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Abstract: Predefined-time convergence means that a system is driven to the origin of its state
space in a desired settling time that can be set as an explicit parameter of the controller and it
is achieved independently of the initial conditions. In this paper, we propose distributed control
protocols that enforce predefined-time convergence in the consensus problem for first order
systems. The proposed control method is based on the so-called time base generator (TBGs),
which are time-dependent functions used to build time-varying control laws. Our method can be
applied to any first-order linearizable nonlinear system. In particular, a robust nonlinear control
protocol is proposed to deal with perturbed systems. Stability of the closed-loop protocols
is proved for connected undirected communication topologies of the network system and for
directed topologies having a spanning tree. The performance of the proposed consensus protocols
are evaluated and compared in simulation with finite and fixed-time controllers and other
previous scheme that also reaches consensus at a preset time.
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1. INTRODUCTION

Consensus algorithms concerns a net of agents which in-
teract in order to achieve a common objective by con-
sidering only local information. In particular, consensus
algorithms may force a network of agents to agree on a
common value for its internal state (see e.g. Jiang and
Wang (2009); Olfati-Saber and Murray (2004)), by using
only communication among “neighbors”. The neighboring
relation is frequently described by a graph (which could be
directed), in which nodes are the agents and arcs represent
communication among agents.

Several works have been published proposing consensus
algorithms for different types of systems. Regarding first-
order agents, the standard protocol (the input of an agent
is a linear combination of the errors between the agent’s
state and those of his neighbors) achieves consensus if
the graph topology is strongly connected (Olfati-Saber
et al. (2007); Cai (2012); Ren and Beard (2008)). This
algorithm achieves consensus also for strongly-connected
dynamic topologies (Olfati-Saber et al. (2007); Cai and
Ishii (2014)). For directed graphs topologies (the informa-
tion may flow from one agent to another but not in the
opposite sense), a common requirement is that the graph
contains a spanning-tree (e.g., Li and Duan (2014)). All
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these algorithms reach consensus asymptotically, since the
consensus protocol is linear.

A number of finite-time protocols have been proposed for
consensus of first-order agents. In Tu et al. (2017); Cao
and Ren (2014); Lu et al. (2013) finite-time protocols
were proposed. Frequently, finite-time consensus protocols
are defined as functions sign(e) evaluated on each of
the neighbors’ errors (Franceschelli et al. (2013)) or as
functions | e |*sign(e) evaluated either on each of the
neighbors’ errors (Cao and Ren (2014)) or on the sum of
the neighbors’ errors (Tu et al. (2017); Lu et al. (2013)).
In Chen et al. (2011) a finite-time protocol is proposed
as a sum of the signs of each neighbor’s error. Authors
called this protocol “binary”. Some algorithms have been
extended to achieve finite-time consensus for strongly-
connected dynamic topologies (Shang (2012); Franceschelli
et al. (2013)). In Franceschelli et al. (2013), the topology
can switch among disconnected graphs, but additional
conditions are imposed to ensure finite-time convergence.

Fixed-time protocols have been proposed in Parsegov et al.
(2013); Zuo et al. (2014). In these, there exists a bound
for the convergence time that is independent of the initial
conditions (Cruz-Zavala et al. (2010); Polyakov (2012)).
To the best of our knowledge, the only work dealing with
consensus in predefined-time was presented by Yong et al.
(2012), where a linear protocol that uses time-varying
control gain was proposed for reaching network consensus
at a preset time. The convergence time is a parameter
defined by the user and being independent of the initial
conditions. The approach is valid for first- and second-
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order integrator systems and no generalization is provided
for high order systems. Moreover, the robustness of those
methods has not been analyzed.

In this work, a novel predefine-time consensus protocol for
first order agents is proposed. This protocol takes advan-
tage of time base generators (TBG), which are parametric
time signals that converge to zero in a predefined-time
(Becerra et al. (2017)), and can be tracked by means
of feedback controllers. The proposed approach can be
applied to the class of first-order controllable linear sys-
tems and nonlinear systems that can be linearized (Khalil
and Grizzle (2002)). In particular, a couple of consensus
algorithms, one using a linear-feedback and the other using
a super-twisting controller, are introduced for the tracking
of the TBG signal. The application of these algorithms
is shown through simulations. In comparison with Yong
et al. (2012), the main contribution of this paper is three-
fold: First, the proposed controllers yield smoother auxil-
iary control signals (without considering the linearization
terms) with smaller magnitudes. Second, the proposed
time-varying feedback gain to solve the consensus problem
does not depend on the algebraic connectivity of the graph
considered. Third, a super-twisting controller is presented
in order to deal with perturbed dynamics of the agents of
the network.

