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Abstract— In this paper, we present the synthesis of two
control schemes that exploit the properties of the trifocal tensor
computed from bearing measurements (1D TT), for the pose-
regulation problem of mobile robots. Both control schemes are
valid for vision systems obeying a central projection model, in
such a way that visibility constraint problems can be overcome.
The use of the 1D TT avoids the need of a complete camera
calibration for any type of central camera, so that, weakly-
calibrated control schemes are obtained. This benefit of the
1D TT as measurement is exploited in an image-based (IB)
approach as well as in a position-based (PB) approach. The IB
scheme employs direct feedback of the elements of the tensor
without commuting to any other approach during the control
task. The PB approach relies on the feedback of the pose
estimated dynamically from the 1D TT. Both visual control
schemes are evaluated through real-world experiments using a
hypercatadioptric imaging system.

I. INTRODUCTION

Visual control of mobile robots is an interesting research
field, motivated by the introduction of this type of robots as
service robots. Particularly, wheeled mobile robots (WMR)
are well appreciated in service tasks, where the positioning
at a desired location is an important aspect. This paper
describes an approach to drive a WMR equipped with a
central generic camera onboard to a desired location, which
is specified by a target image previously acquired, i.e., using
a teach-by-showing strategy. Along the years, the research
on visual control has dedicated important efforts to find
suitable error functions in order to obtain a desired behavior
of the robotic system in terms of stability and robustness of
the closed loop control. The basic approaches are typically
separated in image-based (IB) schemes, in which the error
function consists of a set of features that are directly available
in the image data, and position-based (PB), in which a set of
3D parameters must be estimated from image measurements
[1].

The goal of steering a robot to a desired location by
visual servoing (VS) is carried out by minimizing an error
function that relates visual data, typically from two images:
the current and the target one. We propose to take advantage
of more information by using three views and the geometric
constraint that describes the complete geometry between
them, the trifocal tensor (TT). This geometric constraint
is more robust and more stable than those based on two
views an it is also independent of the observed scene [2]. Its
simplified version constrained to planar motion, the 1D TT,
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has proved its effectiveness for localization in [3] and [4],
but has been less studied for control applications. In these
works, conventional perspective and omnidirectional cameras
are converted to 1D virtual cameras through a transformation
of bearing measurements. The authors of [5] assert that the
radial 1D camera model is sufficiently general to represent
the great majority of omnidirectional cameras under the
assumption of knowing the center of radial distortion. The 2D
TT has been introduced for visual control of mobile robots
in [6]. This approach shows good results reaching the target
location, but it uses a non-exact system inversion that suffers
of potential stability problems. An application of the TT
related to camera-motion estimation is presented in [7]. It
introduces a filtering algorithm with the TT as measurement
model to tackle the vision-based pose-tracking problem for
augmented reality applications. The use of more than two
views in VS provides robustness and enough information to
correct also depth from visual feedback, which is not possible
from two views.

In this paper, we present two visual control schemes
that exploit the property of the 1D TT of being estimated
from bearing information. This provides the advantage that
parameters related to focal length do not appear in the con-
trol laws, so that, weakly-calibrated schemes are obtained.
Additionally, the simplified representation of the imaging
systems as 1D virtual cameras provides the versatility of the
schemes to be applied using any central camera [8]. First,
an IB scheme that uses direct feedback of the elements of
the 1D TT is presented, as a summary of our previous work
[9]. The proposed switching control law turns out to be a
square control system that consists of two controllers, which
correct position and orientation in two steps. Secondly, we
present a PB scheme that feeds back the robot pose estimated
dynamically from the 1D TT, which has been introduced in
[10]. We show the property of observability of the system
with the 1D TT as measurement using linear theory. The pro-
posed PB scheme corrects the robot position and orientation
using smooth robot velocities from a single control law. Real-
world experiments using a hypercatadioptric imaging system
as sensor show the validity of the proposed approaches.

