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Abstract—The problem of concurrent design of a mechanism
can be defined as finding optimal structural parameters and
control parameters for a given objective function during the
same optimization process. In this paper, a general concurrent
optimization methodology for kinematically complex mechanisms
is tested using a Delta manipulator. This methodology intends
to optimize any structure and control design, using any speci-
fied kinematic or dynamic models. Thus, general optimization
methods not dependent on mathematical characteristics of the
objective function are used. The main contribution of this work
is to define, develop and test a general methodology that can
generate optimal designs based on workspace and task require-
ments, such that they guarantee an adequate performance under
a set of operating and joint constraints. We test three families
of evolutionary algorithms: a genetic algorithm, an evolution
strategy and an estimation of distribution algorithm, for two
objective functions. The reported results give directions about the
most adequate method to tackle the concurrent design problem.

Index Terms—manipulators; evolutionary algorithms; design
optimization;

I. INTRODUCTION

Optimal concurrent mechanism design can be defined as
finding optimal structural parameters and control gains for a
given objective function during the same optimization process,
which are dependent on the kinematic or dynamic model of
the mechanism. The design parameters can be the number of
links, links length, position and weight of masses, etc.

We differentiate three types of mechanical optimizations:
static, kinematic and dynamic, according to the mathematical
model describing the design problem. These models can be
differential equations of zero, first and second order, respec-
tively. A common static optimization is a workspace optimiza-
tion, i.e., the mechanism must reach a given set of points
or any point in a given workspace. Thus, we can describe
the optimization problem as a maximization of volume [1],
[2] or ratio of volume between the reached workspace and
the user-desired workspace [3], [4], [5], penalizing collisions
and dexterity constrains. The model to deal with this opti-
mization problem consists in geometric relationships (rigid
body transformations). For the kinematic and dynamic opti-
mization problems the mechanism, commonly, has to track
a time dependent trajectory, which can be given by a time
dependent function or a set of points which define a function
via interpolation methods. The aim is to minimize the error
between a desired and a tracked trajectory, or to minimize the

energy consumed by every joint through the whole trajectory,
subject to collisions and dexterity constrains [6].

To perform trajectory tracking, it is necessary to use a
control technique which feeds back the actuators according
to the error. A set of differential equations describes the
system, and the controllaw is a function of the error and
a set of parameters named control gains. A classical con-
trol technique in robotics is the PID (Proportional-Integral-
Derivative) controller and its variants as P (only proportional)
or PD (Proportional-Derivative) controllers [7]. This control
technique uses a factor (control gain) for each of the control
parts (proportional, integral and derivative). Hence, the control
gains define how well the trajectory is tracked and how much
energy is needed for this purpose. The tuning of the control
gains is not an easy task in order to achieve an optimum
performance. Usually, a concurrent optimal design problem
is defined to minimize the integral of the tracking error or the
energy used to control the mechanism [8], or the weighted
sum of both functions [9] [10].

In this work, we focus on two problems: a) the maximiza-
tion of the reachable volume in the workspace, and b) the
concurrent design problem of links length and control gains.
Several algorithmic methodologies have been proposed for
automatic search of design parameters, simulating the perfor-
mance under a given task. For instance, in [11], the optimum
design of the control parameters of a serial manipulator is
approached, kinematics and dynamics are considered in a
task-based problem. The task to perform is defined by a set
of target points in the workspace which must be reached
by the end-effector. In order to approximate the solution to
this problem a memetic algorithm which uses a tunneling
algorithm for local search is used. In [1] the maximization
of the effective workspace, subject to a dexterity constraint,
for a Delta manipulator is approached. The same problem is
later replicated and expanded using evolutionary algorithms
and different case studies in [12], [13], [2].