This paper is organized as follows. Section 2 defines
the class of systems for which the proposed method is
applicable and defines the addressed problem. Section 3
introduces the TBG as a time-varying control gain in the
consensus problem. Section 4 presents a linear-feedback
and a super-twisting controller for the tracking of the
TBG signal. Section 5 presents simulation results of the
proposed controllers. Section 6 remarks some conclusions.

2. PRELIMINARIES AND PROBLEM DEFINITION
2.1 Notations

Let R (or C) denote the set of all real (or complex)
numbers. 1y := [1,...,1]7, the N x 1 column vector of
ones. i represents the imaginary unit. Given a complex
number A = a + 18 € C, Re(\) represents the real part of
A. Notation diag{as,...,an} represents a diagonal matrix
with components {a1,...,ay} strung along the diagonal.

2.2 Algebraic graph theory

Agents’ communication is represented by a directed graph
G = (V,E, A), which consists of a set of vertices (nodes
or agents in this work) V = {1,..., N}, a set of edges
E CV xV, and a weighted adjacency matrix A = [a;;]
with nonnegative adjacency elements a;;. In an undirected
graph the pairs of nodes are unordered and then A = AT
An entry of A that fulfills a;; > 0, ie., (4,j) € E,
represents that agent j has the information of the state
value z; of the agent ¢, otherwise a;; = 0, i.e., (j,i) ¢ E.
The set of neighbors of agent i is denoted by N; = {j €
V:(j,4) € E}.

A directed path (resp. undirected path) is a sequence of
distinct edges in a directed graph (resp. undirected graph).
A graph is connected if there exists a path between any
two distinct vertices.

We say that a directed graph G has a directed spanning
tree if there exists a node v; (a root) such that all other
nodes can be linked to v; via a directed path.

The Laplacian matrix L = [I;;] € RV*Y of a general graph
G is defined by

—aij, if ¢ # J,
! N
VTN au, ifi=
k=1,k#i

We will assume the following well-known properties of the
Laplacian matrix:

P1 For the types of considered graphs, at most one
eigenvalue can be zero, i.e., Ay = 0 and Re();) >
0,vi = {2,...,N} (Ren and Beard (2008); Li and
Duan (2014)).

P2 For a connected undirected graph, L has a left eigen-
vector v = 1y, ie., YL = 0 (Olfati-Saber and
Murray (2004)).

P3 For a directed graph with a directed spanning tree,
L has a left eigenvector «y satisfying v L = 0 and
7T1x =1 (Li and Duan (2014)).

2.8 Problem definition

Consider a multi-agent system composed of N agents that
are connected through a network with first-order nonlinear
dynamics given by:

©i(t) = fi(wi) + gi(xa)us(t) + ps(t), i € {1,...,N} (1)
where z; € R is the system’s state, u;(t) € R is the control

input, f;(z;) and g;(x;) are smooth nonlinear functions,
and p;(t) € R is a bounded disturbance of agent i.

Denote x = [x1,%2,...,2x5]7, u = [u,us,...,un]?, f=
[flaf27"'7fN]Ta g = [gla927"'7gN]Ta P =
[p1,p2,...,pn]T € RN, Then, the whole dynamics
(1) can be written as:

i(t) = f(x) + g(x)u(t) + p(t). (2)
By applying the control input u; = (—f;(x;)+v;)/g:(x;) for
each agent in (1), where g;(z;) # 0 so the relative degree
is well defined (Khalil and Grizzle (2002)) and the agent
is controllable and v; being an auxiliary control input, the
i-th agent evolves as:

z;(t) = vi(t) + pi(t), i € {1,...,N} (3)
and the whole remaining dynamics is linear and given by:
i(t) = v(t) + p(t) (4)

where v = [y, va,...,on]T € RV,

The weighted error of agent ¢ with respect to its neighbors
(Olfati-Saber and Murray (2004)) is defined as:

