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Abstract: This work addresses the problem of controlling a network of connected and holonomic
agents to achieve a formation while obstacles are avoided. The agents themselves can be obstacles
for each other or there may be fixed obstacles in the environment. The proposed control law
is computed by the adaptive convex combination of two control laws dealing with two tasks,
one devoted to achieve a desired formation and the other focused on obstacle avoidance. The
adaptive convex combination is twofold, in one hand it prioritizes the obstacle avoidance task
when an agent is in the neighborhood of an obstacle, and in the other hand it maintains a
continuous control law. Moreover, the formation is formulated as a consensus problem and a
novel finite time control law is used to solve this problem.
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1. INTRODUCTION

The problem of motion generation and control of a group
of mobile agents has attracted the attention of several
researchers (see for instance Parker (2008), Cao et al.
(2013), Chen and Wang (2005)), since its solution allows
to face more elaborated tasks that a single agent cannot
address. The control of the group of agents requires a
communication network allowing the state information of
each agent to be shared to a subset of remaining agents
and to reach an agreement in certain quantities of interest
to carry out the established tasks. The interconnections
between agents are represented by a Laplacian matrix and
the agents agreement is commonly called consensus (Li
and Duan (2014)).

In the analysis of consensus problems, Olfati-Saber and
Murray (2004) proposed a linear consensus protocol with
asymptotic convergence and demonstrated that the alge-
braic connectivity of the interaction graph, i.e. the second
smallest eigenvalue of the graph Laplacian, determines the
convergence rate. Results on finite-time stability like the
ones of Bhat and Bernstein (2000) have been exploited
in problems of multi-agent systems in order to achieve a
high-speed convergence. For instance, finite-time control
protocols have been proposed in Wang and Xiao (2010)
and Zuo and Tie (2014) to address the consensus prob-
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lem, where the goal is to drive agents modeled as single
integrators to a common state.

As an extension of the results on the consensus problem,
Ren and Beard (2004) proposed a scheme of decentralized
control for a multi-agent system, where each agent shares
its state with its neighbours in order to reach a desired for-
mation. Ren (2007) presented a scheme based on consensus
to reach a formation with a virtual agent as a reference.
The schemes based on consensus allow to reach a desired
formation, however, while the agents are driven to the
formation, they may collide with each other. Besides, the
environment may have some fixed obstacles. This makes
necessary to include an obstacle avoidance strategy to use
it when required in order to guarantee that the formation
task can be attained.

To deal with the formation problem with obstacle avoid-
ance, Jin and Gans (2017) proposed a control law where
the desired formation is achieved through a linear con-
sensus protocol applied to virtual agents. When some
agents approach each other within a security distance,
the control input of those agents switches to an obstacle
avoidance controller. Thus, each agent has a switching
scheme between two control laws to achieve a collision-free
formation. In the robotics community, a hierarchical task-
based control framework has been proposed to address a
control problem that involves to solve several tasks simul-
taneously (Samson et al. (1991); Baerlocher and Boulic
(2004)). This scheme has been used in Antonelli et al.
(2008) to drive a single agent to a goal while avoiding a
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fixed obstacle. The same idea has been extended to address
formation and obstacle avoidance tasks for multi-agent
systems in Antonelli et al. (2008) and Arechavaleta et al.
(2017). In those works, the formation control is addressed
by solving two tasks: reaching a mean and a variance of
the agents positions. Besides, these schemes rely on the
global (centralized) sensing of the agents’ positions.

In this paper, we propose to tackle the formation control
with obstacle avoidance in the framework of hierachical
task-based control. The formation control is addressed
as a consensus problem of virtual agents such that if
the virtual agents reach consensus, then the real agents
reach a desired formation. The obstacle avoidance becomes
the priority task when the onboard sensing of an agent
detects an obstacle closer than a given security distance.
We take advantage of previous results of Lee et al. (2012)
to provide continuity of the control inputs when both tasks
are activated or deactivated. Thus, the contribution of
the paper is the formulation of a task function for the
formation control and its integration with the obstacle
avoidance task in a distributed control scheme, where
no global sensing of the agents positions is needed. In
addition, a novel nonlinear control to achieve the formation
in finite time is introduced.

