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Abstract This paper addresses the problem of con-
sensus trackingwithfixed-timeconvergence, for leader–
follower multi-agent systems with double-integrator
dynamics, where only a subset of followers has access
to the state of the leader. The control scheme is divided
into two steps. The first one is dedicated to the estima-
tion of the leader state by each follower in a distributed
way and in a fixed-time. Then, based on the estimate
of the leader state, each follower computes its control
law to track the leader in a fixed-time. In this paper,
two control strategies are investigated and compared
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to solve the two mentioned steps. The first one is an
autonomous protocol which ensures a fixed-time con-
vergence for the observer and for the controller parts
where the Upper Bound of the Settling-Time (UBST)
is set a priory by the user. Then, the previous strat-
egy is redesigned using time-varying gains to obtain a
non-autonomous protocol. This enables to obtain less
conservative estimates of the UBST while guarantee-
ing that the time-varying gains remain bounded. Some
numerical examples show the effectiveness of the pro-
posed consensus protocols.

Keywords Leader–follower consensus · Fixed-time
convergence · Multi-agent systems · Fixed-time
observer · Second-order systems

1 Introduction

In the last years, the problems of coordination and con-
trol of Multi-Agent System (MAS) have been widely
studied (see for instance [3,24,38,40,47]), due mainly
to the ability of a MAS to face complex tasks that a
single agent is not able to handle. Distributed control
approaches applied to aMAS require a communication
network allowing to share information with a subset of
agents (neighbors). In this context, several interesting
problems and applications have been investigated in
the literature, for instance, synchronization of complex
networks [8], distributed resource allocation [55], con-
sensus [39] and formation control of multiple agents
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2670 M. A. Trujillo et al.

[36]. Among all thementioned problems, an interesting
one is the leader–follower consensus problem where a
set of agents, through local interaction, converge to the
state of a leader, even though the leader may not be
accessible for all agents.

The consensus problem consists in reaching a com-
mon agreement state by exchanging only local infor-
mation [39,45]. Linear average consensus protocols
with asymptotic convergencewere proposed in [39,45].
It has been demonstrated that the second smallest
eigenvalue of the Laplacian graph (i.e., the algebraic
connectivity) determines the convergence rate of the
MAS. Furthermore, the problem of tracking a refer-
ence by a MAS (i.e., leader–follower consensus prob-
lem) has been investigated where the common agree-
ment to reach is the state of a reference imposed by
a leader which evolves independently of the MAS
[13,19,33,46]. In [46], the consensus problemhas been
addressed where the agents reach a time-varying refer-
ence. However, the control protocol has been derived
for first-order MAS. The problem for second-order
MAS has been studied in [19] and extended to high-
order MAS in [13,33]. Furthermore, [26] has consid-
ered the consensus tracking control problem of uncer-
tain nonlinear MAS with predefined accuracy. Never-
theless, in these works, the convergence is only asymp-
totic.

To improve the convergence rate of a MAS, finite-
time consensus protocols have been investigated in
[49]. Finite-time stability has been studied in [11,29,
59]. However, the settling time is an unbounded func-
tion of the initial conditions of the system. Therefore,
the concept of fixed-time stability has been introduced
and applied to systems with time constraints [1,41,48].
In this case, the settling time is bounded by a con-
stant which is independent of the initial conditions
of the system. In the literature, there are several con-
tributions on algorithms with fixed-time convergence
property, such as stabilizing controllers [41,42], state
observers [27], multi-agent coordination [2,16], online
differentiation algorithms [7,15]. Nevertheless, one
canmention that the fixed-time stabilization problemof
second-order systems is not an easy task since usually
the settling time is not provided or is overestimated.
Indeed, there are several works for second-order sys-
tems stabilization based on block-control techniques
( [23,41,61,63]) or on the homogeneity in the bi-limit
( [52]).However, the homogeneity-based algorithms do
not provide an estimate of the settling time and many

block-control-based algorithms neglect some transient
when the system trajectories stay on a region around
a manifold. Moreover, the works [21,22,58,62] deal
with the problem of leader–follower consensus. Nev-
ertheless, these algorithms require that each follower
know the inputs of its neighbors simultaneously, which
causes communication loop problems. In this paper,
we address the leader–follower consensus problem of
a MAS, where each agent of the MAS estimates and
tracks the trajectory of the leader using local available
information even when just a subset ofMAS has access
to the leader state, and we provide the necessary con-
ditions to achieve the convergence in a fixed-time.

ALyapunovdifferential inequality for an autonomous
system to exhibit fixed-time stability was presented in
[41]. Based on this methodology using autonomous
systems, the consensus problem with fixed-time con-
vergence property has been derived for first-orderMAS
in [2,65,66]. Nevertheless, in [66], the UBST has been
estimated from design parameters, algebraic connec-
tivity and group order. Thus, it cannot be easily tuned.
In [2], the UBST was a design parameter which was
established a priory by the user. However, the settling
time becomes over-estimated and the slack between
the settling time and the UBST is conservative. Fur-
thermore, the works [6,35,64] have addressed the con-
sensus tracking problem, i.e., the MAS follows a tra-
jectory imposed by the leader. The scheme presented
in [35] has introduced a fixed-time algorithm consid-
ering inherent dynamics for the agents. However, dis-
turbances were not taken into account. The leader–
follower consensus problem for agents with second-
order and high order integrator dynamics has been
addressed in [51,64], respectively. The approach was
based on a fixed-time observer to estimate the leader
state and a fixed-time controller to drive the state of
the agent to the estimated leader state. Unfortunately,
although the observer can be designed to converge at
a desired UBST (with a conservative estimate of the
UBST), the controller is based on the homogeneity
theory [5] and no methodology has been provided to
estimate an UBST. Thus, although the algorithm is
fixed-time convergent, the desired convergence time
cannot be set a priory by the user. To address this issue,
autonomous algorithms were proposed in [31,32,50]
with an estimation of the UBST. Unfortunately, such
estimate of the UBST results very conservative leading
to over-engineered consensus protocols. Therefore, the
design of fixed-time leader–follower consensus algo-
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rithms where the UBST is set explicitly as a parameter
of the system, as well as the reduction in the conser-
vativeness of the estimate of the UBST is of a great
interest.

An approach to derive predefined-time consensus
algorithms has been addressed via a linear function
of the sum of the errors between neighboring nodes
together with a time-varying gain, using time base
generators [28], see, e.g., [14,25,34,53,54,56,57,60].
This approach ensures that the convergence is obtained
exactly at a predefined time. However, such time-
varying gain becomes singular at the predefined time,
either because the gain goes to infinite as the time tends
to the predefined time [56,57,60] or because it produces
Zeno behavior (infinite number of switching in a finite-
time interval) as the time tends to the predefined time
[25].