In this article, a concurrent optimization methodology for
the Delta robot is presented. As far as we know, the concurrent
optimization applied to the kinematic model of a Delta robot
has never been implemented. The very same methodology
can be applied to other kinematically complex mechanism.
These mechanisms are such that, due to a large number of
degrees of freedom, redundancy or multiple kinematic chains,
the kinematics is, typically, solved numerically rather than in
a closed form. In consequence of the mechanism complexity,
the mathematical properties of an objective function such as978-1-5090-5105-2/16/$31.00 c©2016 IEEE



gradient, smoothness and continuity, are not available or re-
quire a lot of computational or analytical work. The addressed
problems might have several local minima and gradient-based
methods are not suited for solving this kind of problems. Thus,
we propose to use gradient-free methods such like genetic
algorithms and other evolutionary optimizers, which provide
a flexible way of treating with the concurrent design optimiza-
tion problem. In this context, genetic algorithms (GAs) are the
most widely applied for the concurrent design problem [14],
[15], [16], nevertheless, the performance of other gradient-
free optimizers has not been deeply studied. One of the
contributions of this work is to present a set of optimizers
from three families: The omnioptimizer [17], a well performed
genetic algorithm which basically uses the same crossover
and mutation operations than the NSGA-II [18], the BUMDA
[19] from the estimation of distribution algorithm family, a
kind of algorithm which replaces the crossover and mutation
operations by the estimation and sampling of a probability
distribution, and the CMA-ES, an evolution strategy which
uses a normal distribution for mutation favoring the most
promising directions. We compare the performance of these
optimizers on the two design problem aforementioned, in
order to elucidate if any of them performs the best for such
problems.

We present two different objective function models for the
optimal design of mechanisms: the first considers the maxi-
mization of a regular workspace, and the second one combines
the concurrent optimization of both structure geometry and
control parameters for a task-based problem. In particular, as
aforementioned, these methods are tested on a simulated Delta
parallel manipulator [20], but they are applicable for other
mechanisms, e.g. a redundant serial manipulator of several
degrees of freedom.

The organization of this article is as follows: in Section
II we discuss and introduce the different models for opti-
mum mechanism design. In Section III we briefly review
the three state-of-the-art evolutionary algorithms used for
approximating the solution to the optimum design problems.
In Section IV we introduce the general work-flow applied
to optimum mechanism design. In Section V we introduce
the two case studies of actuated mechanism along with the
results of applying the different optimization methods. Finally,
in Section VI we present the final discussion and concluding
remarks.

II. OBJECTIVE FUNCTIONS FOR OPTIMAL DESIGN

In order to define the optimization problem, we consider
two cases: 1) Maximization of a regular workspace subject
to a constant norm of the links lengths. 2) Minimization
of the trajectory tracking error for concurrent optimal
design.

Nevertheless, the same optimization algorithms and kine-
matic simulators can be used for approaching any of the
optimization problems, the most adequate objective function
model can be selected according to the application and user
needs.

Let us define the general terms used in the optimization
models. Consider a mechanism with m joints and a actuators
for all the kinematic chains, as well as d degrees of freedom
(DOF) of the end-effector. The mechanism is defined by a
set of design parameters α ∈ Rp, for instance, the lengths
of the links, the relative position of each link, the relative
arrangement between each axis, the size and shape of the end
effector, etc. Let us define a set of Cartesian and orientation
coordinates of points in a target workspace W as X ∈ Rd×n,
where n is the number of points. Using the target data we can
compute a set of values for the actuated joint variables θ ∈ Ra,
and passive joint variables φ ∈ Rm−a, as in Equations (1) and
(2).

θi = θi(Xk, α), i = 1, . . . , a, (1)
φj = φj(Xk, α), j = 1, . . . ,m− a. (2)

Let us define x ∈ Rd as the end-effector position and
orientation. Thus, the end-effector velocities are given by:

ẋ = Jθ̇ (3)

where J = J(x, θ, α) ∈ Rd×a is the Jacobian matrix, which
relates the angular velocities θ̇ with the Cartesian velocities ẋ
of the end-effector.