The paper is organized as follows. Section II specifies the
mathematical modeling of the mobile robot and the 1D TT
geometric constraint. Section III presents the development
of the image-based approach and Section IV describes the
position-based approach. Section V shows the performance
of the proposed approaches via real-world experiments. Fi-
nally, Section VI provides the conclusions.
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Fig. 1. Description of the robot-camera configuration. (a) Our robotic plat-
form with an hypercatadioptric camera on top. (b) Robot frame definition.
(c) A generic central catadioptric system.

II. MATHEMATICAL MODELING

A. Robot Model

This work focuses on controlling a wheeled mobile robot
through the information given by a generic central camera
mounted onboard, as shown in Fig. 1(a), and under the
framework that is depicted in Fig. 1(b). The camera can be
eventually translated a distance ℓ along the longitudinal axis
of the robot. The kinematic motion model of the camera-
robot system as expressed in state space is

ẋ = −ωℓ cosϕ− υ sinϕ, (1)
ẏ = −ωℓ sinϕ+ υ cosϕ,

ϕ̇ = ω.

By applying an Euler approximation (forward difference)
on the continuous derivatives, the discrete version of the
camera-robot model is obtained:

xk+1 = xk − Ts (ωkℓ cosϕk + υk sinϕk) , (2)
yk+1 = yk − Ts (ωkℓ sinϕk − υk cosϕk) ,

ϕk+1 = ϕk + Tsωk,

where Ts is the sampling period. In the sequel, we use the
notation sϕ = sinϕ, cϕ = cosϕ.

B. The Trifocal Tensor for Central Cameras

The procedure to estimate the trifocal tensor (TT) is
basically the same for conventional and central catadioptric
cameras if it is formulated in terms of rays that emanate from
the effective viewpoint [8]. In the case of planar motion,
the simplified version of the tensor, the 1D TT, particularly
adapts to the property of omnidirectional images to preserve
bearing information regardless of the high radial distortion
induced by lenses and mirrors. Fig. 1(c) shows the bearing
angle of an observed feature in a hypercatadioptric system
looking upwards. The angle is measured with respect to a
frame centered in the principal point of the image. Therefore,
the bearing measurement θ can be converted to its 1D
projection as p = (sin θ, cos θ)T . For conventional cameras
looking forward, the projective formulation can be obtained
using the normalized x-coordinate of the point features with
respect to the principal point, i.e., p = (un, 1)

T . By relating

this representation for three different views of a feature, it
results in the trifocal constraint

2∑
i=1

2∑
j=1

2∑
k=1

Tijkuivjwk = 0, (3)

where u = (u1,u2)
T , v = (v1,v2)

T and w = (w1,w2)
T are

the image coordinates of a feature projected in the 1D virtual
retina of the first, second and third camera respectively, and
Tijk are the eight elements of the 1D TT.
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Fig. 2. Framework of the three-view geometry. (a) Global reference
definition with origin in the third view and bearing measurements θ of a
feature. (b) Relative location between cameras with a fixed reference frame
on each view.

Let us define a global reference frame as depicted in Fig.
2(a) with the origin in the third camera. Then, the camera
locations with respect to that global reference are C1 =
(x1, y1, ϕ1), C2 = (x2, y2, ϕ2) and C3 = (x3, y3, ϕ3) =
(0, 0, 0). The relative locations between cameras are defined
by a local reference frame in each camera as shown in Fig.
2(b). The geometry of the three views is encoded in the
tensor elements as follows:

Tm
ijk =



Tm
111

Tm
112

Tm
121

Tm
122

Tm
211

Tm
212

Tm
221

Tm
222


=



ty1sϕ2 − ty2sϕ1

−ty1cϕ2 + ty2cϕ1

ty1cϕ2 + tx2sϕ1

ty1sϕ2 − tx2cϕ1

−tx1sϕ2 − ty2cϕ1

tx1cϕ2 − ty2sϕ1

−tx1cϕ2 + tx2cϕ1

−tx1sϕ2 + tx2sϕ1


(4)

where txi = −xicϕi − yisϕi, tyi = xisϕi − yicϕi for
i = 1, 2. Some details on deducing the trifocal constraint
(3) and the expressions in (4) can be found in [4]. Addi-
tional constraints −T111 + T122 + T212 + T221 = 0, and
T112 + T121 + T211 + T222 = 0 are accomplished when
the 1D TT is computed from a calibrated retina. These
calibration constraints allow us to estimate the 1D TT from
only five triplets of point correspondences, which improves
the estimation [4]. It is worth noting that these additional
constraints can be always used for central cameras, because



the bearing measurements are independent on focal length.
Only the center of projection for omnidirectional images
or the principal point for conventional cameras is required
to estimate the 1D TT. Thus, the use of this tensor as
measurement results in weakly-calibrated control schemes,
in contrast to previous approaches [11], [12], [13].