In this paper, we present a methodology to achieve
leader–follower consensus with fixed-time conver-
gence. It consists in two steps. The first one estimates
the leader state (position and velocity) using a fixed-
time observer that only requires information of the
neighbors. Then, the second step computes the con-
trol law to drive the followers to the observer states in a
fixed-time. Moreover, we investigate two protocols to
solve the considered problems. In one protocol, called
autonomous protocol, the convergence for the observer
and for the controller is in fixed-time, where the UBST
is established a priory by the user. In the second proto-
col, called non-autonomous protocol, we redesign the
previous one by adding time-varying gains to obtain
a less conservative estimate of the UBST while guar-
anteeing that the time-varying gains remain bounded.
The contribution lies in the following. A novel pro-
tocol is derived for second-order MAS with fixed-
time stability where the UBST is a design parame-
ter. Moreover, a non-autonomous protocol is presented
to achieve the convergence in a predefined-time with
less conservative estimates of the UBST compared to
existing in the literature. In fact, the resulting UBST
can be made arbitrarily tight. At last, our algorithm
yields a bounded time-varying gain, thus we avoid the
drawbacks present in the existing algorithmswith time-
varying gains where the gain goes to infinity.

This work is structured as follows. Section 2 recalls
somedefinitions and results fromgraph theory, and pre-
liminaries on finite-time and fixed-time convergence
are presented. In Sect. 3, the problem of consensus
tracking with fixed-time convergence is formulated.

Section 4 introduces two methodologies to solve the
consensus tracking problem. The first (resp. second)
one is based on algorithms to obtain a fixed-time stable
autonomous (resp. non-autonomous) system with an
UBST function independent of the initial conditions of
the system. Numerical results using both methodolo-
gies are shown in Sect. 6. Finally, the conclusions are
presented in Sect. 7.

2 Preliminaries

2.1 Graph theory

In this section, some notations and preliminaries about
graph and consensus theory are presented. One can
refer to [17,37] for a deeper insight in these fields.
This paper is only focused on undirected graphs for
the follower agents.

Definition 1 Agraph consists of a set of verticesV(X )

and a set of agents E(X )where an edge is an unordered
pair of distinct vertices of X . i j denotes an edge, if
vertex i and vertex j are adjacent or neighbors. The set
of neighbors of i in graph X is expressed byNi (X ) =
{ j ∈ X : j i ∈ E(X )}.
Definition 2 Apath from i to j in a graph is a sequence
of distinct vertices starting with i and ending with j
such that consecutive vertices are adjacent. If there is
a path between any two vertices of graph X , then X is
said to be connected.

Definition 3 LetX be a weighted graph such that i j ∈
E has weight ai j and let N = |V(X )|. Then, the adja-
cencymatrix A(X ) (or simply Awhen the graph is clear
from the context) is an N × N matrix where A = [ai j ]
and, the Laplacian is denoted by Q(X ) (or simply
Q) and is defined as Q(X ) = Δ(X ) − A(X ) where
Δ(X ) = diag(d1, . . . , dN ) with di = ∑

j∈Ni
ai j .

Through this work, it is assumed that ai j = a ji , i.e.,
only undirected and balanced graphs are considered.

Definition 4 Let X̂ be a weighted graph among all
the agents (i.e., the leader and the followers). Then,
the communication matrix between all the agents is
represented by M(X̂) = Q (X) + B where B =
diag(b1 . . . bN ) ∈ R

N×N with bi > 0 when there is
an edge from the leader to the i-agent and Q (X) is
the weighted graph associated with the communication
topology of the followers.
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Lemma 1 [33,44] Let X̂ be the communication graph
among all the agents with the leader as the root. Then,
matrixM(X̂) is symmetric positive definite.

2.2 On finite-time and fixed-time

Consider the system

ẋ(t) = f (x(t), t; ρ) , x(0) = x0 (1)

where x ∈ R
n is the system state, the vector ρ ∈ R

b

stands for more parameters of system (1) which are
assumed to be constant, i.e., ρ̇ = 0. Furthermore, there
is no limit for the number of parameters, so b can take
any value in the natural number set N. The function
f : R

n × R+ → R
n is nonlinear, and the origin is

assumed to be an equilibrium point of system (1), so
that f (0, t; ρ) = 0. Besides, when function f does
not depend explicitly on t , the system is said to be
autonomous or time-invariant. Otherwise, it is called
non-autonomous or time-varying [20].

Definition 5 [12] The origin of (1) is globally finite-
time stable if it is globally asymptotically stable and any
solution x(t; x0) of (1) reaches the equilibrium point
at some finite time moment, i.e., x(t; x0) = 0,∀t ≥
T (x0) where T : Rn → R+ ∪{0} is called the settling-
time function.

Definition 6 [43] The origin of (1) is fixed-time stable
if it is globally finite-time stable and the settling func-
tion is bounded, i.e.,∃Tmax > 0 : T (x0) ≤ Tmax,∀x0 ∈
R
n .

Theorem 1 [4] Consider the system

ẋ = −(α |x |p + β |x |q)ksign (x) , x(0) = x0 (2)

with x ∈ R. The parameters of the system are the real
numbers α, β, p, q, k > 0which satisfy the constraints
kp < 1 and kq > 1. Let ρ = [α, β, p, q, k]T ∈ R

5.
Then, the origin x = 0 of system (2) is fixed-time stable
and the settling time function satisfies T (x0) ≤ T f =
γ (ρ), where

γ (ρ) =
Γ
(
1−kp
q−p

)
Γ
(
qk−1
q−p

)

αkΓ (k)(q − p)

(
α

β

) 1−kp
q−p

, (3)

and Γ (·) is the Gamma function defined as Γ (z) =∫∞
0 e−t t z−1dt (see [10] for details on theGamma func-
tion).

Theorem 2 [4] Consider the system

ẋ(t) = f (x(t), t; ρ), x(0) = x0 (4)

where x ∈ R
n is the system state, the vector ρ ∈ R

b

stands for the system parameters which are assumed
to be constant. The function f : Rn × R+ → R

n is
such that f (0, t; ρ) = 0. Assume that there exists a
continuous radially unbounded function V : Rn → R

such that:

V (0) = 0

V (x) > 0, ∀x ∈ R
n\{0}

and the derivative of V along the trajectories of (4)
satisfies

V̇ (x) ≤ −γ (ρ)

Tc
(αV (x)p + βV (x)q)k,∀x ∈ R

n\{0}

where α, β, p, q, k > 0, kp < 1, kq > 1, γ is given in
(3) and V̇ is the upper right-hand time-derivative of V .
Then, the origin of (4) is predefined-time stable with
predefined-time Tc.

