocities(eeem) ▷ (15)
38: ht(t)← smoothTransitionFunction(t) ▷ (29)
39: if n > 1 then
40: νννc ← cameraVelocities(νννa, νννm, νννv, ht(t)) ▷ (28)
41: else
42: νννch

← cameraVelocities(νννa, νννm, νννv) ▷ (13)
43: end if
44: νννe ← robotVelocities(νννc) ▷ (6)
45: robotMovement← lowLevelControl(νννe)
46: εk ← meanSquareError(sortedMat) ▷ (7)
47: i← i + 1
48: k ← imgChVerif(εk, Tε, k, n, partialTarget, i)
49: t← t + cycleT ime
50: end while

return

where p ∈ [0, 1], is a weight that allows one to
determine the percentage contribution of the feed-
forward velocity vector νννp in the control scheme. νννe
and νννp are calculated using the i-th target image.
νννe is the velocity vector obtained from the visual
servo control law given in (30), and it is transformed
to the robot reference frame {e} by means of equa-
tion (6). νννp is the feed-forward velocity vector of

10

dimension (4× 1), which is defined as:

νννp =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1

 γeTTT c νννc, (32)

where νννc is calculated between target images (I∗i
and I∗i+1) using the control law (3). γ ∈ [0, 1], is
a scaling factor that allows the values of the com-
ponents of the feed-forward velocity vector νννp to
be adjusted, since the magnitude of the velocities
calculated from visual errors, in general, does not
have an adequate scale. The feed-forward veloci-
ties vectors νννp are calculated only one time at the
beginning, as can be seen in Algorithm 2, lines 2-15.

The algorithm 2 presents the procedure for im-
plementing the two visual path-following strategies,
with and without the feed-forward terms. Unlike
Algorithm 1 the hierarchical control is not used,
i.e., there is no collision avoidance or visibility task,
only the visual task is used. By including the
feed-forward term, the quadcopter performs a more
continuous motion during the visual path follow-
ing, that is, the quadcopter does not reduce its
speed every time it reaches the pose associated
with each target image, as it does during naviga-
tion when the feed-forward term is not included.
The imgChVerif function is in charge of verifying
the conditions to perform the target image change.
If feed-forward is not used, the strategy becomes
similar to that described at the end of Section 4.1.
For the strategy with feed-forward, the logic in the
imgChVerif function is as follows: if k ̸= n and if
εk < Tε or εk has an increasing behavior in the last
five iterations, then pTarg = true, k = k+1, i = 0,
vV ec = vV ec + 1 and the mnSqErV ecmnSqErV ecmnSqErV ec data are
deleted. If k = n and εk < Tε, then k = k + 1 and
the robot stops its motion, finishing the navigation.

Notice that, under no disturbance conditions, it
is expected that the feed-forward velocities νννp, ap-
plied in open-loop on the corresponding segment
of reference image, will achieve a motion close to
the reference visual path, but no correction can be
realized. For this reason, the applicability of the
control scheme with feed-forward term as in (31)
is for situations where the quadcopter has not to
perform obstacle avoidance tasks. It would be pos-
sible to formulate a hybrid switching scheme where
the feed-forward component is used whenever there
are no obstacles; however, discontinuous velocities
would be generated, which is not desirable.

Algorithm 2 : visualPathFollowing allows the
robot to solve the n visual sub-tasks to execute the
visual path following.

Require: visual path III∗ = {I∗1 , I
∗
2 , I

∗
n−1, I

∗
n}, feedForward.

Ensure: visual path following.
1: k ← 2
2: if feedForward = true then
3: while k ≤ n do
4: I∗k ← III∗[k]
5: I∗k−1 ← III∗[k − 1]

6: keyPoints← matchingKeyPoints(I∗k , I
∗
k−1)

7: sortedMat← sortPoints(keyPoints)
8: HHHk ← computeHomography(sortedMat)
9: eeek ← computeSubtaskError(HHHk) ▷ (2)
10: νννc ← homographyBasedControl(eeek) ▷ (3)
11: νννp ← feedForwardVelocities(νννc) ▷ (32)

12: VVV p ← νννT
p

13: k ← k + 1
14: end while
15: end if
16: i← 0
17: k ← 1
18: t← 0
19: vV ec← 1
20: pTarg ← true
21: while k ≤ n do
22: Ii ← getNewImage
23: if pTarg = true then
24: I∗k ← III∗[k]
25: keyPoints← matchingKeyPoints(I∗k , Ii)
26: sortedMat← sortPoints(keyPoints)
27: pTarg ← false
28: t← 0
29: else
30: sortedMat← tracking(Ii, Ii−1, sortedMat)
31: end if
32: HHHk ← computeHomography(sortedMat)
33: eeek ← computeVisualTaskError(HHHk) ▷ (2)
34: λ (∥eeek∥)← computeAdaptiveGain(eeek) ▷ (4)
35: νννc = homographyBasedControl(eeek) ▷ (3)
36: ht(t)← smoothTransitionFunction(t) ▷ (29)
37: νννct2

← cameraVelocities(νννc, ht(t)) ▷ (30)

38: if feedForward = true then
39: for j ← 1, 4 do
40: νννp(j)← VVV p(vV ec, j)
41: end for
42: νννe ← visualVelocities(νννct2

) ▷ (6)

43: νννef
← robotVelocities(νννe, νννp) ▷ (31)

44: robotMovement← lowLevelControl(νννef
)

45: else
46: νννe ← robotVelocities(νννct2

) ▷ (6)

47: robotMovement← lowLevelControl(νννe)
48: end if
49: εk ← meanSquareError(sortedMat) ▷ (7)
50: mnSqErV ecmnSqErV ecmnSqErV ec← εk
51: i← i + 1
52: k ← imgChVerif(εk, Tε,mnSqErV ecmnSqErV ecmnSqErV ec, k, n, pTarg, i, vV ec)
53: t← t + cycleT ime
54: end while

return

It is worth noting that some aspects must be
taken into account to have a proper performance
of the proposed approach, either for Algorithm 1 or
2: the yaw angle in the initial condition must be
adequate to share visual information between the
current image and the first reference image. The
environment must be sufficiently textured and with

11

constant lighting conditions to detect image points.
The visual path assumed to be given, previously
learned, must be adequate in terms of consecutive
reference images sharing enough visual information,
and a minimum number of image points can be
matched. Reference images must be captured with
the quadcopter in hover and the approach is able to
deal with a type of obstacle as columns, as detailed
in Section 3.1.