€i(t): Z aij(xj(t)—mi(t)), iE{l,...,N}. (5)
JEN;

The weighted error function (5) can be expressed in a
compact form as:

e(t) = [er(t), ea(t), .. en(®)T = —La(t).  (6)
Definition 1. Problem statement: Given a network of
agents with first order nonlinear dynamics (1) and with
an associated graph G, for each agent, design a control
protocol u; = v(e;, x4, t) such that the network system
achieves a consensus value x* in a predefined time ty from
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any initial state x(0), i.e., z;(t) — «*,Vi = {1,2,..., N},
as t — ty. Consequently, the weighted error (6) converges
to zero at time ;.

3. TBG AS TIME-VARYING CONTROL GAIN

Let us first introduce a continuous and differentiable time
function h(t) as proposed in Becerra et al. (2017) that
will be used through this paper, fulfilling the following
conditions, at zero initial time and final time ¢;:

1, ift=0
hit) = {0, it >t

h(t)=0, ift =0ort>tf

h(t) < 0, Vt € (0,ty). (7)
The kind of time-dependent functions fulfilling conditions
(7) are called time base generators (TBGs). They have
been previously used to achieve predefined-time conver-
gence of first and higher order dynamics in Becerra et al.
(2017). Taking advantage of those results, the following
control protocol is proposed to solve the problem stated in
Definition 1:

u;(t) =

1 .
9i(z7) (—fi(z) +v), 1€ {1,...,N}

v = k() 3 ayi(a; (1) — (1)), (®)

JEN;

Then, for each agent ¢, the dynamics (1) is linearized to:

Fit) = —k() Y ai;(x;(t) — wi(t)) + pi(t)
JEN;
which can be expressed using (6) in matrix form as:

L(t) = —k(t)e(t) + p(t) = k()L (t) + p(t)  (9)
where k(t) € Ris a time-varying feedback gain that will be
defined later in terms of the TBG and L is the Laplacian
matrix of the graph G. In the sequel, we will analyze
the behavior of the control protocol (8) in the consensus
problem for two kind of networks: connected undirected

graphs (Ren and Beard (2008)) or directed graphs with a
directed spanning tree (Li and Duan (2014)).

Let J € Mpy(C) be the Jordan form associated with L
(Horn and Johnson (2012)). Then, there exists a nonsin-
gular matrix S € My (C) such that S~1LS = J.

Applying the similarity transformation n(t) = S~'z(t) to
the system (9) with ideal dynamics (p(t) = 0), we have

0(t) = S7 k() La(t)) = k() In(1). (10)

Notice that for undirected graphs, L is a symmetric matrix
with real eigenvalues (Ren and Beard (2008)). Hence, J =
diag{0, Az, ..., An} for undirected graphs. The similarity
transformation will be used in the proof of the following
proposition.

Proposition 2.  Assuming that n;(t) — 0 as t — ty for
1 =1{2,3,..., N} when the control protocol (8) is applied
to each agent, then the system (2) with p(t) = 0 achieves
a consensus value x* in time ty.

Proof. Without loss of generality, we assume that the first
column vector of the matrix S is 15 (Yong et al. (2012)),

which is associated to the null eigenvalue of L. Moreover,
assume that 7;(t) = 0 ast — ty for i = {2,..., N}. Since

(11)

Ay, 70 =8 Jigg, )

it follows that

lim 2(t) = S[1(0),0,...,0" = (0)1y.  (12)
t—ty
It means that
zi(t) > ¥ =m(0) ast —» ty, for i ={1,2,...,N}.

Thus, a consensus value is achieved at time ¢;. Now, given

properties P2 and P3 for the two types of considered

graphs, then, y(t) = 4T z(t) is an invariant quantity, since
§(8) = AT i(t) = k(O La(t) = 0, Va(b).

Thus, limy_, y(t) = limy_;, y"2(t) = y(0) or

Jim 7" 2() = 7" 2(0). (13)

Then, using (12) in (13) for a connected undirected graph
(v = 1) and solving for 7;(0), we obtain

N .
m(0) = w = Ave((0)).