Definition 7 For any real number r , the function x 
→
�x�r is defined as �x�r = |x |r sign (x) for any x ∈ R

if r > 0, and for any x ∈ R \ 0 if r ≤ 0. Moreover, if
r > 0,�0�r = 0.

3 Problem statement

Let us consider a group of N +1 agents with one leader
and N followers labeled 0 and i ∈ {1, . . . , N }, respec-
tively. The dynamics of the leader is described by

ẋ0(t) = v0(t)

v̇0(t) = u0(t)

where X0 = [x0, v0]T ∈ R
2 is the state of the leader

and u0 ∈ R is the control input of the leader, which is
assumed to satisfy |u0(t)| ≤ umax

0 ,∀t ≥ 0 with umax
0

a known constant. The dynamics of the i−th follower
agent is given by:
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ẋi (t) = vi (t)

v̇i (t) = ui (t) + Δi (t) (5)

where Xi = [xi , vi ]T ∈ R
2 is the state of agent i ,

ui ∈ R is the control input of agent i and Δi is an
unknown external disturbance which is assumed to sat-
isfy |Δi (t)| ≤ δi ,∀t ≥ 0 with δi a known constant.
Besides, each agent estimates the leader states, repre-
sented by x̂i (position) and v̂i (velocity). The communi-
cation topology is represented by an undirected graph,
which is assumed to contain a spanning tree with the
leader agent as the root. The i−th agent shares its esti-
mated states of the leader with its neighbors, defined
by the neighbor set Ni .

The control objective is to design a distributed con-
trol ui such that the consensus is achieved in a fixed-
time Tc, i.e.,

{
limt→Tc ‖Xi (t) − X0(t)‖ = 0
Xi (t) = X0(t), ∀t > Tc.

This goal is achieved into two stages. An “observer,”
based on consensus algorithms, allows each agent to
obtain an estimate of the leader state in a distributed
manner in a fixed-time. Then, after the observer con-
verges, a controller drives the state of the agent toward
the state trajectory of the leader. Two protocols are
investigated hereafter. In the first one, known as an
autonomous protocol, we guarantee that each agent is
driven toward the leader state in a fixed-time, where
the Upper Bound of the Settling-Time (UBST) is spec-
ified a priory by the user. In the second one, known as
a non-autonomous protocol, we redesign the previous
one by adding time-varying gains to obtain a less con-
servative estimate of the UBSTwhile guaranteeing that
the time-varying gains remain bounded.

4 Fixed-time leader–follower consensus using
autonomous protocols

4.1 Distributed fixed-time observer

Since the leader state is not available to all followers,
for each agent, an observer is designed to estimate the
state of the leader in a fixed-time. The observer has the
following structure:

˙̂xi = v̂i − κi,x

[
(α|e1,i |p + β|e1,i |q)k + ζx

]
sign

(
e1,i

)

˙̂vi = −κi,v

[
(α|e2,i |p + β|e2,i |q)k + ζv

]
sign

(
e2,i

)

(6)

with e1,i = ∑
j∈Ni

ai j (x̂ j (t)−x̂i (t))+bi (x0(t)−x̂i (t))
and e2,i = ∑

j∈Ni
ai j (v̂ j (t)−v̂i (t))+bi (v0(t)−v̂i (t)),

x̂i (resp. v̂i ) is the estimate of the leader position (resp.
velocity) for the i-th follower. κi,x , κi,v , α, β, k, p, q,
ζx and ζv are positive constants to be defined later.

For each agent, let us denote the observer errors as

x̃i = x̂i − x0

ṽi = v̂i − v0. (7)

Therefore, the observation error dynamics can be
expressed as:

˙̃xi = ṽi − κi,x
[
(α|e1,i |p + β|e1,i |q)k + ζx

]
sign

(
e1,i

)

˙̃vi = −κi,v
[
(α|e2,i |p + β|e2,i |q)k + ζv

]
sign

(
e2,i

)− u0 (8)

with e1,i = ∑
j∈Ni

ai j (x̃ j (t) − x̃i (t)) − bi x̃i (t)) and
e2,i = ∑

j∈Ni
ai j (ṽ j (t) − ṽi (t)) − bi ṽi (t)).

In a compact form, with x̃ = [x̃1 · · · x̃N ]T ∈ R
N

and ṽ = [ṽ1 · · · ṽN ]T ∈ R
N , system (8) can be written

as:

˙̃x = ṽ − Φx

(
M(X̂)x̃

)

˙̃v = −Φv

(
M(X̂)ṽ

)
− 1u0 (9)

where M(X̂) represents the connection matrix of the
graph describing the network between the followers
and the leader, and for z = [z1 · · · zN ]T ∈ R

N , the
functions Φx : RN → R

N and Φv : RN → R
N are

defined as

Φx (z) =
⎡

⎢
⎣

κ1,x
[
(α|z1|p + β|z1|q)k + ζx

]
sign (z1)

...

κN ,x
[
(α|zN |p + β|zN |q)k + ζx

]
sign (zN )

⎤

⎥
⎦ ,

Φv(z) =
⎡

⎢
⎣

κ1,v
[
(α|z1|p + β|z1|q)k + ζv

]
sign (z1)

...

κN ,v

[
(α|zN |p + β|zN |q)k + ζv

]
sign (zN )

⎤

⎥
⎦ .
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Theorem 3 If the observer parameters are selected as
α, β, p, q, k > 0, kp < 1, kq > 1, ζx ≥ 0,

κx ≥ Nγ (ρ)

λmin(M(X̂))Tc2
, κv

≥ Nγ (ρ)

λmin(M(X̂))Tc1
and κvζv ≥ umax

0

where

κx = min
i∈{1...N } κi,x and κv = min

i∈{1...N } κi,v

and γ (ρ) is defined in Equation (3), then under the
distributed observer (6), the observer error dynamics
(8) is fixed-time stable with a predefined-time To =
Tc1 + Tc2 .

Proof Consider the radially unboundedLyapunov func-
tion candidate

V1(ṽ) = 1

N

√

λmin

(
M(X̂)

)
ṽTM(X̂)ṽ.