5. Experimental results

This section is dedicated to evaluating the pro-
posed vision-based control scheme. In Section 5.1
an experiment is shown to validate the visual servo
control scheme of Section 3. In Section 5.2 an ex-
periment is presented to validate the visual path
following strategy of Section 4. In Section 5.3, two
experiments are presented to compare the results
obtained using the control law of Section 2 and
the visual path following strategy of Section 4, first
without feed-forward velocity terms, and then with
feed-forward velocity components. We use a Par-
rot Bebop 2 drone that already has the required
low-level velocity controller. Although there is no
official information from Parrot about the internal
control of Bebop 2, some existing works (Giernacki
et al., 2020; Pinto et al., 2020) have studied its capa-
bilities and described a typical structure of velocity
control for this quadcopter, with an inner control
loop for pitch and roll attitude angles, whose refer-
ences are given by an outer position/velocity con-
trol loop. Yaw angle and altitude are decoupled in
independent controllers. Such approach allows to
control the quadcopter in position or velocity and
generate its references from a high level control as
a trajectory tracking controller, or a visual servo
control as in our case. The effectiveness of the high
level control clearly depends on the performance of
the internal control; however, it is enough for the
visual servo control as long as a positioning control
has been tested in the quadcopter and it was able
to get close to a desired position.
Vision-based control computations were imple-

mented using C / C++ on a Hewlett Packard lap-
top computer with 12 GB of RAM, Intel®Core
™i5-7200U CPU @ 2.50GHz x 4, and Ubuntu
18.04.4 LTS 64-bit operating system. For commu-
nication between the quadcopter and the computer,
the ViSP library was used, which has functions to
control Bebop 2 (Marchand et al., 2005). The veloc-
ity commands (equation (6)) are sent to the quad-

copter through the wireless connection (Wi-Fi) es-
tablished between the robot and the laptop. For
sending velocity commands, the drone.setVelocity
function implemented in the vpRobotBebop2 class
of the ViSP library is used. This function sends the
velocity commands to the quadcopter and does not
receive any response message or feedback informa-
tion, thus, no additional sensors are used to ver-
ify whether the commanded velocities are achieved.
However, in addition to the results on trajectory
tracking of Giernacki et al. (2020); Pinto et al.
(2020), the Bebop 2 has been used efficiently by
commanding velocities for formation control (Tru-
jillo et al., 2021; Vargas et al., 2022) using the low-
level internal controller. Low-level control is criti-
cal for visual servo control performance in terms of
overshooting, but does not compromise its stability.

Although we implemented the proposed ap-
proach using a Bebop 2 quadcopter, it is remark-
able that the approach is applicable to other quad-
copters. First, since the approach is formulated at
kinematics level, no dynamic model of the quad-
copter is required, and the size, mass, and other
physical features of the platform are not crucial. In
the image processing part, the method relies on the
detection of at least 16 image points, to have more
than the 8 points necessary to compute the generic
homography (Malis and Chaumette, 2000). It is im-
portant the distribution of the points in the image
to have a well conditioned homography computa-
tion, which is provided by point detectors such as
SIFT or ORB. One aspect to look after is the speed
of the quadcopter induced by the convergence time
as given by the control gains. The speed of the
quadcopter must be adequate to allow the point
tracker based on optical flow (Bouguet et al., 2001),
to work properly. Then, it is expected that different
control gains are needed whether other quadcopter
is used.

5.1. Pose-regulation with obstacle avoidance

Figure 6 shows the scenario for the first experi-
ment, which consists of a forward (1.5 m) and ver-
tical downward (0.5 m) displacement of the quad-
copter while avoiding a 0.05 m wide × 0.02 m deep
rectangular obstacle. The robot must be initially
positioned so that the camera’s field of view allows
it to share sufficient visual information with the tar-
get image I∗. In this case, the process for the com-
putation of the control law is found in Algorithm 1
for n = 1.

12

Figure 6: Top view of the scenario for the pose-regulation
experiment with obstacle avoidance.

The following parameters were used for the ex-
periment, σ = 0.05 was taken as a reference value
for the calculation of the collision avoidance task er-
ror (8) and a gain λa = 0.01 (9). The yellow rectan-
gle in Figure 7 was used as a security area, the large
dark green cross is ccc∗m = (428, 240), the center of the
image (11), and the gain of the control law λm = 0.2
(12). For the visual task, an adaptive gain λ (∥eee∥)
was used with parameters λ0 = 2.8, λ∞ = 0.1
and λ

′

0 = 5.0 (4), for the gain matrix of the in-
termediate visual error (19), λvx = λvz = λ (∥eee∥),
λvy = λ (∥eee∥)+2.5 and λw = 0.5λ (∥eee∥). The value
of the mean square error that determines the com-
pletion of the task was Tε = 6 pixels (7). In the
experiments carried out, it was observed that con-
trolling ε, allows the quadcopter to reach the de-
sired pose. In turn, the components of the task
error eee in equation (2) converge to values close to
zero.

The controller performance depends on the se-
lection and tuning of some parameters. In partic-
ular, λ∞ regulates the velocity of the quadcopter
at the beginning of the visual task when the error
eee is usually large. λ0 allows the robot to generate
sufficient velocities to complete the visual task. λ

′

0

handles the transition velocity from λ∞ to λ0 when
∥eee∥ approaches zero. The distance between the
quadcopter and the obstacle to activate the collision
avoidance task relies in σ. ccc∗m determines the place-
ment in the image of the virtual point cccm(t), which
is used to keep the current points cloud. tf − t0
stands for the duration of the activation and de-
activation time of tasks in h(t). Note that for the
collision avoidance task, it should not be too long,
so the task is activated early, and the robot can re-
spond and perform the avoidance. In the visibility
task, it can be a little longer because it does not
compromise the integrity of the quadcopter. Also,

tf − t0 determines the transition time in ht(t). A
short transition time makes the smoothing of ve-
locity discontinuities ineffective, while a long tran-
sition time causes that the velocity vector, obtained
from the controller, to not be fully considered until
a long time. As a by-product, the duration of task
execution becomes excessive.

In Figure 7, a sequence of images can be seen with
the quadcopter performing pose regulation and ob-
stacle avoidance tasks. The images correspond to
the internal and external views of the robot in the
columns to the left and right, respectively. The red
crosses represent the feature points in the current
image and the green crosses are the corresponding
points in the target image. The yellow rectangle
is the safety area for the visibility task. Since the
focus of this work is visual servo control and task
combination using only 2D information as measure-
ments, the obstacle detection process was imple-
mented by a color (green) segmentation technique.
This method imposes a bounding box on the seg-
mented obstacle, and it selects the points p1p1p1 and
p2p2p2 on each edge of the bounding box around the
middle height of the image. Obstacle detection
could be done more generally using artificial intelli-
gence techniques as in Liu et al. (2019). Thus, if a
more sophisticated detection algorithm is used and
nonuniform obstacles are encountered, the impor-
tant aspect is to have a bounding box enclosing the
obstacle to define the maximum width of the obsta-
cle in the image similarly as done in our results.