Hence, the consensus value z* is the average of the initial
state x(0) for connected undirected graphs. Now, using
(12) in (13) for a directed graph with a directed spanning,

we have
T
7" 2(0)
0) = -\
m(0) 71y

Therefore, the consensus value is given by (15) for a
directed graph with a directed spanning tree. O

(14)

= 77z(0). (15)

In the next lemma, we will define the form of the time-
varying control gain k(t) as a function of the TBG (7) and
we will show that the assumption of the convergence of
n;(t) - 0ast — ¢y for i = {2,3,..., N} in Proposition 2
is accomplished.

Lemma 3. Given any finite time ty > 0, the time-varying
feedback control protocol

1

Uz(t): gl(xl)(ffz(xz)“i’vz)a ZG{]-,’N} (16)
vi=—k(t) > ai;(z;(t) — 2:(t)), with k(t) = - (}tl)(tj— 5

JEN;
h(t) as in (7) and 6 a small positive value, drives the
system (2) with p(t) = 0 to reach a state in a neighborhood
of the consensus value x* in a predefined time ty from
any initial state x(0). Moreover, the weighted error (6)
converges to a neighborhood of the origin in the predefined
time ty.

Proof. Now, applying the similarity transformation
n(t) = S~1z(t), from (10), we obtain
0 0 - 0 m(t)
0 Jmy(A2) -+ 0 n2(t)
i) =k [ :
0 0 : qu (An) nn (t)

where ¢ is the number of Jordan blocks for eigenvalue
multiplicities mag, ..., mg, and each Jordan block J,, () is a
mxm upper triangular matrix (Horn and Johnson (2012)).
Rewriting the previous expression, we have
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m(t) =0
12(t) Jms(A2) 0 n2(t)
B ) s
nn (t) 0 Iy (AN) nn (t)
(17)
Denote, ((t) = [n2(t),...,nn(t)]T € CVN~1 and then (17)
can be written as:
. h(t) A
40 = g 256 (18)

where J is the Jordan matrix associated with L for eigen-
values {Az,..., An}. It can be verified that the solution of
the differential equation (18) is the following:

C(t) = exp(2J)C(0), t € [0,tg].
h(t)+6
1+6
c RNflfol

(19)

where z = In ( ), In(.) is the natural logarithm and

is the exponential matrix, i.e.,
v =10,...,05]" as § — 0.

exp(z.J)
(t) = [m2(t), .-

Hence, by Proposition 2, it follows that the control pro-
tocol (16) solves the consensus problem in the predefined
time ¢; provided that § — 0. Since, J is a fixed parameter
of the control protocol that must be different of zero to
avoid numerical issues in the computation of the time-
varying control gain k(t), the convergence is to a neigh-
borhood of the consensus value z*.

lim
t—ty

Additionally, by Proposition 2, it follows that, if the graph
G is connected and undirected, the consensus value is

R SARCI0)
N

¥ = . Similarly, if the graph G is directed and
has a directed spanning tree, it follows from Proposition
2 that the consensus value is z* = v7z(0). In both cases
it is known that 1y2* belongs to the null-space of L (Ren
and Beard (2008); Li and Duan (2014)). Then, taking the
limit of the weighted error (6) at t;

li = lim —L =—Llyz* =0. 2

Jimn e(t) Jm x(t) Nzt =0 (20)
Therefore, the error (6) converges to zero for any initial
condition at a predefined time ¢y provided that 6 — 0.
Otherwise, if § # 0, the error converges to a neighborhood
of the origin. However, the final error can be arbitrarily

small by making 6 — 0. O

It is worth noting that the auxiliary control inputs v;(¢)
are smooth signals even at ¢ = 0, which is not the case of
the previous work Yong et al. (2012). This is due to the
properties of the TBG. Noticed that k(0) = k(t > t;) = 0,
according to the definition of h(t) as in (7), then we have
that v;(0) = v;(t > ty) =0,Vie {1,...,N}.

4. TBG AS REFERENCE TRAJECTORY TO TRACK

The control protocol (8) ensures convergence to a neigh-
borhood of the consensus value in time ¢;. However, after
convergence, it is convenient to switch to a control law
u = ke with k € R a constant stabilizing gain, which main-
tains the stability of the system for ¢ > t;. To ensure an
accurate convergence to the consensus value and provide
closed-loop stability even for ¢ > ¢, the following theorem
extends the previous result by addressing the predefined-
time consensus problem as a trajectory tracking problem

where the TBG is the reference trajectory. Let z(0) = g
being the initial state, e(0) = ey € RY the initial weighted
error of (6), and Z € R will be a desired consensus value.