It is worth mentioning that it is needed to normalize the
tensor elements in order to fix a scale of the measurements,
where normalize means to divide each element by one of
them that can be assumed as constant (T121).

III. IMAGE-BASED CONTROL FROM THE 1D TT

The problem of taking three variables to desired values
(x2, y2, ϕ2) = (0, 0, 0) may be solved with at least three
outputs being controlled, but defining more than two outputs
generate a non-square dynamic system, in which its non-
invertibility makes difficult to prove stability. The trifocal
tensor is an overconstrained measurement; however, it is
possible to find two outputs to drive them to desired values
and then a third variable remains as a DOF to be cor-
rected a posteriori. By taking into account the values of
the tensor elements at the final location, the solution of the
homogeneous linear system generated when the outputs are
equal to zero and the invertibility of the matrix relating the
output dynamics with the robot velocities, we find that it
is feasible to design a square control system that corrects
both longitudinal and lateral error, leaving the orientation as
a DOF. The orientation error can be corrected in a second
step considering that the robot uses a differential drive.

A. First-Step - Position Correction

Let us define the following sum of normalized tensor
elements as outputs to be controlled:

ξ1 = T112 + T121, (5)
ξ2 = T212 + T221.

A robust tracking controller is proposed to take the value
of both outputs to zero in a smooth way. Let e1 = ξ1 − ξd1
and e2 = ξ2−ξd2 be the corresponding tracking errors, where
ξd1 and ξd2 are suitable sinusoidal references. Using the time
derivatives of these errors and considering that the camera
location coincides with the vertical axis of rotation of the
robot (ℓ = 0), we obtain the error system[

ė1
ė2

]
=

[
− cϕ1

Tm
N

T122 − T111

− sϕ1

Tm
N

T222 − T211

][
υ
ω

]
−
[

ξ̇d1
ξ̇d2

]
. (6)

This system has the form ė = D (T, ϕ1)u − ξ̇d, where
D (T, ϕ1) corresponds to the decoupling matrix and ξ̇d

represents a known feedforward term. We treat the tracking
problem as the robust stabilization of the error system (6). A
control law based on sliding mode control [14], which has
been already applied in the context of visual control [15], is
proposed as follows:

udb =

[
υdb
ωdb

]
= D−1

[
ξ̇d1 − κ1sign(s1)− λ1s1
ξ̇d2 − κ2sign(s2)− λ2s2

]
(7)

where κ1 > 0, κ2 > 0, λ1 > 0, λ2 > 0 are control gains
and s1 = e1, s2 = e2 are the so-called sliding surfaces.
Note that the control law depends on the orientation of the
fixed auxiliary camera ϕ1. This parameter can be fixed to
zero and any error with respect to the real value is tackled
by the robust control. The control law uses the inverse of
the decoupling matrix D to compute the robot velocities,
which presents a singularity when the robot reaches the target
position. This entails the problem that the rotational velocity
ωdb increases to infinity as the robot reaches the target.
However, we propose the commutation to a direct sliding
mode controller when det(D) is near to zero in order to
keep ωdb bounded. This kind of controller has been studied
for output tracking through singularities [16]. For our case,
a bounded sliding mode controller is

ub =

[
υb
ωb

]
=

[
kυsign(s1)

−kωsign(s2 (T222 − T211))

]
(8)

where kυ and kω are suitable control gains.

B. Second-Step - Orientation Correction

Once position correction has been reached, we can use
any single tensor element whose dynamics depends on ω
and with desired final value zero to correct orientation. We
select the dynamics Ṫ122 = −T112ω. A suitable input ω is

ω = λω
T122

T112
, (9)

where λω > 0 is a control gain. This rotational velocity as-
signs the following dynamics to T122, which is exponentially
stable:

Ṫ122 = −T112

(
λω

T122

T112

)
= −λωT122.