Its time-derivative along the trajectories of system
(9) is

V̇1 =

√

λmin

(
M(X̂)

)

N

ṽTM(X̂) ˙̃v
√

ṽTM(X̂)ṽ

(10)

Let us denote e2 = M(X̂)ṽ = [e2,1 · · · e2,N ]T .
Then, Eq. (10) can be written as follows

V̇1 =

√

λmin

(
M(X̂)

)

N

eT2√

ṽTM(X̂)ṽ

×
(
−Φv

(
M(X̂)ṽ

)
− 1u0

)

=

√

λmin

(
M(X̂)

)

N

×
⎛

⎝− 1
√

ṽTM(X̂)ṽ

N∑

i=1

κi,ve2,i
[
(α|e2,i |p

+ · · · β|e2,i |q)k +

+ ζv] sign
(
e2,i

)− eT2 1u0√

ṽTM(X̂)ṽ

⎞

⎠

=

√

λmin

(
M(X̂)

)

N

×
⎛

⎝− 1
√

ṽTM(X̂)ṽ

N∑

i=1

κi,v
∣
∣e2,i

∣
∣ (α|e2,i |p

+β|e2,i |q)k

− ζv
√

ṽTM(X̂)ṽ

N∑

i=1

κi,v
∣
∣e2,i

∣
∣− eT2 1u0√

ṽTM(X̂)ṽ

⎞

⎠

(11)

Now, using the inequality (28) of Lemma 3 in
“Appendix,” the first term of Equation (11) can be writ-
ten as

1
√

ṽTM(X̂)ṽ

N∑

i=1

κi,v
∣
∣e2,i

∣
∣ (α|e2,i |p + β|e2,i |q)k

≥ Nκv
√

ṽTM(X̂)ṽ

(
1

N

n∑

i=1

∣
∣e2,i

∣
∣

)⎛

⎝α

(
1

N

N∑

i=1

∣
∣e2,i

∣
∣

)p

+ β

(
1

N

N∑

i=1

∣
∣e2,i

∣
∣

)q⎞

⎠

k

with κv = min{κ1,v, . . . , κN ,v}. Since ‖e2‖1 =∑N
i

∣
∣e2,i

∣
∣ the last expression can be written as

1
√

ṽTM(X̂)ṽ

N∑

i=1

κi,v
∣
∣e2,i

∣
∣ (α|e2,i |p + β|e2,i |q)k

≥ Nκv
√

ṽTM(X̂)ṽ

(
1

N
‖e2‖1

)(

α

(
1

N
‖e2‖1

)p

+β

(
1

N
‖e2‖1

)q)k

.

Furthermore, from Lemma 4 in “Appendix,” one gets

‖e2‖1 ≥ ‖e2‖2 =
√
eT2 e2

=
√

ṽTM(X̂)2ṽ ≥
√

λmin

(
M(X̂)

)
ṽTM(X̂)ṽ.

Hence,

1
√

ṽTM(X̂)ṽ

N∑

i=1

κi,v
∣
∣e2,i

∣
∣ (α|e2,i |p + β|e2,i |q)k

≥ κvN
√

ṽTM(X̂)ṽ

V
(
αV p + βV q)k
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= κv

√

λmin

(
M(X̂)

) (
αV p

1 + βV q
1

)k
.

Now, for the last two terms of Equation (11), one
can obtain

− ζv
√

ṽTM(X̂)ṽ

N∑

i=1

ki,v
∣
∣e2,i

∣
∣− eT2 1u0√

ṽTM(X̂)ṽ

≤ − ‖e2‖1
√

ṽTM(X̂)ṽ

(
κvζv − umax

0

) ≤ 0.

Therefore, the following inequality can be obtained

V̇1 ≤ −
κvλmin

(
M(X̂)

)

N

(
αV p

1 + βV q
1

)k
.

From Theorem 2, the observation error in velocity
ṽ converges to the origin in a fixed-time before the
predefined-time Tc1 where γ (ρ) is given by Eq. (3).

Once the observation error in velocity ṽ converges to
zero (i.e., after time Tc1 ), the observation error dynam-
ics in position can be reduced to

˙̃xi = −κi,x

[
(α|e1,i |p + β|e1,i |q)k + ζx

]
sign

(
e1,i

)
.

Similarly to the previous analysis, one can easily show
that

V2(x̃) = 1

N

√

λmin

(
M(X̂)

)
x̃ TM(X̂)x̃

satisfies

V̇2(x̃) ≤ −
κxλmin

(
M(X̂)

)

N

(
αV p

2 + βVq
2

)k
,∀t ≥ Tc2 .

From Theorem 2, the observation error in position
x̃ converges to the origin in a fixed-time before the
predefined-time Tc2 .

Therefore, the proposed distributed observer guar-
antees the estimation of the leader states in a fixed-time
before the predefined-time To = Tc1 + Tc2 . ��

4.2 A fixed-time tracking controller

After time To, each agent has an accurate estimation
of the leader state. For each agent, the tracking error is
defined as

ex,i = xi − x̂i

ev,i = vi − v̂i , (12)

or, equivalently, after the convergence of the observa-
tion error:

ex,i = xi − x0

ev,i = vi − v0. (13)

Its dynamics can be expressed as:

ėx,i = ev,i

ėv,i = ui + Δi − u0.

Here, the objective is to design the control input
ui such that the origin (ex,i , ev,i ) = (0, 0) is fixed-
time stable where the Upper Bound of the Settling-
Time (UBST) is set a priory by the user, in spite of
the unknown but bounded perturbation term Δi − u0.
Herefater, we present the following results motivated
by the work [4].

Theorem 4 If for each agent, the controller is selected
as

ui = υ(ex,i , ev,i )

= −
[

γ2

T̂c2

(
α2 |σi |p′ + β2 |σi |q ′)k′

+ γ 2
1

2T̂ 2
c1

(
α1 + 3β1e

2
x,i

)
+ ζi (t)

]

sign (σi )

(14)

with the following sliding variable

σi = ev,i+
⌊
⌊
ev,i

⌉2 + γ 2
1

T̂ 2
c1

(
α1
⌊
ex,i

⌉1 + β1
⌊
ex,i

⌉3
)
⌉1/2

,

(15)

whereparameters are selectedasα1, α2, β1, β2, T ′
o, T̂c1 ,

T̂c2 > 0, p′, q ′, k′ > 0, k′ p′ < 1, k′q ′ > 1,

ζi ≥ umax
0 + δi , γ1 = Γ

(
1
4

)2

2α1/2
1 Γ

(
1
2

)

(
α1
β1

)1/4
and γ2 =

Γ (mp)Γ (mq )

αk′
2 Γ (k′)(q ′−p′)

(
α2
β2

)mp
with m p = 1−k′ p′

q ′−p′ and mq =
k′q ′−1
q ′−p′ , then the leader–follower consensus is achieved

in a predefined-time T̂c = T ′
o + T̂c1 + T̂c2 .