Figure 8 depicts the cycle time for the pose reg-
ulation experiment with obstacle avoidance. It can
be observed that in 96 percent of the iterations, the
cycle time value was 40 ms and the average working
frequency of the controller was 24.7 Hz.

Figure 9 shows the evolution in time of the mean
square error ε from equation (7) and the error of
the visual task denoted by eee equation (2). It can
be seen how the mean square error converges to a
value of ε < Tε, with Tε = 6 pixels (red dotted
horizontal line) at t = 12 s (black dotted vertical
line) and the values of the task error eee converge to
values close to zero. After that time, ε remains close
to the reference, and the visual errors remain close
to zero until the end of the experiment at t = 20 s.

Figure 10 displays the velocity commands sent to
the quadcopter (6), where the velocities in the cam-
era reference frame were calculated with equation
(13). The cyan rectangle represents the time inter-
val during which the quadcopter performed obstacle
avoidance. It can be observed that in the time in-

13

Figure 7: Internal (left side column) and external (right side column) view of the quadcopter performing the pose-regulation
experiment with obstacle avoidance. The first row corresponds to the moment when the robot starts the visual task, the second
row corresponds to the moment in which it avoids the obstacle, and the last row to the end of the visual task.

0 100 200 300 400 500

Iteration

40

50

60

70

80

90

T
im

e
 (

m
s
)

Frequency:

24.7064

Figure 8: Cycle time for the pose-regulation experiment with
obstacle avoidance.

terval from 0 to 5 seconds, the forward velocity vx
decreases smoothly, and the lateral velocity vy in-
creases in the same way. At instant of time t = 5 s,
the obstacle leaves the camera field of view, gener-
ating a change in the behavior of the quadcopter
velocities, increasing its forward velocity and de-
creasing its lateral velocity. The behavior of the
velocity vz is because the robot starts the task to a
height of 1.0 m, and the target image is at a refer-
ence height of 0.50 m, so the quadcopter must move
downwards until it reaches a height of 0.5 m. The
second row of Figure 10 illustrates the activation
function for the collision avoidance task, and the
third row the activation function for the visibility

14

0 5 10 15 20

Time (s)

0

20

40

60

80

(a) Mean square error.

0 5 10 15 20

Time (s)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

V
is

u
a
l
e
rr

o
rs

(b) Visual task error.

Figure 9: Errors of the visual task for the pose-regulation experiment with obstacle avoidance.

task. It can be seen that the evasion task is acti-
vated at t = 0 s, increases its value smoothly until
it reaches its maximum value of 1 at t = 3 s, re-
mains active until t = 5 s, and begins to deactivate
until t = 8 s. The visibility task was not activated,
so the activation function hm remains at zero.

Figure 11 depicts the errors of the collision avoid-
ance task and the visibility task. It can be ob-
served that the error of the avoidance task grows
in the time interval from 0 to 5 seconds, and at
t = 5 s the obstacle leaves the field of view of the
camera, therefore the current value can no longer
be measured, remaining this at the reference value
σ = 0.05. The error of the visibility task is observed
to behave increasingly because the target mean is
the center of the image (large dark green cross) and
the current mean is the centroid of the current key
points cloud (large dark red cross), the task is ac-
tivated as soon as one of the current points (red
crosses) leaves the safety area (yellow rectangle);
therefore, as long as there is no red point outside
the safety area, the task is not activated and there
is no correction of the robot pose for this task (see
Figure 5). The objective of the visibility task is not
to bring the error completely to zero, but through
this task to avoid the key points going out of the
field of view of the camera. It can be seen in Figure
7 that during the execution of all the visual task
the current points remain within the safety area,
therefore the task is not activated.

5.2. Visual path following with obstacle avoidance

This subsection presents the extension of hier-
archical visual servo control of a quadcopter to
follow a visual path while it avoids obstacles if
needed. Figure 12 shows the scenario for this sec-
ond experiment, which consists of following a vi-
sual path made up of four target images, and the

robot must evade two obstacles. The point detec-
tion, the matching process, and control law are the
same as those used in the first experiment, com-
puted according to Algorithm 1 for n = 4. Unlike
the experiment in Section 5.1, this controller runs
at an average frequency of 55 Hz. The difference
is due to the removal of a 40 ms delay in the algo-
rithm, which was intended to synchronize the con-
troller with the sampling rate of the Bebop 2 cam-
era, which in video mode works at 30 fps. Eliminat-
ing the delay increased the average frequency and
improved the performance of the quadcopter. From
the starting point to the first image, the robot must
make a frontal displacement of 1.5 m at a height of
1 m. On the way, it must avoid a cylindrical obsta-
cle of 0.11 m in diameter. Once the pose associated
with the first target image I∗1 is reached, the target
image is changed to image I∗2 , in this case, a for-
ward displacement of 0.5 m at a height of 1.0 m is
performed. Once the pose associated with the tar-
get image I∗2 is reached using the condition ε < Tε
with Tε = 12 pixels, the change from the target
image to the target image I∗3 is made. In that sec-
tion of the path, the quadcopter must travel 1.5
m forward at a height of 1.0 m while avoiding a
rectangular obstacle of 0.05 m wide x 0.02 m deep.
Once the pose associated with the target image I∗3
is reached, the target image is changed to the last
image of the visual path I∗4 ; this time, the robot
must move 0.5 m laterally towards the left side, 1.0
m towards the front, descend to a height of 0.5 m
while oriented 30 degrees measured from the orien-
tation of the previous target pose. The transition
function h(t) has a duration of 1.6 s and h0 = 0.2.

In Figure 13, a sequence of images of the quad-
copter performing the visual path following with
obstacle avoidance can be observed. These cor-

15

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-0.2

0

0.2

0.4

0.6

0

0.5

1

-1

0

1

Figure 10: Velocities for pose-regulation experiment with obstacle avoidance. The first row corresponds to velocities, where
the cyan rectangle represents the time interval in which obstacle avoidance was performed. The second row represents the
activation function of the collision avoidance task, and the third is the activation function of the visibility task.