A. Objective 1: Optimal mechanism design for the maximiza-
tion of a regular workspace

This problem consist in finding the maximum regular
workspace for a manipulator whose sum of the links lengths
is normalized to the unity [2]. The problem is subject to
a manipulability constraint measured by the inverse of the
condition number of the Jacobian matrix κ(J). This is de-
fined as κ(J) = σmin(J)/σmax(J) [21], where σmin(J) and
σmax(J) are the minimum and maximum singular values of
the Jacobian matrix, respectively. Therefore, κ ∈ [0, 1]. In
order to decouple translational and rotational manipulability
of the end-effector, we can rewrite Equation (3) as follows:

ẋ =

[
ẋt
ẋr

]
=

[
Jt
Jr

]
θ̇ (4)

where ẋt and ẋr are translational and rotational velocities of
the end-effector, respectively. Thus, we can compute separately
manipulability measures for position κ(Jt) and orientation
κ(Jr). The optimization problem is defined as follows:

max
α
F(α) = Φ(α) (5)

subject to

κ(Jt(X, θ, α)) ≥ γ1; (6)
κ(Jr(X, θ, α)) ≥ γ2;

θmin
i ≤ θi ≤ θmax

i

φmin
j ≤ φj ≤ φmax

j
q∑

k=1

lk(α) = τ ;



where Φ(α) is the length of the side of a cube, which is equiv-
alent to maximize its volume, i = 1, . . . , a, j = 1, . . . ,m− a,
γ1 and γ2 are position and orientation manipulability bounds,
respectively. τ is a given normalizing constant, set to τ = 1
for this work, this constraint removes the dimension effects by
normalizing the design parameters α of the manipulator.

For both objective functions we assume that the joint limits
[θmini , θmaxi , φminj , φmaxj ] are set in such a way that auto-
collisions are avoided, i.e., the working ranges of the joint
angles are such that mechanical interference between links is
not possible.

B. Objective 2: Concurrent optimal design of kinematic con-
trol

In this problem, we consider an actuated mechanism under
a control action. Given a trajectory (a function of positions
in time), we aim to minimize the error between the desired
trajectory and the current position of the mechanism. The
error is a time-dependent function. Hence, the optimization
problem considers the integral of the absolute value of the
control signal, as follows:

min
α
F(α) = kP (α)

tn∫
t0

||e(α, t)||∂t+ kD(α)

tn∫
t0

||ė(α, t)||∂t (7)

subject to

θmin
i ≤ θi ≤ θmax

i

φmin
j ≤ φj ≤ φmax

j

where i = 1, . . . , a, j = 1, . . . ,m− a, kP (α) and kD(α) are
proportional and derivative control gains, respectively, which
are included as optimization variables in α. Additionally,
e(α, t) = XCal(α, t) − XDes(t) ∈ Rd and ė(α, t) =
ẊCal(α, t)−ẊDes(t) ∈ Rd are translation and velocity errors,
respectively. XCal(α, t) and ẊCal(α, t) are the translation and
velocity coordinates (including orientation in both cases) of the
manipulator at an instant t. Likewise, XDes(t) and ẊDes(t)
are the desired translation and velocity coordinates imposed
to the manipulator by the desired trajectory. The kinematic
control that allows the manipulator to track a desired trajectory
is introduced as follows:

θ̇t+1 = J†t (ẊDes(t)− kP et − kD ėt) (8)

where J†t = J>t (JtJ
>
t )−1 ∈ Ra×d is the right pseudo-inverse

of Jt. Notice that if a = d then J†t = J−1t . The values of
the joints variables in the next instant of time are obtained
using the Euler method, so that θt+1 = θt + ∆t θ̇t+1. The
translation variables (including orientation) in the next instant
of time can be computed by using the Cartesian velocity, as
follows: XCal

t+1 = XCal
t + ∆t ẊCal

t+1 , where ẊCal
t+1 = Jtθ̇t+1.

III. EVOLUTIONARY ALGORITHMS

Evolutionary Algorithms (EAs) have been used for approx-
imating optimum mechanism designs, such as synthesis of
actuated mechanisms and optimal control [2]. The EAs used
in this work can be classified in three families: Estimation of

Distribution Algorithms (EDAs), Evolution Strategies (ESs),
and Genetic Algorithms (GAs). Nevertheless, all of them can
be classified as evolutionary algorithms, each of them as a
particular way of working. The Omnioptimizer re-combinates
the most promising individuals, selected using binary tourna-
ment, and exploration is maintained via a mutation operator.
The evolution strategy, CMA-ES, uses a reproduction operator
which favors promising directions. The BUMDA estimates
a probability distribution by using the best individuals, the
better an individual is, the higher the weight of such individual
in the estimation formula. Thus, the resulting probability
functions favor to sample the best regions already known.
The Omnioptimizer shares the characteristic of sampling the
regions where the best individuals are, while the CMA-ES
samples in directions where the best individuals are generated.
A brief introduction to each of the algorithms is given in the
rest of the section.