This work is structured as follows. Section 2 recalls some
definitions and results from graph theory. The task-based
control scheme is also introduced in this section. In Sec-
tion 3, the problem of formation control with obstacle
avoidance is formulated and solved. Section 4 presents
an illustrative example showing the performance of the
proposed task-based control. Finally, the main conclusions
of this work are presented in Section 5.

2. PRELIMINARIES
2.1 Graph Theory

The following notation and preliminaries on graph theory
are taken mainly from Godsil and Royle (2001).

A graph G consists of a vertex set V(G) and an edge set
£(G) where an edge is an unordered pair of distinct vertices
of G. Writing ij denotes an edge, and j ~ ¢ denotes that
the vertex ¢ and vertex j are adjacent or neighbors, i.e.,
there exists an edge ij. The set of neighbors of vertex 7 in
the graph G is represented by N;(G) = {j : ji € £(G)}.

A weighted graph includes a weight function W : £(G) —
R} on its edges. The adjacency matrix A = [a;;] € R"*"
of a graph with n vertices is a square matrix where a;;
corresponds to the weight of the edge 77, when i is not
adjacent to j then a;; = 0. Through this work it is assumed
that a;; = aj;, i.e. only undirected and balanced graphs are
considered where >, a;; = > aji. The Laplacian matrix
of Gis L(G) = A — A where A = diag(dy -+ ,d,) with
di = Z?:l Qjj.

A path from 7 to j in a graph is a sequence of distinct
vertices starting with ¢ and ending with j such that
consecutive vertices are adjacent. If there is a path between
any two vertices of the graph G then G is said to be
connected, otherwise it is said to be disconnected. If the
graph G is connected, then the eigenvalue A;(L) = 0 has

algebraic multiplicity one with eigenvector 1 = [1 --- 1]7,
e ker L(G)={z:21=... =z, }.

Consider a multi-agent system composed of N agents that
are connected through a network with single-integrator
dynamics given by

j,‘i(t):’u,i,’iE{l,...,N} (1)
where x;, u;(t) € R are the state and the control input of
agent i, respectively. The dynamics of the network system
(1) can be written in vector form as

(1) = u(t) (2)
where x(t) = [z1(t), 22(t),...,zn(#)]T is the state vector
and u(t) = [u1(t),ua(t),...,un(#)]? € RY is the control
inputs vector of the agents.

If the weighted error of agent ¢ with respect to its neighbors
is defined as (Olfati-Saber and Murray (2004)):

eit) = > aii(z;(t) —wi(1), i € {1,...,N},  (3)
JEN;
then the consensus is achieved when this error es equal to
zero for all the agents. The weighted error function (3) can
be expressed in matrix form as:

e(t) = [ea(t),ea(t), ... ,en(t)]" = —La(t).  (4)
2.2 Multiobjective task-based control

The tasks to be performed by the agents are defined as a
function of the current state g of the system. In general,
the 7 — th task function is represented as x;(q). Since this
task must reach an objective z¢, then an error function
e(z;(q), %) can be stated, for instance the simplest one:

ei(q) = wi(q) — o (5)
where ¢;(q), z;(q) and z¢ € R™. The current task value
x;(q) depends on the current state of the systems g =
[q1 92 -+ gn] € R™

Taking the derivative of equation (5) with respect to time,
the following linear system is obtained

¢ = Ji(q)q (6)
where J;(¢) € R™*" is the Jacobian matrix which re-
lates the change in the error with respect to the system
velocities. In order to solve for ¢, which will be used
as the control inputs of the system, the Moore-Penrose
pseudoinverse of the Jacobian matrix can be used as in

Siciliano (1990)
q=Ji(g) e (7)

where J;(q)* = Ji(q)T (Ji(q)Ji(q)T) L. The previous equa-
tion generates the minimum norm vector of velocities
(Klein and Huang (1983)), i.e. the smallest state variation
due to an error variation. Since ¢ is the control inputs
vector, then the number of control inputs must be larger
or equal to the variables to be controlled, i.e. m < n, which
means that the degrees of freedom of the tasks must be less
than or equal to the order of the whole system.