0 5 10 15 20

Time (s)

-0.05

0

0.05

0.1

0.15

0.2

(a) Collision avoidance task error.

0 5 10 15 20

Time (s)

40

60

80

100

120

(b) Visibility task error.

Figure 11: Errors for the pose-regulation experiment with obstacle avoidance.

Figure 12: Top view of the scenario for the visual path fol-
lowing experiment with obstacle avoidance.

respond to the internal and external views of the
quadcopter. In the picture on the left side in the
last row, right at the end of the visual task, it can

be seen that the current points (red crosses) are
very close to the desired points (green crosses).

Figure 14 displays the mean square error (ε) and
the task error for the visual task (eee). The black
vertical lines dotted in the mean square error image
represent the time instants in which the changes of
the target image were made (ε < Tε with Tε =
12 pixels for the intermediate images I∗1 , I∗2 , and
I∗3), it can be seen that just at these moments (t =
12 s, t = 15 s, and t = 26 s) the error has abrupt
changes in its value. Finally, the quadcopter ends
the task when the error reaches a value ε < Tε, with
Tε = 7 pixels. In the graph of error eee, it can be seen

16

Figure 13: Internal (left side column) and external (right side column) view of the quadcopter performing the visual path
following experiment with obstacle avoidance. The first row corresponds to the moment when the robot starts the first visual
subtask, the second row to the moment in which it avoids the first obstacle, the third row to the start of the third visual subtask
(position between the two obstacles), the fourth corresponds to the moment in which it performs the evasion of the second
obstacle, and the fifth row corresponds to the moment in which the quadcopter finishes the fourth and last visual subtask. The
red rectangle shows the position of the robot.

17

0 5 10 15 20 25 30 35

Time (s)

0

50

100

150

200

(a) Mean square error.

0 5 10 15 20 25 30 35

Time (s)

-0.4

-0.2

0

0.2

0.4

V
is

u
a
l
e
rr

o
rs

(b) Visual task error.

Figure 14: Errors of the visual task for the visual path following experiment with obstacle avoidance. The black dotted vertical
lines represent the time instants at which the target image changes were made.

0 5 10 15 20 25 30 35

Time (s)

-0.4

-0.2

0

0.2

0.4

0.6

0

0.5

1

0

0.5

1

Figure 15: Velocities for the visual path following experiment with obstacle avoidance. The first row corresponds to velocities,
where the cyan rectangles represent the time intervals in which obstacle avoidances were performed, and the black dotted
vertical lines represent the time instants at which the target image changes were made. The second row represents the
activation function of the collision avoidance task, and the third is the activation function of the visibility task.

that, as for error ε, there are abrupt changes in the
instants of time in which the target image changes
were made. At the end of the task, it is observed
that each of the error components eee converges to
values close to zero.

Figure 15 depicts the velocity commands; the
black dotted vertical lines represent the time in-
stants in which the changes of the target image were
made; it can be seen that after making the changes
of the target image, the velocity transitions are
made smoothly, due to the action of the transition
function ht(t). The cyan-colored rectangles repre-

sent the time intervals in which the robot executed
the obstacle avoidance task, it can be observed that
at the beginning and end of the execution of the
avoidance task, the changes in velocities are made
smoothly by the action of the activation function
ha(t). Finally, it can be observed that the veloc-
ities converge to values close to zero. The second
row shows the activation function of the collision
avoidance task. It can be seen that activation and
deactivation are performed smoothly for the two
time intervals in which the quadcopter avoided the
two obstacles. The third row shows the activation

18

0 5 10 15 20 25 30 35

Time (s)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

(a) Collision avoidance task error.

0 5 10 15 20 25 30 35

Time (s)

20

40

60

80

100

120

140

160

(b) Visibility task error.

Figure 16: Errors for the visual path following experiment with obstacle avoidance.

function of the visibility task. In this one, smooth
activation and deactivation can be observed. It was
active in the interval from t = 26 s to t = 29 s and
was activated again at t = 32 s, remaining active
because the robot reached the pose associated with
the target image I∗4 .
Figure 16a illustrates the error of the evasion

task. It is observed that during the interval from
t = 0 s to t = 5 s, the error initially has a decreasing
behavior, then increases to finally fall to the refer-
ence value for the first obstacle of σ = 0.13 because
the obstacle leaves the field of view of the camera.
Then, in the interval from t = 11 s to t = 20 s,
the error has an increasing behavior to finally take
a constant value of σ = 0.06, which corresponds
to the reference value for the second obstacle. The
change in the value of σ is due to the fact that
the distance between the robot and the obstacle at
the time of task activation and during task execu-
tion is intended to be approximately equal for both
cases. Figure 16b shows the error of the visibility
task, the reasons for the increasing error behavior
are the same as described in the first experiment.
The peak that stands out at t = 26 s is due to the
last change of the target image. To achieve the pose
associated with this target image, the quadcopter
must move in the four degrees of freedom, which
generates a high visibility task error at the begin-
ning of the last visual sub-task (11), activating for
a while the visibility control.

5.3. Visual path following with feed-forward

This subsection presents the application of the
proposed visual servo control for a longer cyclic
path, where the robot must return to the same ini-
tial position. In this case, no obstacles are present
along the path, therefore, it is possible to use the

control scheme that includes a feed-forward compo-
nent.

Figure 17: Top view of the scenario for the experiment of
visual path following with feed-forward.

Figure 17 displays the scenario for the visual path
following the experiment, first considering the con-
trol law without feed-forward velocity components.
The path has a total travel distance of 7.7 m and
is composed of 30 images, of which 8 correspond
to frontal linear displacements (50 cm distance be-
tween them) and 22 correspond to rotation (15°)
plus translation movements (approximately 20 cm),
all acquired at 1 m height. The adaptive gain pa-
rameters λ (∥eee∥) used were λ0 = 2.1, λ∞ = 1.0
and λ

′

0 = 5. The values of the gain matrix are:
λvx = λvz = λ (∥eee∥), λvy = λ (∥eee∥) + 0.1 and
λwx = λwy = λwz = 0.5λ (∥eee∥). The thresh-
old Tε, which determines the condition to complete
each of the visual sub-tasks, according to the mean
square error ε, from equation (7), was defined as
Tε = 18 pixels, for the target images {I∗1 , ..., I∗29},
and Tε = 7 pixels, for the last target image I∗30.
The first value of Tε = 18 pixels, allows the robot
to navigate nimbly and accurately between inter-
mediate target images. The second Tε = 7 pixels,
allows the robot more accurately reaching the final

19

0 50 100 150 200 250

Time (s)

0

50

100

150

200

250

(a) Mean square error.