Proof First, the time derivative of σi along the trajec-
tory of the system solution is given by
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σ̇i = ui + Δi

−u0 +
∣
∣ev,i

∣
∣ (ui + Δi − u0) + γ 2

1

2T̂ 2
c1

(
α1 + 3β1e2x,i

)
ev,i

∣
∣
∣
∣
⌊
ev,i

⌉2 + γ 2
1

T̂ 2
c1

(
α1
⌊
ex,i

⌉1 + β1
⌊
ex,i

⌉3
)∣∣
∣
∣

1/2 .

Using the control input ui given by (14), one obtains

σ̇i = − γ2

T̂c2

×
(
α2 |σi |p′ + β2 |σi |q ′)k′

sign (σi )

×

⎛

⎜
⎜
⎜
⎝
1 +

∣
∣ev,i

∣
∣

∣
∣
∣
∣
⌊
ev,i

⌉2 + γ 2
1

T̂ 2
c1

(
α1
⌊
ex,i

⌉1 + β1
⌊
ex,i

⌉3
)∣∣
∣
∣

1/2

⎞

⎟
⎟
⎟
⎠

− γ1

2T̂c1

× (
α1 + 3β1e

2
x,i

)

×

⎛

⎜
⎜
⎜
⎝
sign (σi ) +

∣
∣ev,i

∣
∣ sign (σi ) − ev,i

∣
∣
∣
∣
⌊
ev,i

⌉2 + γ 2
1

T̂ 2
c1

(
α1
⌊
ex,i

⌉1 + β1
⌊
ex,i

⌉3
)∣∣
∣
∣

1/2

⎞

⎟
⎟
⎟
⎠

− (ζi sign (σi ) − Δi + u0)

×

⎛

⎜
⎜
⎜
⎝
1 +

∣
∣ev,i

∣
∣

∣
∣
∣
∣
⌊
ev,i

⌉2 + γ 2
1

T̂ 2
c1

(
α1
⌊
ex,i

⌉1 + β1
⌊
ex,i

⌉3
)∣∣
∣
∣

1/2

⎞

⎟
⎟
⎟
⎠

.

(16)

Let us consider the candidate Lyapunov function
V1(σi ) = |σi | with its time derivative as V̇1 =
sign (σi ) σ̇i . Since

∣
∣ev,i

∣
∣

∣
∣
∣
∣
⌊
ev,i

⌉2 + γ 2
1

T̂ 2
c1

(
α1
⌊
ex,i

⌉1 + β1
⌊
ex,i

⌉3
)∣∣
∣
∣

1/2 ≥ 0,

∣
∣ev,i

∣
∣− ev,i sign (σi ) ≥ 0,

and

ζi ≥ umax
0 + δi ,

one can easily rewrite the Lyapunov function deriva-
tive, using (16), in the following inequality

V̇1(σ ) ≤ − γ2

T̂c2

(
α2V1(σ )p

′ + β2V1(σ )q
′)k′

.

From Theorem 2, one can deduce that σi converges to
zero in a fixed-time T̂c2 .

After time T̂c2 , one obtains

0 = ev,i +
⌊
⌊
ev,i

⌉2 + γ 2
1

T̂ 2
c1

(
α1
⌊
ex,i

⌉1 + β1
⌊
ex,i

⌉3
)
⌉1/2

,

which in turn implies,

ėx,i = ev,i = − γ1

T̂c1

(
α1
∣
∣ex,i

∣
∣

+β1
∣
∣ex,i

∣
∣3
)1/2

sign
(
ex,i

)
.

From Theorem 1, it is clear that ex,i converges to zero
in a fixed-time before the settling time T̂c1 . Moreover,
from (15), since σi = 0 and ex,i = 0, then ev,i = 0.
Hence, we can conclude that system (5) with (14) as
the control input is fixed-time stable with predefined-
time T̂c1 + T̂c2 . Moreover, due to Theorem 3, where
the leader states are estimated in a fixed-time with the
predefined settling time To. Hence, if T ′

o = To, one
can deduce that leader–follower consensus is achieved
in fixed-time before the predefined-time T̂c = T ′

o +
T̂c1 + T̂c2 . At last, if T

′
o = 0 and To < T̂c1 + T̂c2 ,

the leader–follower consensus is achieved before the
predefined-time T̂c = T̂c1 + T̂c2 . ��

5 Fixed-time leader–follower consensus with
improved estimate for the UBST using
non-autonomous protocol

The autonomous leader–follower protocol presented in
Sect. 4 allows a fixed-time convergence. However, the
estimate of the UBST for the observer and controller
is both too conservative. This is a common drawback
on existing fixed-time consensus protocols, see, e.g.,
[16,35] for the leader–follower problem for agentswith
first-order integrator dynamics and [30,32] for agents
with second-order integrator dynamics. To address this
issue, we present new protocols, based on the class
of time-varying gains proposed in [1], to significantly
reduce such conservatism. Contrary to some existing
protocols such as [28,54,57], where the time-varying
gains become singular when consensus is reached, in
our approach the convergence is achievedwith bounded
time-varying gains in a user-defined time.

Before designing the proposed fixed-time leader–
follower consensus protocol, let us define the following
functions:
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Definition 8 Let us define the following

– Φ : R+ → R+ ∪ {+∞} \ {0} is a continuous
function on R+ \ {0} that satisfies
–
∫ +∞
0 Φ(z)dz = 1,

– Φ(τ) < +∞, ∀τ ∈ R+ \ {0},
– is either non-increasing or locally Lipschitz on
R+ \ {0}.

– ψ : R+ → R+ satisfies

ψ(τ ; Tc) = Tc

∫ τ

0
Φ(ξ)dξ

with Tc a positive constant,
– η is such that

η(T ) = lim
τ→T

1

Tc
ψ(τ ; Tc) ≤ 1

with T a positive parameter,
– ρ : R+ → R+ satisfies

ρ(τ ; Tc) = 1

Tc
Φ(τ)−1.

Lemma 2 [18] Let t0 be the initial time. The function
t = ψ(τ)+ t0 defines a parameter transformation with
τ = ψ−1(t − t0) as its inverse mapping.