In Equation (7), the error dynamics is a design parameter
and it must be a stable system, i.e. ¢; = f;(e;) is a stable
system. Then Equation (7) becomes:

q = Ji()" fili(q) — ). (8)
The previous equation indicates the evolution of ¢ ensuring
that the i — th task converges to the desired value z¢. For
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instance, consider a case with n = 2. Establishing a desired
dynamics for (6) as

éi = —)\ei (9)
where A > 0 in order to achieve exponential stability of

the task function. According to (9) and (7), the control
inputs are given by

q=—Mi(q)"ei(q). (10)

2.8 Null space based formulation to include several tasks
in the control scheme

In real systems there can exist the need of executing several
tasks simultaneously and, depending on the condition of
the system, some of them must be considered while others
should be discarded, particularly if they give contradictory
solutions. In multi-task systems a trade-off between all the
task must be established.

A fine solution to this problem was introduced by Samson
et al. (1991) and applied to robotic systems (Antonelli
et al. (2008, 2009); Lee et al. (2012)). The idea is to assign
a fixed priority to each task. The task with the highest
priority is named the principal task. Then, the solution of
the principal task is always used in the computation of the
control input and the solution of other tasks is projected
into the null space of the principal task. In this way, the
solution of lower priority tasks never interferes with the
solution of the principal task.

Following Antonelli et al. (2008), the null space of the
principal task is computed as

Ni =1—J(q)Ji(q) (11)

where N; € R™*" For instance, in the case that there exist
only two tasks x1 and x2, where x1 has the highest priority,
then the total control action is computed as (Antonelli
et al. (2008, 2009)):

q4=q + Nige (12)
where ¢ € R™ is the control input to the system, ¢; € R

is the computed control input by x; and ¢s is the control
input computed by xs.

In order to avoid that the control solution of the priority
task modifies the solution of the control solution given by
the secondary task, Baerlocher and Boulic (2004) propose
an alternative solution given by

G=Jiér+ (JaNy) (g — JoJi ér) (13)

where the product J,N; constrains the domain of Js to
the null space of Ji.

When only one task is active, a control input of the form
(10) is applied with

qg= -\, ey (14)

and when both tasks are activated, the control input (13)
is applied. Therefore, there is an undesired effect of the
instantaneous switching between the control laws that
yields a discontinuity in the control signals. In order to
avoid this, Lee et al. (2012) proposed the following control
law

q=d) +dqp (15)
with

G=J'é
Gr2 = (JaN1) T (62 — JoJi €))
ey =h(t)ér + (1 — h(t) 1]y é2,
where é; assigns the desired dynamics (9) and h(t) is
a smooth time-dependent function varying continuously
from 0 to 1. It can be verified that the control input
from (14) is identical to the one in (15) for h(t) = 0 (Lee

et al. (2012)). Thus, this approach provides a continuous
solution for q.

3. SOLUTION TO THE PROBLEM OF FORMATION
WITH OBSTACLE AVOIDANCE

This section solves the following problem.

Definition 3.1. Let A = {A;,...,An} be a set of N < o0
mobile agents and F be the required formation of the
agents given by a vector of relative distances of each agent
with respect to an arbitrary common reference frame, and
let us consider that there also exists a set of obstacles in
the environment. The formation with obstacle avoidance
problem (FOAP) consists in finding control inputs yielding
a trajectory for each agent such that the formation is
reached and the trajectories avoid the obstacles.

The following assumptions are considered:

e Each agent has omnidirectional sensing capability
and focuses only on the nearest obstacle, i.e. it pro-
cesses one obstacle at a time,

e the communication links between agents is modeled
by a Laplacian matrix,

e the agents, together with the communication links,
describe a connected graph (as defined in Section 2).

According to the FOAP definition, two tasks are needed,
one to reach the required formation and the other to avoid
obstacles. Since the agent must be traveling to reach the
formation avoiding any obstacle, then the task devoted to
avoid obstacles is the principal task (herein named local
task) and the task devoted to reach the formation is a
secondary task (herein named global task).

The following notation is used during the solution of
FOAP.

Let A; € A, then 2% and z¥ are the local and global tasks
associated to A;. Also, ¢;, ¢; are the position and velocity
that should be imposed to agent A;, and ¢’ is the position
of the nearest obstacle to agent A;.

3.1 Local task (Obstacle avoidance)

The agent A; must avoid obstacles (an obstacle is a fixed
object or another agent) and to do that, it must always
maintain a security distance (R) to the object. In order to
meet this objective, task x} = g; is defined (i.e. it computes
the position of agent A;). Then the following task function
is stated .