0 50 100 150 200

Time (s)

-0.5

0

0.5

V
is

u
a
l
e
rr

o
rs

(b) Visual task error.

Figure 18: Errors of the visual task for the experiment of visual path following without feed-forward.

pose, according to the target image I∗30. The pro-
cess in this experiment is described in Algorithm 2;
in this case, the detection of features was performed
with a corner detector based on (Shi et al., 1994).
The controller was run at an average frequency of
24 Hz. As explained in Section 4.2, in this kind of
experimental setup the visual servo control law of
equation (30) is applicable and not the hierarchical
control law.

Figure 18a depicts the mean square error ε of
equation (7). It can be observed that the error con-
verges to a value of ε < 18 for the target images
I∗1 , ..., I∗29 and ε < 7 for the last target image I∗30.
Figure 18b presents the error of task eee of the equa-
tions (2). It can be seen how errors go from low
to high values smoothly due to the effects of the
transition function ht(t), but those oscillatory ef-
fects will be reflected in the velocities, as will be
presented below.

In Figure 19, the velocity vector νννe of the equa-
tion (6) is shown, which for its calculation is used
the velocity vector νννct2 of equation (30). It can
be seen that the rotational velocity wz has three
time intervals during which it has sudden changes in
value 10 ≤ t ≤ 50, 70 ≤ t ≤ 95 and 175 ≤ t ≤ 190.
These variations are due to the changes of target
image, and they are smoothed on the rise through
the transition function ht(t), and they are reduced
by the controller, which generates these sudden
changes. In the first two intervals, the quadcopter
moves on the curve’s path, and in the last interval,
it reaches the final target. The variations in the
vx and vy components are due to the need to cor-
rect the robot’s position on the (xy) plane while
performing the navigation task. Changes in the
vz component are due to the quadcopter generates
variations in its flight altitude. At the end of the

task (t = 200 s), all components of νννe converge to
a value close to zero.

Next, we present the results of an experiment us-
ing the control law with feed-forward velocity com-
ponents. The scenario for this experiment is the
same as the experiment of visual path following
without feed-forward velocity terms (see Figure 17).
The visual memory in this case is slightly different,
composed of 35 images, with some more images in
the linear segment of the path, all images acquired
at 1 m height.

The adaptive gain parameters λ (∥eee∥) used were
λ0 = 1.5, λ∞ = 0.8 and λ

′

0 = 5. The values
of the gain matrix were: λvx = λvz = λ (∥eee∥),
λvy = λ (∥eee∥) + 2 y λwx = λwy = λwz = 0.5λ (∥eee∥).
The threshold Tε for the intermediate images and
the last image are the same as in the previous ex-
periment. For the computation of the feed-forward
velocity vector νννp from equation (32), a scaling fac-
tor of γ = 0.75 was used. For the computation of
the velocity vector νννef (equation (31)), a weighting
of p = 0.5 was used. Therefore, the contribution of
the feed-forward velocity vector is 50% of the total
velocity vector sent to the quadcopter. The pro-
cess of computing the control law is the same as
described in the experiment without feed-forward
velocities according to the Algorithm 2. The con-
troller was run at an average frequency of 23 Hz.

Figure 20 shows a sequence of images of the quad-
copter performing the visual path following with
feed-forward velocities. These correspond to the
internal and external views of the robot.

In Figure 21a, the mean square error ε of equa-
tion (7) is shown. It can be observed that the error
in the time intervals 0 ≤ t < 8 and 25 ≤ t < 35,
reaches lower values. During these time intervals,
the quadcopter navigates over the two straight seg-

20

0 50 100 150 200

Time (s)

-0.4

-0.2

0

0.2

0.4

Figure 19: Velocities for experiment of visual path following without feed-forward.

ments of the oval, and therefore, it is easier for the
robot to correct the error. In the time intervals
8 ≤ t < 25 and 35 ≤ t, the sudden error changes due
to the changes of the target image. During these
time intervals, the quadcopter navigates over the
two curve segments of the oval. It can be seen that
the error does not reduce to the threshold Tε = 18.
In general, the changes of target images were given
by the condition of increment of the error ε along
the last five iterations, since the path-following is
not as accurate as using only the feedback compo-
nents; however, the quadcopter is able to follow the
path and reach the final target faster than in the
experiment without feed-forward terms.

In Figure 21b, the error of task eee of equations (2)
is presented. It is observed how the visual errors
at the end converges to values close to zero. In
addition, sudden changes can be observed in the
evy , evz , and ewy , which are due to changes of the
target image. The behavior of evy is due to the
low-level control of the robot that generates small
changes in the y axis of the camera when trying to
maintain the reference height of 1 m (see Figure 1).

In Figure 22, it is shown the velocity vector νννef of
equation (31), which is calculated using the velocity
vector νννct2 of equation (30) and the feed-forward ve-
locity vector from equation (32), obtained from vi-
sual path processing described in Section 4.2. Two
types of lines are presented in the figure. Contin-
uous lines represent the components of the vector
νννef that was applied to the quadcopter, and dashed
lines represent the feed-forward velocities obtained

from visual path processing. Notice that the ve-
locity component vx corresponding to the forward
motion of the robot remains on average 0.17 m/s.
Therefore, it can be deduced that the quadcopter
moves in continuous forward motion, unlike the
experiment without feed-forward velocity compo-
nents. It can be seen that the shape of the dashed
line plots is consistent with the shape of the com-
manded velocities (in a continuous line) that the
quadcopter executed. If the quadcopter starts near
the position associated with the first target image,
it would be expected that these feed-forward veloc-
ities alone in open-loop would make the robot move
close to the path.

Finally, it is worth noting that for the case of this
experiment, the robot traversed a total of 7.71 m
in 51.32 s, only 25% of the time taken to perform
the same navigation task with the visual servo con-
trol scheme without feed-forward velocities terms.
Thus, the main advantage of using feed-forward
components is that the quadcopter has not reduced
its forward velocity for each target image; then the
path is traveled faster than using the control law
without feed-forward components. An issue is that
the feed-forward component is only applicable when
there are no obstacles in the path to be followed by
the quadcopter, since the feed-forward velocities are
computed from the reference visual path without
deviations.

21

Figure 20: Internal (left side column) and external (right side column) view of the quadcopter performing the visual path
following with feed-forward experiment. The first and second rows show the navigation of the first straight line of the circuit,
the third row shows the pose of the robot in the middle of the first curve, the fourth and fifth rows show the navigation of the
second straight line, and the last row shows the pose of the quadcopter in the middle of the second curve.