To derive the fixed-time non-autonomous scheme,
we define the following time-varying gain for each pre-
defined settling time Tci as follows using the previously
defined functions:

κ̂i (t; t0, Tci , T )

=
{

ρi (ψ
−1
i (t − t0; Tci ); Tci ) if t ∈ [t0, t0 + ηi (T )Tci )

1 otherwise.

Remark 1 Notice that ifT < +∞, then κ̂i (t; t0, Tci , T )

is bounded. Such bound can be user-defined by tuning
T .

Now, we are ready to present our main result.

Theorem 5 Let us consider the same observer param-
eters as inTheorem3 (i.e.,α, β, p, q, k > 0, ζx , ζv, κi,x ,

κi,v , Tc1 , Tc2 ). Let �1(t) = κ̂1(t; t0, Tc1 , Tα) and

�2(t) = κ̂2(t; t ′0, Tc2 , Tβ) be time-varying gains. Tα

and Tβ are positive parameters and t ′0 = t0 +
η1(Tα)Tc1 .

Using the following distributed observer

˙̂xi = v̂i − �2(t)κi,x

×
[
(α|e1,i |p + β|e1,i |q)k + ζ̂x (t)

]
sign

(
e1,i

)

×˙̂vi = −�1(t)κi,v

×
[
(α|e2,i |p + β|e2,i |q)k + ζ̂v(t)

]
sign

(
e2,i

)
, (17)

with ζ̂x (t) = �−1
2 (t)ζx and ζ̂v(t) = �−1

1 (t)ζv , the
observer error dynamics is fixed-time stable with the
UBST given by To = t0 +η1(Tα)Tc1 +η2(Tβ)Tc2 , with
Tα, Tβ > 0.

Let us consider the same control parameters as in
Theorem4 (i.e.,α1, α2, β1, β2, T̂c1 , T̂c2 > 0, p′, q ′, k′ >

0, ζi , γ1, γ2) and set Tc3 = T̂c1 + T̂c2 . Let �3(t) =
κ̂3(t; To, Tc3 , Tγ ) be a time-varying gain with Tγ a pos-
itive parameter.

Using the following controller

ui =
{

�3(t)2υ(ex,i , �3(t)−1ev,i ) + �̇3(t)�3(t)−1ev,i if t ∈ [T ′
o, T

′
o + η3(Tγ )Tc3)

υ(ex,i , ev,i ) if t ∈ [T ′
o + η3(Tγ )Tc3,+∞)

(18)

where υ(ex,i , �
−1
3 (t)ev,i ) is given by (14), the leader–

follower consensus is achieved in fixed time with the
UBST given by T̂ = T ′

o + η(Tγ )Tc3 .

The proof of Theorem 5 will be divided into two
parts. The first part focuses on the observer stability,
whereas the second one focuses on the controller sta-
bility.

Proof First, let us study the observer error dynamics
using the non-autonomous observer (17).

Let us consider the observer errors as in (7). Using
(17), the observation error dynamics is expressed as
follows

˙̃xi = ṽi − �2κi,x

[
(α|e1,i |p + β|e1,i |q )k + ζ̂x

]
sign

(
e1,i

) ˙̃vi
= − �1κi,v

[
(α|e2,i |p + β|e2,i |q )k + ζ̂v

]
sign

(
e2,i

)− u0.
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Now, considering the observer error dynamics of the
velocity ṽi in the new τ -time variable as follows

d ṽi

dτ
= d ṽi

dt

dt

dτ
, (19)

and according to the parameter transformation given in
Lemma 2,

dt

dτ
= d

dτ
(ψi (τ ) − t0)

∣
∣
∣
∣
τ=ψ−1

i (t−t0;Tci )
= ρi (ψ

−1
i (t − t0); Tci )−1 = κ̂i (t; t0, Tci , T )−1.

(20)

Thus, the observation error dynamics of the velocity
given by (19) is rewritten, using (20), as follows

d ṽi

dτ
= −κ̂1(t; t0, Tc1 , Tα)−1�1κi,v

×
[
(α|e2,i |p + β|e2,i |q)k + ζ̂v

]
sign

(
e2,i

)

−�(τ),

where �(τ) = κ̂1(t; t0, Tc1 , Tα)−1u0 with |u0| <

umax
0 is the disturbance term and κ̂1(t; t0, Tc1 , Tα)−1 =

�−1
1 (t). Then, the last expression is written as

d ṽi

dτ
= −κi,v

×
[
(α|e2,i |p + β|e2,i |q)k + ζ̂v

]
sign

(
e2,i

)− �(τ).

(21)

Note that by the definition of the function Φ1(τ ),
the time-varying gain κ̂1(t; t0, Tc1 , Tα)−1 for t ∈
[t0, t0+η1(Tα)Tc1), can be written as ρ1(τ ; Tc1)−1 ∀τ ,
and function ρ1(τ ; Tc1)−1 is non-increasing. Besides,
ρ1(τ ; Tc1)−1 is bounded andρ1(τ ; Tc1)−1 → 0 as τ →
+∞. Then, the disturbance �(τ) = ρ1(τ ; Tc1)−1uo is
vanishing. Furthermore, notice that ζ̂v(t) = �−1

1 (t)ζv

and |�(τ)| < ζ̂v, ∀τ since umax
0 ≤ κvζv . Then, simi-

larly to (9), the compact form of (21) is

d ṽ

dτ
= −Φv

(
M(X̂)ṽ

)
− 1�(τ) (22)

with ṽ = [ṽ1 · · · ṽN ]T ∈ R
N .

Furthermore, from Theorem 3, the observation
error dynamics of velocity (22) is fixed-time stable
in the time-variable τ and converges to the origin
with a settling time T ′

c1 < +∞. Then, the observa-
tion error in velocity reaches the origin at T (ṽ0) =

Fig. 1 Communication topology with 5 followers

limτ→T ′
c1

(ψ1(τ ) + t0) ≤ t0 + η1(Tα)Tc1; ∀ṽ0 ∈ R
N as

the initial conditions. In a similar way, the observation
error dynamics of the position x̃i in the time-variable
τ is written as follows

dx̃i
dτ

= υi (τ )

− κi,x

[
(α|e2,i |p + β|e2,i |q)k + ζ̂x

]
sign

(
e2,i

)