€oi = lgi —go —RE€R (16)
where ¢’ € R" is the position of the obstacle. Notice that
la; — ¢ || is the distance between agent A; and an obstacle,
which can be measured with a sensor onboard the agent
and thus, the global position of the obstacle is not required.
The error dynamics is:
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T
€oi = MCR eR" (17)
lg: — a3l
€oi = Joi(q)qi- (18)

Establishing a desired dynamics for (18) as (9) and solving
for ¢; the following equation is obtained

Gi = =AM (9)eoi- (19)
Since it represents only the contribution of the local task
to the position of agent A; (it does not include the control
due to formation), then g; is renamed in equation (19), as
follows, to clarify this fact

Goi = 7>\=]:; (Q)eoi~

3.2 Global task (Agent’s Formation)

(20)

As mentioned in the introduction, the formation problem
is adressed as a consensus problem. Consider a set of
N mobile agents connected through a communication
network such that they exchange information with each
other, each agent dynamics is given by:

gi = Ui(t) iel,...,.N (21)
where u; € R™ is the control input for the i-th mobile.
Hence, the dynamics of the whole set of agents is repre-
sented by:

g =u(t) (22)

where u = [u1, ug, .., uy] € RV™,

According to Jin and Gans (2017), agent formation is
specified as a set of fixed translation vectors z; € R™ with
respect to an arbitrary common reference frame, thus the
position of the i — th agent is translated by z; given a new
virtual agent with a new variable ¢,, described as

qz; = Gi + 2 (23)
where ¢,, € R", ¢ € 1,...,N and the network of virtual

agents has the same Laplacian matrix than the original
network. The virtual agent dynamics is given by

Applying the control input (24), later defined, to the
system (21), the virtual agents reach the consensus and
the real agents reach the desired formation with respect
to the common reference frame.

(24)

Then the weighted error of agent i with respect to its
neighbors is

€z = Z (aij(qz; — q=)) (25)
JEN;
and the consensus error vector is
€r = [€s,€sps s €an] = —Lg(1). (26)

The next control law is proposed to solve the consensus
of the virtual agents, i.e. the real agents reach the desired
formation

where |®]2 = |o|Zsign(e). The next proposition states that
the proposed control law achieves the consensus (hence
also the formation) in finite time.

Proposition 1. Consider a connected undirected (balanced)
graph G and the vector error (e,) given in equation (26).
Then, there exists a control gain k € R such that the
following nonlinear control protocol

us (1) = gz, = kles ] (28)
achieves finite-time convergence to zero of the error vector
in equation (26) and consequently the consensus of the
state of system (24), for any initial state q,(0).

Proof. Consider the error dynamics

¢, = —kLd(e,) (29)
where ®(e,) is given by
lez, | 2
D(e,) = : (30)
L= 1?
and let
N
Vie)y=_lexl (31)
i=1

be a candidate Lyapunov function for (29), which is
positive definite but not continuously differentiable for all
e.. However, since (31) is Lipschitz continuous, the global
stability of (29) is obtained if V' is negative definite almost
everywhere (Bacciotti and Rosier, 2006, p. 207), which will
be demonstrated in the sequel. To this aim, let S(e,) =
[sign(e,) --- sign(e.,)]” and notice that if e,, # 0 then
the i — th element of S(e,)T L is either zero or it has the
same sign as e,,. Then, S(e,)TL®(e,) = S(e,)TW (t)®(e,)
where W (t) = diag(w1(t), ..., wn(t)), w;(t) > 0. Then

N
V =—8(e.)TLO(e,) = —kai(t)\eziﬁ. (32)

Notice that, with e,, # 0, w;(t) is zero iff Vj € N;(G),
sign(e,) = sign(e.;). Moreover, since e, = —Lg. then
along the evolution of the system it holds that 1ye, =
> e,, = 0 and therefore, unless e, = 0 there always exists
a ey, # 0 with w;(t) # 0, i.e. a node with nonzero weighted
error such that 35 € N;(G), sign(e;,) # sign(e.,). Thus,
the origin of (29) is globally asymptotically stable. Notice
that if e, = Lg, = 0 then ¢,, = ... = ¢, and consensus is
achieved.