22

0 10 20 30 40 50

Time (s)

0

100

200

300

400

(a) Mean square error.

0 10 20 30 40 50

Time (s)

-1

-0.5

0

0.5

1

1.5

2

V
is

u
a
l
e
rr

o
rs

(b) Visual task error.

Figure 21: Errors of the visual task for the experiment of visual path following with feed-forward.

0 10 20 30 40 50

Time (s)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 22: Velocities for experiment of visual path following with feed-forward. The continuous lines represent the components
of the vector νννef that was applied to the quadcopter, and the dashed ones represent the feed-forward velocities obtained from
the visual path processing.

6. Conclusions

In this paper, we proposed a hierarchical control
scheme for quadcopters where the main goal is that
the quadcopter follows a visual path, which con-
sists of a sequence of images previously acquired.
The hierarchical control is composed of three com-
ponents, each one dedicated to solve a task in a
hierarchy defined as follows: first, a collision avoid-
ance task, second a visibility task (maintenance of
point features in the camera’s field of view), and
finally a visual servoing task. The stability analysis
of the closed-loop control law is provided consider-
ing the three tasks, which allowed us to verify the
asymptotic convergence of the errors to the origin.
The main feature of the proposed control scheme

is that it was formulated in the image space, i.e. it is
fully 2D; the solution for each task is only defined

in terms of information obtained from a monocu-
lar RGB camera. The control scheme is applicable
to quadcopters that have a low-level velocity con-
troller able to execute commanded translational ve-
locities in x, y, z and the rotational velocity in yaw.
In our case, the effectiveness of the proposed control
scheme was validated through experiments using a
commercial quadcopter. We have presented exper-
iments for pose-regulation with a single target im-
age and also visual path following with a sequence
of target images, in both cases performing obstacle
avoidance if needed. Besides, we proposed to in-
clude a feed-forward component in the control law,
which showed that the quadcopter is able to com-
plete a path in less time than just using a feedback
component.

Different from Courbon et al. (2010); Do et al.

23

(2019), where position-based visual servo con-
trollers are proposed, our image-based controller
does not rely on the rotation matrix and the scaled
translation vector between pairs of images, which
requires a particular estimation process. In Cour-
bon et al. (2010); Do et al. (2019), the quadcopter
moves only in the xy plane, i.e., it always navigates
at the same altitude. In contrast, the proposed con-
trol scheme considers the four degrees of freedom of
the quadcopter to perform translational 3D move-
ments with changes in altitude. Moreover, obsta-
cle avoidance is commonly performed by estimating
the quadcopter and obstacle locations in 3D space
by means of optical flow, IMU and ultrasonic sen-
sors as suggested in Do et al. (2019). The obstacle
avoidance task in the proposed control scheme is
solved in image space, it is fully 2D and reactive.

As future work, it is planned to replace the sim-
ple segmentation of obstacles as done here with a
more general and robust object detection, for in-
stance, based on deep learning algorithms. In ad-
dition, to avoid reliance on computer vision algo-
rithms for the detection, matching, and tracking of
point features, and enhance the applicability of the
approach for low textured scenes, it is planned to
use deep learning algorithms to estimate a homog-
raphy matrix between pairs of images and the rest
of the proposed control scheme could be the same
as described in this paper.

7. Declaration of competing interest

The authors declare that they have no known
competing financial interests or personal relation-
ships that could have appeared to influence the
work reported in this paper.

8. Acknowledgment

The first author acknowledges the financial sup-
port of the National Council of Science and Tech-
nology (CONACyT) under scholarship No. 943100.

Appendix A. Sub-matrices of MMM

Using the properties of equation (26) in the ma-
trix MMM of equation (25), we get the following:

MMMa =ha(t)λaJJJaĴ̂ĴJ
+
a ,

MMMb =(1− ha(t))hm(t)λmJJJaĴ̂ĴJ
+
a Ĵ̂ĴJaĴ̂ĴJ

+
m,

MMMc =(1− ha(t))hv(t)λvJJJaĴ̂ĴJ
+
a Ĵ̂ĴJaĴ̂ĴJ

+
v ,

MMMd =ha(t)λaJJJmĴ̂ĴJ
+
a − ha(t)λaĴ̂ĴJmĴ̂ĴJ

+
a

+ (1− hm(t))ha(t)λaĴ̂ĴJmĴ̂ĴJ
+
a ,

MMMe =hm(t)λm + (1− ha(t))hm(t)λmJJJmĴ̂ĴJ
+
a Ĵ̂ĴJaĴ̂ĴJ

+
m

− (1− ha(t))hm(t)λmĴ̂ĴJmĴ̂ĴJ
+
a Ĵ̂ĴJaĴ̂ĴJ

+
m,

MMMf =(1− hm(t))hv(t)λvĴ̂ĴJmĴ̂ĴJ
+
v

+ (1− ha(t))hv(t)λvJJJmĴ̂ĴJ
+
a Ĵ̂ĴJaĴ̂ĴJ

+
v

− (1− ha(t))hv(t)λvĴ̂ĴJmĴ̂ĴJ
+
a Ĵ̂ĴJaĴ̂ĴJ

+
v ,

MMMg =
(
ha(t)λaJJJvĴ̂ĴJ

+
a − ha(t)λaĴ̂ĴJvĴ̂ĴJ

+
a

)
+
(
(1− hm(t))ha(t)λaJJJv(Ĵ̂ĴJmNNNa)

+
Ĵ̂ĴJmĴ̂ĴJ

+
a

−(1− hm(t))ha(t)λaĴ̂ĴJv(Ĵ̂ĴJmNNNa)
+
Ĵ̂ĴJmĴ̂ĴJ

+
a

)
+
(
ha(t)λaĴ̂ĴJv(Ĵ̂ĴJmNNNa)

+
Ĵ̂ĴJmĴ̂ĴJ

+
a

−ha(t)λaJJJv(Ĵ̂ĴJmNNNa)
+
Ĵ̂ĴJmĴ̂ĴJ

+
a

)
+ (1− hv(t))ha(t)λaĴ̂ĴJvĴ̂ĴJ

+
a ,

MMMh =
(
(1− ha(t))hm(t)λmJJJvĴ̂ĴJ

+
a Ĵ̂ĴJaĴ̂ĴJ

+
m

−(1− ha(t))hm(t)λmĴ̂ĴJvĴ̂ĴJ
+
a Ĵ̂ĴJaĴ̂ĴJ

+
m

)
+
(
hm(t)λmJJJv(Ĵ̂ĴJmNNNa)