Before to present a trajectory tracking controller, we first
propose an open-loop controller that enforces predefined-
time convergence to a consensus value provided that
the network dynamics have ideal conditions (i.e., pure
integrator dynamics with known initial state).

Lemma 4. Given any finite time ty > 0, the time-varying
feedback control law

vi = h(t)(z:(0) — 7) (21)
with h(t) as in (7) and T € R, achieves predefined-time
convergence to a consensus value ™ at ty for the system
(2) with ideal dynamics p(t) = 0 and from any initial state
xg. Furthermore, the consensus achieved x* is given by the
desired consensus value T and the resulting weighted error
trajectory in the interval t € [0,t¢] is

&(t) = h(t)eo.

(22)

Proof. Now, using the control (21), the dynamics (1) with
pi(t) =0,¥i ={1,..., N} can be linearized and expressed
in matrix form as @(t) = A(t)(2(0) —Z1y), and its solution
is given by

x(t) = h(t)(xo —T1n) + ¢ (23)
where ¢ € RY. Using the initial condition h(0) = 1, we
have that ¢ = Z1y. Therefore, for the final time h(ty) = 0:

:li(tf) Zh(tf)(xo—le)—FC:i‘lN. (24)
It means that the system (2) with ideal dynamics p(¢) = 0
achieves predefined-time convergence at t; from any initial
condition z( using the control (21), i.e.:
zi(t) v 2" =T ast >ty i={1,2,...,N}
and Z can be set as a desired consensus value. Now, taking
the time derivative of the weighted error function (6)

é(t) = —Li(t) = —h(t)Lxo (25)

where L1y = 0 because 1y belongs to the null-space of L
(Ren and Beard (2008); Li and Duan (2014)).

Note that (22) constitutes a coherent solution for dynamics
(25), i.e., taking the time derivative of (22)
é(t) = h(t)eo = —h(t)Lxo.

Furthermore, condition (7) implies that at time ¢ = 0,
é(t) = eq (since h(0) = 1). Moreover, condition (7) implies
that at time ¢ = ¢y, é(t) = 0 (since h(t;) = 0). In other
words, the control law (21) controls the system (25) in
such a way that (22) describes its solution. O

The following theorem introduces a feedback-based con-
troller to track the trajectories given by the TBG.

Theorem 5. Let ky € RT be a constant state-feedback gain
such that the eigenvalues Ag,¥Yq = {2,...,N} of —k¢L
have megative real parts. Then, the time-variant feedback
control law

ui(t) = !

gi(xi)(_fi(xi) ), i€{l,...,N}

vi = h(t)(2:(0) — &) + kg (es(t) — h(t)es(0))

(26)
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with h(t) as in (7) and T € R, achieves predefined-time
convergence to a consensus value ™ at ty for the system
(2) with ideal dynamics p(t) = 0 and from any initial state
xo. Furthermore, the consensus achieved x* is given by a
desired consensus value T and global asymptotic stability
of the tracking error £(t) = e(t) — h(t)eo is achieved.

Proof. The dynamics (1) with p;(¢) =0,¥i = {1,...,N}
can be linearized using (26) and can be written in vectorial
notation as

i(t) = h(t)(zo — Z1yn) + kr(e(t) — h(t)eo). (27)
Using the properties P2 and P3, define y(t) = 77 2(t) and
taking its time derivative, we get the following differential
equation

g(t) = 7"i(t) = h(t)(v w0 — 79" 1w) (28)
where v7'L = 0, as stated before (Olfati-Saber and Murray

(2004); Li and Duan (2014)). Thus, the equivalent solution
of (28) is given by

y(t) =" a(t) = h(t)(y w0 — 27" 1y) +c
where ¢ € R. Using the initial condition ~2(0) = 1, we have
that ¢ = 2771 y. Therefore, for the final time h(t;) = 0:

y(ty) ="x(ty) = c=~"1na.
Then, v7z(ty) = 4T 1nz. It follows that
I(t) — I(tf) =1yz*=1yT ast — ty.
Hence, we have that the system (2) with p(¢) = 0 achieves
predefined-time convergence at ¢ty from any initial state

xo using the control (26), and T can be set arbitrarily as
a desired consensus value.