Since (29) is globally asymptotically stable and for all
A>0,®(e,) = A~ @HD@(Ne,) with d = —2 (i.e. the vector
field is homogeneous with negative degree with respect to
the standard dilation, see e.g. Bhat and Bernstein (2005)),
finite-time stability follows from (Bhat and Bernstein,
2005, Theorem 7.1). Thus, consensus is achieved in finite-

time. O

Moreover, the result presented in (Olfati-Saber and Mur-
ray (2004)) ensures that the consensus of virtual agents
is the average of the initial conditions of the agents, when
the Laplacian matrix (L) comes from a strongly connected
graph, i.e.:

Jim g, (1) = al = ¢; (33)
with
= 23 09x00) (34)

Zi Yi

where y; is the ¢ — th element of the left eigenvector v of
L.
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Although one may be tempted to assign 2% = ¢, and its
task error as Equation (25), this is not possible since the
Jacobian matrix appearing in the derivative of (25) is quite
difficult to manipulate. Instead of that, this work takes
advantage of Equation (33) and it defines the secondary
task as b = ¢., (the position of the virtual agents) and
the error of this task as

ece = ¢: — (€2 ® In)1 (35)
and its derivative is given by
bee = Jee(q)4: (36)

where (¢¢ ® Iy)1 € RN™ is a vector of ones scaled to
the initial conditions and Jee = Inn, € RN?XN7 ig the
Jacobian matrix of the consensus task.

Notice that e.. and é. converge to zero in finite time,
since the limit in Equation (33) is reached in finite time.
Moreover, the resulting error dynamics will be used as the
desired one in the priority task-based scheme, i.e.

¢l = kle.]?. (37)

3.8 Convex combination of global and local tasks

The proposed combination of global and local tasks is an
application of that proposed in Lee et al. (2012). Thus, the
control input is given by

G=d) + 2 (38)
where:

q1=J, ¢
‘11\2 = (JceNo)+(éCE - Jcel]jéll)
é/1 = h(t>éo + (1 - h(t))*]o‘]ct,éce
and 0 < A(t) < 1 is a smooth function. Depending on
this function, the smoothness of ¢ can be achieved. The

next proposition states that this control law achieves the
formation and obstacle avoidance.

Proposition 2. Consider a strongly connected and not di-
rected graph. For this kind of graphs, the control law (38)
guarantees convergence to zero of the consensus error (e )
and obstacle avoidance error (e,) in spite that both tasks
are active during the transition to activate/deactivate the
obstacle avoidance task. The terms of (38) are

o = — e,
Cee =kle:]?
Je=1Iy
[(J.N,1)™ 0 0
0 (J.Ny)t - 0
(J“NO)JF* : : .. :
0 0 C (JNow)F
[Jh@ 0 0
gem| O a0
L 0 0 - Jon(a)

Proof. Let us propose the vector of errors

e
€o

(39)

where e, = [el},el;,- -~eOTN]T € RY with e,; defined in
(16), so e, is a vector with the task of obstacle avoidance
for each mobile and e, defined in (35) is the consensus
of virtual agents (i.e. the formation of real agents). Then,
consider a Lyapunov candidate function

1
V= 56’%’ (40)

with time derivative
V=eTe. (41)

Expanding the obstacle task error for the N agents we get

Jolo(Q)JO()"' 8
bo=do@i=| . " S EACE)
0 0 - Jon(q)

where J,(q) € RV*N" has the Jacobians J,(q) € R"
of the i — th agent. Let eX = kle.]? and A =

ce

diag{le., ()| 72, ... |e.r |~ /?}. Since

1/2 e ()] . e (t
ea (O Psignte, (0) = 0 siente () = =0

we have |e.]2 = A(e,)e.. Furthermore, according to the
properties of the Laplacian matrix we have e, = —Le,,
therefore

éce = —A(ey)Lece.
Now, substituting (36) and (42) in (41), we have

(43)

V= (e 5] |59 a. (a4
Using the terms of (38), then
vk ) b ae] |5 ()

where:
My =k(1 — h)J,J JELA
— Jee(JeN) T (k(1 = h)J, JFJTELA + ELA),
My == (AnJee ) = Midee(JeNo) T Jee I ),
Ms = — kJ,JF (1 —h)J,JLLA
+ kJoe(JeNo) (I = (1 = h) Jeedy Jo o) LA,
My =MhJoJ) + AbJo(JeNo)* (Jee J),
recalling that J,;(q)J.(q) = I, € R (L® I)g: = 0,
JoiNoi = 0, Ny = NL and the products