(23)

where υi (τ ) = κ̂2(t; t0+η1(Tα)Tc1, Tc2 , Tβ)−1ṽi . The
compact form of (23) is

dx̃

dτ
= υ − Φx

(
M(X̂)x̃

)
(24)

with υ = [υ1 · · · υN ] ∈ R
N . Then, due to ṽ = 0 for

t ≥ t0 + η1(Tα)Tc1 , the observation error dynamics of
position (24) is fixed-time stable in the time-variable
τ and converges to the origin with a settling time
T ′
c2 < +∞. Hence, the observation error in position

reaches the origin at T (x̃0) = limτ→T ′
c2

(ψ2(τ )+ t ′0) ≤
t ′0 + η2(Tβ)Tc2; ∀x̃0 ∈ R

N , with t ′0 = t0 + η1(Tα)Tc1 .
Therefore, the observer error dynamics is fixed-time
stable and converges to the origin before the predefined-
time To = t0 +η1(Tα)Tc1 +η2(Tβ)Tc2 . Notice that T

′
c1

and T ′
c2 are the settling time for the system in the time-

variable τ .
Then, let us study the tracking error dynamics using

the non-autonomous controller (18). Consider the fol-
lowing coordinate change

ex,i = ẽx,i

ev,i = �3(t)ẽv,i (25)

where ex,i and ev,i are the tracking errors for each agent
defined in (13) or, its equivalent in (12) after the con-
vergence of the observation error. Then, the dynamics
of the variable ẽi = [ẽx,i , ẽv,i ]T is the following
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˙̃ex,i = �3ẽv,i

˙̃ev,i = �−1
3 ui − �−1

3 �̇3ẽv,i + �−1
3 (Δi − u0).

Now, let us consider the parameter transformation
given by Lemma 2 to get the dynamics in τ -variable.
Then, the dynamics of (25) expressed in the time-
variable τ is

dẽx,i
dτ

= ẽv,i

dẽv,i

dτ
= �−2

3 ui − �−2
3 �̇3ẽv,i + �−2

3 (Δi − u0). (26)

Using the controller (18) for t ∈ [T ′
o, T

′
o +

η3(Tγ )Tc3), system (26) is written as

dẽx,i
dτ

= ẽv,i

dẽv,i

dτ
= υ(ẽx,i , ẽv,i ) + πi (τ ), (27)

withπi (τ ) = �−2
3 (Δi (t) − u0)

∣
∣
∣
t=ψ3(τ )+To

. Notice that

Δi (t) satisfies |Δi (t)| ≤ δi and u0 is unknown but
bounded by |uo| ≤ umax

0 . By Definition 8, the func-
tion �3(t)−2 is non-increasing. Then, πi (τ ) is bounded
and πi (τ ) → 0 as τ → +∞. Thus, from Theorem 4,
system (27) is fixed-time stable in the time-variable τ

with T ′
c3 < +∞ as its settling time. Hence, the track-

ing errors (ẽx,i and ẽv,i ), with e0 = [ẽx,i (To), ẽv,i (To)]
as initial conditions, reach the origin at T (e0) =
limτ→T ′

c3
(ψ3(τ ) + To) ≤ To + η3(Tγ )Tc3; ∀e0 ∈ R

2.
Thus, the tracking error dynamics is fixed-time sta-

ble with η3(Tγ )Tc3 as the predefined UBST. Hence,
if T ′

o = To and from the fact that observer (17) esti-
mates the leader state in predefined-time and controller
(18) drives the agents toward the leader state trajectory,
one can conclude that the leader–follower consensus is
achieved in fixed-time before the predefined-time T̂ =
To + η(Tγ )Tc3 . At last, if T

′
o = to and To < η(Tγ )Tc3 ,

the leader–follower consensus is achieved before the
predefined time T̂ = t0 + η(Tγ )Tc3 . ��
Remark 2 It is worth noting that the non-autonomous
protocol is derived from the autonomous one. As
discussed in the next section, this scheme based on
bounded time-varying gains has been introduced to
improve the convergence time estimation, i.e., the
slack between the UBST and the convergence time is
reduced.

6 Simulation results

In this section, we illustrate our main results with
the autonomous and non-autonomous protocols for the
leader–follower consensus problem. In order to com-
pare the autonomous and non-autonomous schemes
proposed in this work, we will also compare the slack
between the UBST and the real convergence time of
the system for each control scheme.

For all schemes, we consider the same scenario for
comparison purposes. We consider a multi-agent sys-
tem composed of N = 5 agents where the dynamics of
each agent is given by Eq. (5) with an external pertur-
bation Δi (t) = sin(40t + 0.1i), with i = 1 . . . N . The
communication topology, given in Fig. 1, is undirected
and contains a spanning tree with the leader agent as
the root. For the leader, its control input is given by
u0 = 4 cos (2t) with the initial conditions [x0, v0] =
[−1, 0]. From Fig. 1, one gets λmin(M(X̂)) = 0.2907.
The initial conditions of the agents are as follows

x(0) = [−10,−5, 0, 5, 10]

v(0) = [0, 0, 0, 0, 0]

and the initial conditions for the observer are randomly
set as

x̂(0) = [−5.81,−7.82, 4.57, 9.22, 5.94]

v̂(0) = [5.57,−6.42, 4.91, 8.39,−7.87] .

6.1 Fixed-time leader–follower consensus using
autonomous protocols

In this subsection, we present the results of the
autonomous scheme presented in Sect. 4. According to
Theorem 3, the distributed fixed-time observer (6) with
p = 1.5, q = 3.0, k = 0.5, α = 1, β = 2, Tc1 = 0.9s,
Tc2 = 0.1, κx = 3.53, κv = 31.82 and ζv = 0.0678
guarantees that the observer error converges to zero
before the predefined-time Tc1 + Tc2 = 1s. Figure 2
shows the leader state estimation for each agent, while
the left column of Fig. 3 shows the observer errors for
each agent. One can see in more details in the left col-
umnof Fig. 4 , the settling time of the observation errors
and theUBST as the dotted line, where the settling time
for the velocity error (ṽ) is T1 ≈ 0.013s, and for the
position error (x̃) is T2 ≈ 0.143s. It is possible to see
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Fig. 2 Autonomous
protocol. Leader states
estimation for each agent

Fig. 3 Observation error of
each agent

that the settling time for the observation error occurs
before the predefined time, i.e., T1 < Tc1 for the veloc-
ity error and T1 + T2 < To for the observation error. In
the simulation, the controller is activated at the same
time that the observer, i.e., T ′

o = 0 and To < T̂c1 + T̂c2 .
Then, the controller (14) is applied in order to follow
the trajectory of the leader with p′ = 1.5, q ′ = 3.0,
k′ = 0.5, α1 = α2 = 1/β1 = 1/β2 = 1/4, T̂c1 = 1s
and T̂c2 = 1s. The left columnof Fig. 5 shows the track-
ing error, where the tracking errors ex and ev converge
to zero before T̂c = T̂c1 + T̂c2 = 2s with T ′

o = 0. One
can see in more details in Fig. 6 that the convergence
time of the tracking error occurs at T3 ≈ 1.228s < T̂c
where the UBST is plotted in dotted line. The states
of the agents are shown in Fig. 7, where it can be

seen that the leader–follower consensus is successfully
achieved.