Now, let us show the stability of the tracking error.
According to Lemma 4, if the initial weighted error is set as
€(0) = eg and the control input u;(t) = m(—fi (w4)+v;)
(21) is applied to each agent, then the system

é(t) = —h(t)Lag
evolves such that é(t) = h(t)eo, i.e., é(t) becomes the TBG

reference trajectory. In this way, computing é(¢) from (6)
and using the linearized dynamics (27), we have

E(t) = é(t) — é(t) = —Li(t) — h(t)eo = —ksLE()  (29)
where L1y = 0 because 1y belongs to the null-space of L
(Ren and Beard (2008); Li and Duan (2014)).

For a connected undirected graph G, it follows from Olfati-
Saber et al. (2007) (Theorem 3 and Corollary 1) that
the dynamics (29) achieves global asymptotic stability for
all initial tracking error £(0). The convergence speed is
determined by the eigenvalue Ay of L and the control
gain ky. Similarly, for a directed graph containing a di-
rected spanning tree, Ren and Beard (2008) (Theorem 2.8)
showed that the dynamics (29) achieves global asymptotic
stability for any initial error £(0).

Therefore, the globally asymptotically stability of the
tracking error implies that e(t) follows h(t)eg. Then, as
proved in Lemma 4, the reference h(t)ey vanishes for
t > t; and e(t) converges to the origin of the state
space in the predefined-time ¢;. Any small final error
at time ¢ > t; is corrected by the control input u; =
ﬁ(—fl(xl) + kye;(t)), which is applied to each agent
for t > t¢, guaranteeing the stability of the closed-loop
system (2). O

Notice that the smooth behavior of the auxiliary control
inputs is also achieved in this trajectory tracking scheme.
Assuming to know the initial conditions and given the
properties of the TBG, v; start in zero and returns to zero
at time ¢y.

All previous results consider ideal integrator dynamics
(p(t) = 0). One approach to deal with model uncertainty is
to use a robust controller like the super-twisting controller
(STC), which is known to be able to compensate for
matched uncertainties/disturbances p(t) (Moreno and Os-
orio (2012)). In our last result, the TBG will be combined
with a STC leading to a robust predefined-time controller.

In the following, we will consider that there is a leader
z;(t) € R in the network system, whose dynamics can be
modeled as in Mondal et al. (2017) by

i’l (t) = U (t) (30)
where u;(t) € R is the leader’s control input. N agents are
now the followers and for each agent b; € R represents the
leader’s adjacency with b; > 0 if agent ¢ is a neighbor of

the leader, otherwise b; = 0. Then, the consensus error for
each follower is given by (Mondal et al. (2017))

el (1) =Y aij(w;(t) — (1)) = bili(t) —@(t)  (31)
JEN;
and the tracking error is defined as follows:
&i(t) = e (1) —e(t) (32)

where é;(t) = h(t)e;, is the TBG reference trajectory for
the i-th agent as in (22), and the tracking error will be
used as the sliding surface:

si(t) = &(1). (33)
Theorem 6. There exist gains k1 > 0 and ko > 0 such that
for each agent the following nonlinear controller

ui(t) = (Bigs) ™" (uPe™ +ui'®), i€ {1,...,N}

upe™ = b+ Y ag(fj + gyug) = Bifi — h(t)ei(0)
JEN;
us™ = kasi| "2 sign(s;) — wi

w; = —kasign(s;), (34)
where B; = (3 e, @ij + bi) and h(t) as in (7), achieves
predefined-time convergence to the consensus value x* at
ty for each perturbed agent (1) with p;(t) # 0 and from
any initial state x;(0). Furthermore, x* is given by the
leader’s state x; and the tracking error &;(t) for each agent
converges to zero.

