Visual Navigation


Navigation based on a Visual Memory   

     A visual path following control scheme for wheeled mobile robots based on a geometric constraint has been proposed. The control law only requires one measurement easily computed from the image data through the geometric constraints: the epipolar geometry or the trifocal tensor. Our approach is valid for all cameras obeying the unified model, including conventional, central catadioptric and some fisheye cameras.

                         Navigation Strategy



The proposed approach has two main advantages: explicit pose parameters decomposition is not required and the rotational velocity is smooth or eventually piece-wise constant avoiding discontinuities that generally appear when the target image changes. The translational velocity is adapted as required for the path and the approach is independent of this velocity.

  1. H. M. Becerra, C. Sagüés, Y. Mezouar and J.-B. Hayet, “Visual navigation of wheeled mobile robots using direct feedback of a geometric constraint”, Autonomous Robots, Vol.37, No. 2, pages 137--156, August 2014. pdf
  2. H. M. Becerra, "Fuzzy Visual Control for Memory-Based Navigation using the Trifocal Tensor", International Journal of Intelligent Automation and Soft Computing (AutoSoft), Vol. 20, No. 2, pages 245--262, April 2014. pdf
  3. H. M. Becerra and C Sagüés, Visual Control for Memory-Based Navigation using the Trifocal Tensor,” World Automation Congress 2012 (WAC'12), pages 1--6, Puerto Vallarta, Mexico, June 2012. pdf
  4. H. M. Becerra, J. Courbon, Y. Mezouar and C. Sagüés, “Wheeled Mobile Robots Navigation from a Visual Memory using Wide Field of View Cameras”, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'10), pages 5693--5699, Taipei, Taiwan, October 2010. pdf
 1. Simulation of the visual navigation scheme. 2. Real-world experiment of the visual navigation scheme.
                                                                              


Main          CV          Publications          Teaching          Personal