+

−hm(t)λmĴ̂ĴJv(Ĵ̂ĴJmNNNa)
+
)

+
(
(1− ha(t))hm(t)λmĴ̂ĴJv(Ĵ̂ĴJmNNNa)

+
Ĵ̂ĴJmĴ̂ĴJ

+
a Ĵ̂ĴJaĴ̂ĴJ

+
m

−(1− ha(t))hm(t)λmJJJv(Ĵ̂ĴJmNNNa)
+
Ĵ̂ĴJmĴ̂ĴJ

+
a Ĵ̂ĴJaĴ̂ĴJ

+
m

)
+ (1− hv(t))hm(t)λmĴ̂ĴJvĴ̂ĴJ

+
m,

MMMi =
(
(1− ha(t))hv(t)λvJJJvĴ̂ĴJ

+
a Ĵ̂ĴJaĴ̂ĴJ

+
v

−(1− ha(t))hv(t)λvĴ̂ĴJvĴ̂ĴJ
+
a Ĵ̂ĴJaĴ̂ĴJ

+
v

)
+
(
(1− hm(t))hv(t)λvJJJv(Ĵ̂ĴJmNNNa)

+
Ĵ̂ĴJmĴ̂ĴJ

+
v

−(1− hm(t))hv(t)λvĴ̂ĴJv(Ĵ̂ĴJmNNNa)
+
Ĵ̂ĴJmĴ̂ĴJ

+
v

)
+
(
(1− ha(t))hv(t)λvĴ̂ĴJv(Ĵ̂ĴJmNNNa)

+
Ĵ̂ĴJmĴ̂ĴJ

+
a Ĵ̂ĴJaĴ̂ĴJ

+
v

−(1− ha(t))hv(t)λvJJJv(Ĵ̂ĴJmNNNa)
+
Ĵ̂ĴJmĴ̂ĴJ

+
a Ĵ̂ĴJaĴ̂ĴJ

+
v

)
+ hv(t)λv.

References

Ayub, M.F., Ghawash, F., Shabbir, M.A., Kamran, M.,
Butt, F.A., 2018. Next generation security and surveil-
lance system using autonomous vehicles, in: Ubiquitous
Positioning, Indoor Navigation and Location-Based Ser-
vices (UPINLBS), pp. 1–5.

Benhimane, S., Malis, E., 2007. Homography-based 2d vi-
sual tracking and servoing. The International Journal of
Robotics Research 26, 661–676.

Bouguet, J.Y., et al., 2001. Pyramidal implementation of
the affine lucas kanade feature tracker description of the
algorithm. Intel Corporation 5, 4.

24

Chaumette, F., Hutchinson, S., 2006. Visual servo control.
i. basic approaches. IEEE Robotics & Automation Mag-
azine 13, 82–90.

Chiang, M.L., Tsai, S.H., Huang, C.M., Tao, K.T., 2021.
Adaptive visual servoing for obstacle avoidance of micro
unmanned aerial vehicle with optical flow and switched
system model. Processes 9, 2126.

Courbon, J., Mezouar, Y., Guénard, N., Martinet, P.,
2010. Vision-based navigation of unmanned aerial vehi-
cles. Control Engineering Practice 18, 789–799.

Delfin, J., Becerra, H.M., Arechavaleta, G., 2014. Vi-
sual path following using a sequence of target images
and smooth robot velocities for humanoid navigation, in:
2014 IEEE-RAS International Conference on Humanoid
Robots, IEEE. pp. 354–359.

Delfin, J., Becerra, H.M., Arechavaleta, G., 2016. Visual
servo walking control for humanoids with finite-time con-
vergence and smooth robot velocities. International Jour-
nal of Control 89, 1342–1358.

Do, T., Carrillo, L.C., Roumeliotis, S.I., 2015. Autonomous
flights through image-defined paths, International Sym-
posium on Robotics Research (ISRR).

Do, T., Carrillo-Arce, L.C., Roumeliotis, S.I., 2019. High-
speed autonomous quadrotor navigation through visual
and inertial paths. The International Journal of Robotics
Research 38, 486–504.

Fehr, M., Schneider, T., Dymczyk, M., Sturm, J., Siegwart,
R., 2018. Visual-inertial teach and repeat for aerial in-
spection. arXiv preprint arXiv:1803.09650 .

Fischler, M.A., Bolles, R.C., 1981. Random sample consen-
sus: a paradigm for model fitting with applications to
image analysis and automated cartography. Communica-
tions of the ACM 24, 381–395.

Gans, N.R., Hu, G., Nagarajan, K., Dixon, W.E., 2011.
Keeping multiple moving targets in the field of view of a
mobile camera. IEEE Transactions on Robotics 27, 822–
828.

Garcia, A., Mattison, E., Ghose, K., 2015. High-speed
vision-based autonomous indoor navigation of a quad-
copter, in: Int. Conf. on Unmanned Aircraft Systems, pp.
338–347.

Giernacki, W., Kozierski, P., Michalski, J., Retinger, M.,
Madonski, R., Campoy, P., 2020. Bebop 2 quadrotor as a
platform for research and education in robotics and con-
trol engineering, in: Int. Conf. on Unmanned Aircraft Sys-
tems (ICUAS), IEEE. pp. 1733–1741.

Iacono, M., Sgorbissa, A., 2018. Path following and obstacle
avoidance for an autonomous uav using a depth camera.
Robotics and Autonomous Systems 106, 38–46.

Jiang, Y., Gao, W., Na, J., Zhang, D., Hämäläinen, T.T.,
Stojanovic, V., Lewis, F.L., 2022. Value iteration and
adaptive optimal output regulation with assured conver-
gence rate. Control Engineering Practice 121, 105042.

Kermorgant, O., Chaumette, F., 2013. Dealing with con-
straints in sensor-based robot control. IEEE Transactions
on Robotics 30, 244–257.

Khalil, H.K., 2002. Nonlinear Systems. Prentice Hall, Upper
Saddle River, New Jersey.

Kozák, V., Pivoňka, T., Avgoustinakis, P., Majer, L., Kulich,
M., Přeučil, L., Camara, L.G., 2021. Robust visual teach
and repeat navigation for unmanned aerial vehicles, in:
2021 European Conference on Mobile Robots (ECMR),
pp. 1–7.