Proof. By the consensus error (31) and using the control
law (34), the time-derivative of the sliding surface (33) can
be written as

$i = —ki|si|'sign(s) + wi + pa,

U'}i = —kgsign(si) (35)
where pg, = EjeNi aijp; — Bipi. Let z; = w; + pg,, then
(35) can be rewritten as

8 = —ki|si|"?sign(s;) + 2

Z; = —kgsign(si) + pd, - (36)
Moreno and Osorio (2012) have proved that, for a bounded
continuously differentiable disturbance, i.e., if |pq,| < L
and |pg,| < M for some constants L > 0,M > 0,
the second-order dynamics (36) converges globally to the
origin (s; = 0,z; = 0) in finite time in spite of the
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disturbance if adequate positive control gains k1 and ks are
used. Moreover, the remaining dynamics of the tracking
error system is constrained to the sliding surface such that

s; = $; = 0, meaning that for each agent e; I(t) follows &;(t).
Consequently, the consensus error converges to zero in the
predefined-time t; and the consensus value x* is given by
the leader’s state (Mondal et al. (2017)). O

The result in Theorem 6 can be extended to deal with
nonlinear dynamics of high order by joining the general
results of Mondal et al. (2017) and Becerra et al. (2017).

In a practical implementation of the proposed protocols,
the synchronization of all clocks of the agents in the
network is an important issue. Also, physical constraints
of the systems must be considered to set ty. It is clear
that a small ¢y will generate larger control inputs. Thus,
the maximum allowable input of each agent must be take
into consideration to set t¢. Finally, notice that the fixed
control gains of the tracking controllers need to be re-tuned
for different convergence times; larger gains are required
for small times ty.

5. SIMULATION RESULTS

The proposed protocols were implemented in MATLAB
using the Euler forward method to approximate the time-
derivatives with a time step of 0.1 ms and considering a
multi-agent system with NV = 8. Agents 1 to 4 are similar
to each other, whose dynamics equations are described as
& = 27 +5u;+pi(t),i € {1,...,4} and the dynamics of the
agents 5 to 8 are similar to each other, which are chosen
as &; = sin(z;) + Su; + p;(t),7 € {5,...,8}. We use the
same communication graphs G; and G presented in Yong
et al. (2012), where G; is an undirected connected graph
and G5 is a directed graph containing a directed spanning
tree (see Fig. 1).

I 10

Fig. 1. Communication graphs. Left: undirected graph G;.
Right: directed graph Gs.

First, we provide a comparison of the proposed approach
with respect to finite-time and fixed-time protocols re-
ported in the literature. Two of them ensure finite-time
convergence: Franceschelli et al. (2013) and Cao and Ren
(2014). The protocol of Zuo et al. (2014) guarantees fixed-
time convergence. The one of Yong et al. (2012) and
ours guarantee predefined-time convergence. The finite-
time and fixed-time controllers were manually tuned to
achieve a similar convergence time around 5s for the same
initial conditions xy. Then, we kept the same control gains
for the simulations and for each controller, we varied the
mean of the initial state zy from -50 to 50. For every initial
condition, we measured the convergence time of the system

when |le]| < 1 x 10~% and the maximum absolute value of
the auxiliary control input v. In this comparison, we used
the linear TBG-tracking controller defined in (26) with
ks = 3 and the TBG function (7) with ¢; = 5s.

The results of the comparison are shown in Figs. 2 and
3 for undirected and directed graphs respectively. It can
be seen the constant convergence time of the predefined-
time control with TBG in contrast to the finite and fixed-
time controllers. Regarding the auxiliary control effort,
the TBG-based control and the one of Franceschelli et al.
(2013) were those in which the maximum auxiliary control
efforts were lower.

o

Settling time (sec)
S
%

&

== Finite-time (Franceschelli et al. (2013)) = Finite-time (Cao and Ren (2014)) - Fixed-time (Zuo et al. (2014))
= Preset-time (Yong et al. (2012)) == Predefined-time with TBG
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Fig. 2. Comparison of the TBG-tracking controller (26)
versus finite-time and fixed-time controllers for Gj.
Top: settling time as a function of the initial condition
xg. Bottom: maximum value of the auxiliary control
input as a function of the initial condition x.
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= Finite-time (Franceschelli et al. (2013)) == Finite-time (Cao and Ren (2014)) - Fixed-time (Zuo et al. (2014))
== Preset-time (Yong et al. (2012)) == Predefined-time with TBG
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Fig. 3. Comparison of the TBG-tracking controller (26)
versus finite-time and fixed-time controllers for Gs.
Top: settling time as a function of the initial condition
xp. Bottom: maximum value of the auxiliary control
input as a function of the initial condition x.