1) The Omni-optimizer [22]: is a general optimization GA,
which is used, in this case, to solve a single objective problem.
Nevertheless, it is an optimizer that can be applied to a wide
range of problems from monoobjective to multiobjective with
and without constraints in discrete and continuous domains,
in our problem we used it as a classic GA, with simulated
binary crossover (SBX) [18] and polynomial mutation. These
are the same operators than those used in the NSGA-II [18]
which probably, is the most widely used GA in the last ten
years.

2) The Boltzmann Univariate Marginal Distribution Al-
gorithm (BUMDA) [19]: is an EDA that uses a univariate
Gaussian model to approximate the Boltzmann distribution,
whose energy function is related with the objective function.
That means that the better an individual is the most probable
is to be sample the region where it is. The mean and vari-
ance parameters of the Gaussian model are derived from the
analytical minimization of the Kullback-Leibler divergence.

3) The Covariance Matrix Adaptation Evolutionary Strat-
egy (CMA-ES) [23]: uses a multivariate Gaussian model.
Parent solutions are used to determine the size, position
and orientation of a Gaussian distribution used to sample
the children candidate solutions. One of the most important
characteristics of the CMA-ES is that the orientation of the
multivariate Gaussian model directs the search to promising
regions, in a kind of descent path.

IV. GENERAL WORK-FLOW FOR OPTIMIZATION OF A
MECHANISM

Let us describe the proposed general methodology for opti-
mization of a kinematically complex mechanism. This method-
ology can be used for static, kinematic or dynamic task, in the
last cases considering a concurrent design problem: the opti-
mization of geometry and control parameters simultaneously.
Figure 1 shows a graphic representation of the methodology,
which summarizes the process in three main steps: 1) Firstly,
the mechanism to be optimized must be selected by defining
a set of design parameters, e.g., masses, fixed lengths, inertial
moments, desired workspace size and shape, etc. as well as



Fig. 1. Graphic representation of the concurrent optimization method for
kinematically complex mechanisms.

a kinematic or dynamic model. 2) Secondly, the objective
function must be selected, thus a control method, trajectory or
workspace must be also selected. 3) Lastly, an optimization
algorithm must be selected, currently from the three options
described in the previous section, and the parameters of such
algorithm must be introduced. These three steps are flexible
to the user choice and provide a whole methodology whose
output is a set of design parameters (geometric and/or control
parameters) that approximates the optimal solution.

V. CASE STUDY: DELTA PARALLEL MANIPULATOR

The case study is a Delta parallel manipulator, which is
considered a kinematically complex mechanism according to
our definition. The Delta manipulator, as shown in Figure 2(c),
is a 3-DOF purely translational parallel robot, it is well-
known for its high speed and accuracy [20].

The kinematic parameters are depicted in Figure 2, where
a denotes the length of arms AiBi, b the length of the
parallelogram BiCi, R = OAi and r = PCi, with O
and P being centers of the base and the moving platform,
respectively. By obviating passive joint variables from the
kinematic equation, we derive loop-closure equations relating
the actuated joint variable Φ1 = [Φ1,1Φ1,2Φ1,3] with the
reference point P as (x− (d+a cos Φ1,i) cosφi)

2 + (y− (d+
a cos Φ1,i) sinφi)

2+(z+a sin Φ1,i)
2−b2 = 0, for i = 1, . . . , 3,

where d = R − r and φi denotes the angle between the ith

sub-chain and x axis of the reference framework, in this case
φi = (2π/3) (i− 1) for i = 1, . . . , 3.

b

a

Fig. 2. Architecture and the i− th subchain of the Delta robot.