Lee, J., Mansard, N., Park, J., 2012. Intermediate desired
value approach for task transition of robots in kinematic

control. IEEE Transactions on Robotics 28, 1260–1277.
Lim, J., Pyo, S., Kim, N., Lee, J., Lee, J., 2020. Obsta-

cle magnification for 2-d collision and occlusion avoidance
of autonomous multirotor aerial vehicles. IEEE/ASME
Transactions on Mechatronics 25, 2428–2436.

Lin, H.Y., Peng, X.Z., 2021. Autonomous quadrotor naviga-
tion with vision based obstacle avoidance and path plan-
ning. IEEE Access 9, 102450–102459.

Lin, J., Zhu, H., Alonso-Mora, J., 2020. Robust vision-based
obstacle avoidance for micro aerial vehicles in dynamic
environments, in: IEEE Int. Conf. on Robotics and Au-
tomation, pp. 2682–2688.

Liu, J.J., Hou, Q., Cheng, M.M., Feng, J., Jiang, J., 2019.
A simple pooling-based design for real-time salient object
detection, in: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 3917–
3926.

Liu, N., Shao, X., Li, J., Zhang, W., 2020. Attitude re-
stricted back-stepping anti-disturbance control for vision
based quadrotors with visibility constraint. ISA transac-
tions 100, 109–125.

Loianno, G., Brunner, C., McGrath, G., Kumar, V., 2017.
Estimation, control, and planning for aggressive flight
with a small quadrotor with a single camera and imu.
IEEE Robotics and Automation Letters 2, 404–411.

Lowe, D.G., 2004. Distinctive image features from scale-
invariant keypoints. International journal of computer vi-
sion 60, 91–110.

Malis, E., Chaumette, F., 2000. 2 1/2 d visual servoing
with respect to unknown objects through a new estima-
tion scheme of camera displacement. International Jour-
nal of Computer Vision 37, 79–97.

Marchand, E., Spindler, F., Chaumette, F., 2005. Visp for
visual servoing: a generic software platform with a wide
class of robot control skills. IEEE Robotics and Automa-
tion Magazine 12, 40–52.

Martinez-Carranza, J., Rojas-Perez, L.O., 2022. Warehouse
inspection with an autonomous micro air vehicle. Un-
manned Systems , 1–14.

Mellinger, D., Kumar, V., 2011. Minimum snap trajectory
generation and control for quadrotors, in: IEEE Int. Conf.
on Robotics and Automation, IEEE. pp. 2520–2525.

Mercado, D., Castillo, P., Lozano, R., 2018. Sliding mode
collision-free navigation for quadrotors using monocular
vision. Robotica 36, 1493–1509.

Nguyen, T., Mann, G., Gosine, R., Vardy, A.,
2016. Appearance-based visual-teach-and-repeat naviga-
tion technique for micro aerial vehicle. J Intell Robot Syst
84, 217–240.

Nitsche, M., Pessacg, F., Civera, J., 2020. Visual-inertial
teach and repeat. Robotics and Autonomous Systems 131,
103577.

Obregón-Flores, J., Arechavaleta, G., Becerra, H.M.,
Morales-Dı́az, A., 2021. Predefined-time robust hierar-
chical inverse dynamics on torque-controlled redundant
manipulators. IEEE Transactions on Robotics 37, 962–
978.

Park, J., Kim, Y., 2015. Collision avoidance for quadrotor
using stereo vision depth maps. IEEE Transactions on
Aerospace and Electronic Systems 51, 3226–3241.

Pinto, A.O., Marciano, H.N., Bacheti, V.P., Moreira,
M.S.M., Brandão, A.S., Sarcinelli-Filho, M., 2020. High-
level modeling and control of the bebop 2 micro aerial
vehicle, in: Int. Conf. on Unmanned Aircraft Systems
(ICUAS), IEEE. pp. 939–947.

25

Shi, J., et al., 1994. Good features to track, in: 1994 Proceed-
ings of IEEE conference on computer vision and pattern
recognition, IEEE. pp. 593–600.

Škrinjar, J.P., Škorput, P., Furdić, M., 2018. Application of
unmanned aerial vehicles in logistic processes, in: Inter-
national Conference on New Technologies, Development
and Applications, Springer. pp. 359–366.

Song, X., Sun, P., Song, S., Stojanovic, V., 2022. Event-
driven nn adaptive fixed-time control for nonlinear sys-
tems with guaranteed performance. Journal of the
Franklin Institute 359, 4138–4159.

Spindler, F., Gaumerais, G., 2019. Tutorial: Visual-
servoing with parrot bebop 2 drone. https://visp-
doc.inria.fr/doxygen/visp-daily/tutorial-bebop2-vs.html.
22-05-2020.

Spitzer, A., Michael, N., 2021. Feedback linearization for
quadrotors with a learned acceleration error model, in:
IEEE Int. Conf. on Robotics and Automation, pp. 6042–
6048.

Tang, Z., Cunha, R., Cabecinhas, D., Hamel, T., Silvestre,
C., 2021. Quadrotor going through a window and landing:
An image-based visual servo control approach. Control
Engineering Practice 112, 104827.

Trujillo, M.A., Becerra, H.M., Gomez-Gutierrez, D., Ruiz-
Leon, J., Ramirez-Treviño, 2021. Hierarchical task-based
formation control and collision avoidance of UAVs in finite
time. European Journal of Control 60, 48–64.

Vargas, S., Becerra, H.M., Hayet, J.B., 2022. Mpc-based dis-
tributed formation control of multiple quadcopters with
obstacle avoidance and connectivity maintenance. Con-
trol Engineering Practice 121, 105054.

Warren, M., Greeff, M., Patel, B., Collier, J., Schoellig, A.P.,
Barfoot, T.D., 2019. There’s no place like home: Visual
teach and repeat for emergency return of multirotor uavs
during gps failure. IEEE Robotics and Automation Let-
ters 4, 161–168.

Yang, X., Chen, J., Dang, Y., Luo, H., Tang, Y., Liao, C.,
Chen, P., Cheng, K.T., 2021. Fast depth prediction and
obstacle avoidance on a monocular drone using probabilis-
tic convolutional neural network. IEEE Transactions on
Intelligent Transportation Systems 22, 156–167.

Zheng, D., Wang, H., Wang, J., Zhang, X., Chen, W., 2019.
Toward visibility guaranteed visual servoing control of
quadrotor uavs. IEEE/ASME Transactions on Mecha-
tronics 24, 1087–1095.

Zheng, P., Tan, X., Kocer, B.B., Yang, E., Kovac, M., 2020.
Tiltdrone: A fully-actuated tilting quadrotor platform.
IEEE Robotics and Automation Letters 5, 6845–6852.

26