Now, in Figs. 4 to 7, a comparison of the preset-time
controller (Yong et al. (2012)) with respect to the proposed
predefined-time TBG controllers is presented. It can be
seen that the preset-time controller (Figs. 4 and 6), as
well as the TBG-direct (16) and the TBG-tracking (26)
controllers (Figs. 5 and 7) are able to keep constant the
convergence time at 5s. However, the auxiliary control in-
puts for the predefined-time TBG controllers (16) and (26)
were smoother and of lower magnitude than the preset-
time controller (Yong et al. (2012)). Notice particularly
in Fig. 5(middle) that the auxiliary control inputs of the
TBG-based controllers start in zero at difference of the
large initial control effort of the controller in Yong et al.
(2012).
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Fig. 5. Predefined-time TBG-direct controller (16) for G;.
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Fig. 6. Preset-time controller (Yong et al. (2012)) for G.
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Fig. 7. Predefined-time TBG-tracking controller (26) for
Ga.

Before to present the results for the proposed robust
controller (34), we first show the results of the TBG-
tracking controller (26) for perturbed dynamics with G, in
order to show the improvement with the robust action. The
simulations consider a time-varying disturbance p;(t) =
a;(14+1sin(5t)), where a; was randomly selected in (0, 0.5),
and the convergence time is preset to 5s. It is shown in Fig.
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Control Auxiliar

I VY
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N
w

4 5 6 7
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Fig. 8. Predefined-time TBG-tracking controller (26) for
perturbed dynamics and Go. In the error trajectories,
the continue lines represent the evolution of the errors
whereas the reference is drawn with dash line.
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Error

Sliding
surface
I

3 4 5
Time (sec) Within G,

Fig. 9. Robust predefined-time TBG controller (34) for
perturbed single integrator systems and G;. In the
error trajectories, the continue lines represent the
evolution of the errors whereas the reference is drawn
with dash line.

8 that under the time-varying disturbance, the proposed
TBG-tracking controller (26) cannot reach convergence
state to the average of their initial conditions and they
keep oscillating after the preset time is reached. A similar
behavior is obtained with the preset time controller of
Yong et al. (2012). Hence, these controllers are not able
to deal with matched disturbances.

Finally, let us illustrate the proposed robust predefined-
time TBG controller (34) for topologies G; and Ga with
eight followers and one leader. The control gains are set
as k1 = 5 and ky = 5. The leader’s values is considered
as r; = —b with control input u; = 0. For the followers,
we set by = 1 and b; = 0, Vi = {2,...,8}. Figs. 9 and 10
show that the state trajectories converge to the leader’s
value x; = —5 and the error trajectories are driven to zero
in the desired predefined time ¢s. It can be seen that the
control input remains oscillating at steady state since it is
effectively rejecting the disturbance p(t).

6. CONCLUSIONS

In this paper, we have proposed distributed control pro-
tocols for networks of first order systems whose desired
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Fig. 10. Robust predefined-time TBG controller (34) for
perturbed single integrator systems and Gs. In the
error trajectories, the continue lines represent the
evolution of the errors whereas the reference is drawn
with dash line.

settling time to achieve consensus can be set by the user
and it is achieved independently of the initial conditions.
This property is called predefined-time consensus. In our
approach, a reference trajectory is first computed, named
TBG (time base generator). Later, the TBG is combined
with feedback controllers to achieve closed loop stability
and robustness, in particular applying a super-twisting
controller in order to deal with perturbed dynamics of the
agents of the network. The performance of the proposed
controllers has been compared with existing finite-time
and fixed-time controllers in simulations. The results have
shown good performance of the proposed control method
for connected undirected communication topologies of the
network system and for directed topologies having a di-
rected spanning tree. Moreover, a good benefit of the
proposed controllers is that they yield smoother control
signals with smaller magnitudes than finite-time and fixed-
time controllers reported in the literature.

As future work, we will extend our results to deal with
nonlinear dynamics of high order for the agents of the
network by following the generalization of the works of
Becerra et al. (2017) and Mondal et al. (2017).
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