Each optimization algorithm is executed 10 times for each
design problem to present a statistical comparison. The stop-
ping criteria are the following: the CMA-ES stops if the best
objective function value is less than 10−9, or the difference
between two consecutive generations is less than 10−20. The
Omnioptimizer stops when it reaches 40 generations. The
BUMDA stops if the maximum variance is less than 10−12.
All algorithms stops at a maximum of 10, 000 · p evaluations,
for p optimization variables.

A. Normalized optimal mechanism design.

We define a regular-cubic workspace W . The length of an
edge of the cubic workspace is denoted by 2l, it is used to
compute the objective function in (5).

The center of the resultant maximal effective regular
workspace is unknown for the evaluation of each candidate
solution, but it is known that the manipulator is symmetrical
with respect to the axis z. In consequence, the coordinates of
the center of the workspace has the form (0, 0, zc). In our
work zc is found by intensive search, discretizing the axis
in partitions of size 10−5. The set of design parameters are
denoted as α = [a b d]T . Joint limits and manipulability
constraints are taken as in [2], and the inverse kinematics
for the Delta robot is computed according to the approach
in [24]. The angles are constrained to the following limits
−40 ≤ Φ3,i ≤ 40, −45 ≤ Φ1,i + Φ2,i ≤ 180, and −30 ≤
Φ1,i ≤ 100. Figure 3 presents the optimal approximation
of the whole workspace for the Delta robot, as well as the
enclosed regular workspace. Fig. 3 (a) shows the minimum and
maximum robot workspace with the optimal design. Figures
3(b), (c) and (d) show a cross section of the workspace at
heights of 0.4137, 0.5940 and 0.7742 units, respectively. Table
I shows the best solution found by each algorithm for the
lengths {a, b, c} and the corresponding objective function as
well as the mean and standard deviation of ten independent
executions. As can be notice, the best solution is found by
the CMA-ES, nevertheless, the lengths are similar for all the
algorithms. In addition, we report the mean and standards
deviation of the values, we can observe that in average the
CMA-ES also performs the best, and has the smallest standard
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TABLE I
BEST SOLUTION FOR EQUATION (5), LINKS LENGTH {a, b, d} AND FITNESS
F(α). F(α) AVERAGE AND STANDARD DEVIATION FROM 10 RUNS.

EA a b d F(α) F(α)

CMA-ES 4.01e-1 5.67e-1 3.23e-2 1.80e-1 1.70e-1± 1.29e-2
Omini 3.64e-1 5.61e-1 2.57e-2 1.75e-1 1.22e-1±5.91e-2
BUMDA 3.81e-1 5.77e-1 3.67e-2 1.68e-1 1.52e-1±1.92e-2

deviation, that means that it reaches almost the same solution
most of the times.

B. Optimal concurrent mechanism design for kinematic con-
trol.

For the sake of validating the proposal, we use a well
mathematically defined trajectory, nevertheless our proposal
considers a set of points in four dimensions (x, y, z and time)
in benefit of generalizing the methodology. We use a tridimen-
sional spiral function sampled in 100 equidistant points in time
to generate the input points for the algorithm. Additionally,
the desired orientation is computed, for each point, as the
corresponding direction cosines of the point, i.e, the desired
trajectory for the configuration of the end-effector is defined
by Xi(t) =

〈
n sin(2.0π ·m), n cos(π ·m), l4 + 0.2

〉
, where

m =
2.0·t−tf

tf
, n = 0.3, l = 0.5, 0.0 ≤ t ≤ tf , tf = 30.0 s

and i = 1, . . . , 100. A very large value proportional to the re-
maining simulation time is assigned to unfeasible mechanisms
which can not be simulated due to singularities.

Table II shows results obtained by the EAs for the Delta
robot. Notice that for both controls, P and PD, the best
structure parameters are almost the same, meaning that those
parameters might be at least one of the local optima. Nev-
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Fig. 4. Control Path Tracking for the Delta robot, (Top) Logarithmic absolute
EEPE over time for P control, (Bottom) Logarithmic absolute EEPE over time
for PD control

TABLE II
BEST SOLUTION FOR EQ. (7), LINKS LENGTH {a, b, d}, CONTROL GAINS
{kP , kD} AND FITNESS F(α). F(α) AVERAGE AND STANDARD

DEVIATION FROM 10 RUNS.