Joi(JeNoi) " = JoiNg; (NoiNg;) ™ (46)
- JoiNoi(NoiNgz‘)il
= 07
(JcNoi)+ - (JcNoi)T((JcNoi)(JcNoi)T)_l
= Noi(NoiNoi) ™
=1,.
Then the derivative of the Lyapunov function is
[T T €Ece
V=—lel eO]MLJ, (47)
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kLA 0] The oi 1 ¢
k(1 = h(t))J,LA AT, |" e eigenvalues o
matrix M depend on the constants values k, A\, and on
h(t) and matrices L and A. With k£ > 0, and according
to Section 2, the matrix L represents a connected and
balanced graph, it has an eigenvalue \;(L) = 0 with an

associated eigenvector 1 = [1---1]7 such that L17 = 0,
which implies that e.., = -+ = ece,. Moreover, if the
matrix LA is not balanced, but L has a left eigenvector
7T associated with A;(L) = 0 that satisfies v L = 0, then
YILA = 0 with v = [y1,...,7] and 73 = - -+ = 7, then
7T = €I, which means that consensus is achieved. Since
A > 0and 0 < h(t) <1, then the matrix M is semipositive
defined with one of the eigenvalues equal to zero and the
others are positive. Thus, V < 0 and when the consensus
is achieved with e.. = 0 and obstacle is present with h > 0

and the error e, = 0, then V = 0. O

where M =

The previous proposition guarantees that the consensus
error converges to zero and consequently the desired for-
mation is achieved in finite-time in spite of the occurrence
of an obstacle avoidance task.

4. SIMULATION RESULTS

In this section we illustrate the obtained results, where
the objective is to achieve a formation of the agents
and at same time avoiding the presented obstacles. For
the simulation example, we consider a five-agent system
(N = 5) in the network with undirected graph (Fig. 1).
In the simulation, we set a;; = 1 and k& = 0.75. Consider
the initial conditions ¢,(0) = [23356]" for the z axis
and ¢,(0) = [-2 =375 1" for the y axis of agents 1
to 5 respectively. The environment has 3 fixed obstacles
with different positions, the positions are g, = [3.7 4],
do2 = [21] and g,3 = [4.51.2] for obstacle 1, 2 and 3
respectively, and the security distance for obstacles and
agents is R = 0.5. The displacement vectors for the virtual
agents are z; = [1.5cos((72x1)°), 1.5sin((72%)°)],s €
1,..., N with respect to the center of formation, for each
agent respectively.

Fig. 1. Connected graph used in the simulations.

Applying the reported results, the numerical simulations
for the two tasks of the agents, consensus to achieve a
formation and obstacle avoidance, are presented in Figs.
2-5. The Fig. 2 shows the trajectory of virtual agents while
the Fig. 3 shows the error between each agent and the
agents that are connected, in this case the consensus has
a displacement with respect to 0, which implies that the
desired formation is achieved. The trajectory of each agent
using (38) is shown in Fig. 4, where we can observe that
the agents avoid the obstacles (g,), and when an agent
detects some obstacle, it changes the profile of its velocity

without discontinuities to avoid the obstacle. The profiles
of the velocities of each agent are shown in Fig. 5, note
that the profiles of velocities are continuous.

X-axis

Fig. 2. Trajectories of virtual agents.

Position error in x-axis

Time(sec)

(a) Consensus of agents in « — axis

Position error in y-axis

Time(sec)

(b) Consensus of agents in y — axis

Fig. 3. Consensus of agents.
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= ( =
®
>ot
9
2f —0q,
q3
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X-axis

Fig. 4. Trajectories of agents and the reached formation.
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Fig. 5. Control inputs (velocities) of agents.
5. CONCLUSIONS

This paper solved the problem of the formation of N holo-
nomic agents moving on a plane with obstacle avoidance,
using the hierarchical task-based scheme for this purpose.
In this case two tasks are considered, the high priority
one is devoted to avoid obstacles and the low priority
one to the agents formation. The formation control has
been solved by a novel finite-time control protocol and the
formation is achieved independently that some agents have
to solve an obstacle avoidance task. We have formulated
an adequate task function for the formation problem and
it has been combined with the obstacle avoidance task in
a hierarchical distributed control approach. The solution
interference between both tasks is avoided in this scheme
and a continuous time-dependent function h(t) is used to
maintain the continuity of the control inputs. The pro-
posed control scheme only needs local (onboard) sensing
of the relative agent’s positions. The convergence of the
proposed solution is proved and its effectiveness is shown
in an illustrative example.
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