6.2 Fixed-time leader–follower consensus using
non-autonomous protocols

The results of thefixed-timeobserver/controller scheme
presented in Sect. 5, using time-varying gains, are
shown in this subsection. Consider the same example
as in the previous subsection with the same external
perturbation.

Now, consider the observer/controller scheme pro-
posed in Theorem 5, where function Φi is defined as

Φi (τ ) = α̂iη
−1
i e−α̂i τ
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Fig. 4 Convergence of the
observation error for each
agent

Fig. 5 Tracking error for
each agent

for i = 1, 2, 3 with ηi (T ) = 1 − e−α̂i T and α̂1 = 220,
α̂2 = 90 and α̂3 = 1.8. This function is used to
compute the time-varying gains �i . Then, the gain
κ̂i (t; to, Tci , T ) used for the observer (17) and the con-
troller (18), is defined as

κ̂i (t; t0, Tci , T )

=
{

ηi
α̂i (Tci −ηi (t−t0))

if t ∈ [t0, t0 + ηi (T )Tci )

1 otherwise.

The user-defined parameters are set as follows Tc1 =
0.1s, Tc2 = 0.9s and Tc3 = T̂c1+T̂c2 with T̂c1 = 1s and

T̂c2 = 1s, the parameters for ηi are set as Tα = 0.016,
Tβ = 0.055 and Tγ = 1.5 for i = 1, 2, 3, respec-
tively, to = 0s for the observer and T ′

o = t0 for the
controller. In order to compare the control scheme pro-
posed in Theorems 3-4 with Theorem 5, the parame-
ters α1, α2, β1, β2, p′, q ′, k′ for the controller and the
parameters α, β, p, q, k, ζx , ζv, κx , κv for the observer
were taken from the result presented in Sect. 6.1. Fig-
ure 8 shows the leader state estimation for each agent,
while the right column of Fig. 3 shows the observer
errors for each agent. One can see in more details
in the right column of Fig. 4 the settling time of the
observation errors (x̃ and ṽ) and the UBST as the dot-
ted line, where the settling time for the velocity error
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Fig. 6 Convergence of the
tracking error for each agent

Fig. 7 Autonomous
protocol. Trajectories of
each agent

Fig. 8 Non-autonomous
protocol. Leader states
estimation for each agent
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Fig. 9 Non-autonomous
protocol. Trajectories of
each agent

Table 1 Slack of
convergence time s(ṽ) = Tc1 − T1 s(x̃) = To − T2 s(ẽ) = T̂ − T3

Autonomous protocol 0.08709 0.8744 0.743

Non-autonomous protocol 0.0023 0.0016 0.1154

ṽ is T1 ≈ 0.09478s, and for the position error x̃ is
T2 ≈ 0.9891. It is possible to see that the settling time
for the observation error occurs before the predefined
time To = η1(Tα)Tc1 + η2(Tβ)Tc2 . Besides, the con-
troller (18) is applied in order to follow the trajectory of
the leader. The right column of Fig. 5 shows the fixed-
time convergence of the tracking error (ex and ev). One
can see in more details in the right column of Fig. 6
that the convergence time of the tracking error occurs
at T3 ≈ 1.952s. The states of the agents are shown in
Fig. 9, where it can be seen that the leader–follower
consensus is successfully achieved.

Unlike the control scheme proposed in Theorem 3
(for the observer) and Theorem 4 (for the controller),
the slack between the predefined UBST given by the
user and the real convergence time is less conserva-
tive. Figure 4 shows the convergence of both protocols
for the observer, and Fig. 6 shows the convergence of
both protocols for the controller, where one can see the
UBST as the dotted line and, the difference between the
slack of the autonomous and non-autonomous proto-
cols. Moreover, the slack of the non-autonomous pro-
tocol can be adjusted by the parameters of the time-
varying gain κ̂i (t; t0, Tci , T ). However, in this case, this
gain increases. Thus, one needs to establish a trade-off

between the size of the upper bound for κ̂i (t; t0, Tci , T )

and how small the slack is.
In order to compare the two protocols presented in

this work (autonomous and non-autonomous ones), we
will define the slack function s(x) as the error between
the predefined UBST and the convergence time of the
variable x , i.e., s(x) = Tc − T where Tc is the prede-
fined UBST and T is the actual convergence time. This
index for the observation error and the tracking error
variables is shown in Table 1. It can be seen that the
slack for the non-autonomous protocol is lower than
for the autonomous protocol.

These numerical examples show the effectiveness of
the proposed consensus protocols.

7 Conclusions

In this work, we presented novel protocols for the
problem of consensus tracking with fixed-time conver-
gence, for leader–follower multi-agent systems with
double-integrator dynamics, where only a subset of
followers has access to the state of the leader. A dis-
tributed observer is proposed for each agent to esti-
mate the leader state, and a local controller drives the
agents toward the estimated state, both with fixed-time
convergence. Two control strategies have been inves-
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tigated and compared for the observer and controller
parts. The first one is an autonomous protocol which
ensures that the UBST is set a priory by the user.
Then, the previous strategy is redesigned using time-
varying gains to obtain a non-autonomous protocol.
This enables to obtain less conservative estimates of the
UBST while guaranteeing that the time-varying gains
remain bounded. Future work includes the extension
of the algorithm to chained form systems or high order
MAS, the robustness against faults in the communica-
tion links and the extension of the protocol to directed
graphs.
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Appendix

Lemma 3 [2] Let n ∈ N. If a = (a1, . . . , an) is
a sequence of positive numbers, then the following
inequality is satisfied

1

n

n∑

i=1

ai
(
αa p

i + βaqi
)k

≥
(
1

n

n∑

i=1

ai

)(

α

(
1

n

n∑

i=1

ai

)p

+β

(
1

n

n∑

i=1

ai

)q)k

. (28)

Lemma 4 [9] Let z = [z1 . . . zn]T ∈ R
n and

‖z‖p =
(

n∑

i=1

|zi |p
) 1

p

then,

‖z‖l ≤ ‖z‖r (29)

for l > r > 0.
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