EA a b d KP KD F(α) F(α)

Proportional Control
CMA-ES 4.35e-1 4.90e-1 7.38e-2 9.99e+1 - 3.71e-1 3.71e-1±0.0
Omini 4.40e-1 4.87e-1 7.56e-2 9.99e+1 - 3.71e-1 4.58e-1±1.24e-1
BUMDA 4.35e-1 4.92e-1 7.64e-2 1.00e+2 - 3.71e-1 4.05e-1±7.34e-2

Proportional-Derivative Control
CMA-ES 4.36e-1 4.89e-1 7.35e-2 9.99e-1 8.28e-1 8.74e-3 8.79e-3±2.49e-5
Omini 4.37e-1 4.88e-1 7.66e-2 9.99e-1 8.28e-1 8.76e-3 8.82e-3±3.32e-5
BUMDA 4.35e-1 4.92e-1 7.36e-2 9.99e-1 8.28e-1 8.75e-3 8.82e-3±4.34e-5

TABLE III
HYPOTHESIS TESTS ABOUT THE MEAN OF THE OBJECTIVE FUNCTION.

Problem CMA-ES vs OMNI CMA-ES vs BUMDA OMNI vs BUMDA

Normalized
design

CMA-ES (0.0) CMA-ES(6.25e-4) Neither

P control CMA-ES (0.0) CMA-ES (0.0) Neither

PD
control

CMA-ES (1.85e-4) CMA-ES (3.38e-2) Neither

ertheless, the proportional gain is quite large for the P than
for the PD controller, meaning that the P controller is using
more energy in order to achieve a reasonable performance,
which is clear in the large value of the objective functions in
comparison to the PD controller. In addition, notice that all
algorithms reach basically the same objective function value,
but the CMA-ES is more stable, and delivers the same result
for the PD case, and a very similar for the P control. Figure
4 shows the logarithmic absolute End-Effector Position Error
(EEPE) over time for the P and PD control, respectively.
In both cases, this error remains low, which means, that the
reference trajectory is tracked with good precision.



According to the results on Tables I and II, the optimization
methods deliver similar values of the design variables as well
as objective function values in the same order of magnitude,
all of them fulfill the task and constraints. Nevertheless the
methods perform similar, considering the objective function
values as well as their standard deviation, we can see that
CMA-ES reports the best objective function value and the
smallest standard deviation. In order to objectively compare
the optimization methods we use hypothesis tests to compare
pairs of them via the Boostrap methodology. The null hy-
pothesis is that both algorithms deliver the same mean of the
objective function value, while the alternative is that one of
them performs better (delivers a smaller mean of the fitness
for minimization, or a greater value for maximization). All
possible combinations are tested and the results are reported
in Table III. If one of the algorithms can be considered the
best, we report its name and the p-value. As can be observed
the CMA-ES clearly is better than the other two. Additionally,
even though the BUMDA seems to perform better than the
Omnioptimizer according to numerical results, the hypothesis
test says that neither of them can be consider better than the
other.

VI. CONCLUSIONS

In this work we have reviewed two mathematical models for
optimal mechanism design. We have shown that the problems
can be address under a unified framework, although they are
different in the goal, optimization variables and complexity.
To use the same methodology for the different problems and
mechanisms, the optimization algorithm must be independent
of the type of mechanism and numerical simulation performed.
Hence, we propose to use a set of evolutionary algorithms,
which are of the family of black-box optimization.

It is interesting that, in the case of concurrent design (control
and geometry), the cases optimized for the P and PD controls
performs (visually) equally well, compensating with similar
precision the error in the trajectory. EAs can not guarantee
converge to the optimum, but it is worth to notice that the
different algorithms deliver similar values of the decision
variables, in consequence, we can argue that is very possible
that the solutions reported are, at least, one of the best local
optima.

According to the encouraging results, future work contem-
plate to unify different algorithms, case studies, and opti-
mization problems in a single tool for optimal design under
different kinematics and dynamics requirements. Possibly the
approximations found by the evolutionary optimizers could
be improved by local search. Hence, in addition, future work
contemplate to combine global and local search.
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