Note that (9) never becomes singular because at the
beginning of this step T112 = −ty1 cosϕ2, and it tends to
−ty1 ̸= 0 as final value. Although only a rotation is carried
out in this second step, we keep the translational velocity υb
given in (8) in order to keep closed loop control along the
whole motion.

IV. POSITION-BASED CONTROL FROM THE 1D TT

The elements of the 1D TT are very useful providing
information of position and orientation of a camera [4]. We
propose to make use of the information provided by the 1D
TT to estimate the camera motion dynamically, according to
the nonholonomic motion model (2). Once the robot pose is
estimated, it can be used to control the robot in the Cartesian
space.

Consider the problem of estimating the state xk =
(xk, yk, ϕk)

T of the discrete model of the robot (2) by using
measurements yk, which depend on the robot state through
a nonlinear function h. It is assumed that the robot state and
the measurements are affected by Gaussian noises mk and
nk, respectively. The noisy system and measurement model
can be expressed in compact form as follows:

xk+1 = f (xk,uk) +mk, (10)
yk = h (xk) + nk



where it is accomplished mk ∼ N (0,Mk), nk ∼ N (0,Nk)

and E
[
mk,inTk,j

]
= 0, with Mk the state noise covariance

and Nk the measurement noise covariance. This estimation
problem can be solved by a filtering approach using an
Extended Kalman Filter (EKF), however, the property of
observability must be ensured in order to achieve a consistent
estimation.

A. Linear Observability from Measurements of the 1D TT

There are few works concerned about observability when
an estimation based on Kalman filtering is applied. Some of
them are [17] and [18]. To analyze our case, let us consider
the linear approximation (Fk, Gk, Hk) of the system (2) in
the time k, where

Fk =

∣∣∣∣ ∂f∂xk

∣∣∣∣
xk=x̂+

k ,
mk=0

Gk =

∣∣∣∣ ∂f∂uk

∣∣∣∣
xk=x̂+

k ,

Hk =

∣∣∣∣ ∂h∂xk

∣∣∣∣
xk=x̂−

k .
nk=0

Due to the matrices Fk and Hk are changing at each
instant time, observability may not be ensured, which affects
the convergence properties of the estimation algorithm. As
mention in [17], a system that is locally observable over
every time segment [tk, tk+1] in the interval [t0, tk+1] will
also be completely observable over the interval [t0, tk+1].
Then, the condition to accomplish for every k to ensure the
system to be completely observable is

rank

([
HT

k (HkFk)
T · · ·

(
HkF

n−1
k

)T ]T)
= n.

Because of the triangular form of the matrix Fk, the rows
of the observability matrix become linearly dependent. The
only possibility of achieving the full rank condition is by
building Hk of full space. It can be done by taking three
elements of the TT as outputs. By analyzing the Jacobian of
each element of the tensor, we find that a suitable selection
of measurements is T122, T211, T111, in such a way that

Hk =

 cϕ1cϕ̂ cϕ1sϕ̂ ty1cϕ̂− t̂ycϕ1

−cϕ1sϕ̂ cϕ1cϕ̂ −tx1cϕ̂+ t̂xcϕ1

−sϕ1sϕ̂ sϕ1cϕ̂ ty1cϕ̂+ t̂xsϕ1

 , (11)

where ϕ̂ = ϕ̂k|k−1, t̂x = −x̂k|k−1cϕ̂k|k−1 − ŷk|k−1sϕ̂k|k−1,
t̂y = x̂k|k−1sϕ̂k|k−1 − ŷk|k−1cϕ̂k|k−1, and tx1 , ty1 and ϕ1

are constant values. The measurement matrix in (11) ensures
local observability for every k even for some particular initial
conditions, for instance ϕ1 = 0, in which case this matrix
remains full rank due to the cosines in the main diagonal. It
is worth emphasizing that the result is valid for normalized
tensor elements, although we show the previous expressions
for non-normalized elements for simplicity. Actually, observ-
ability from only one element of the tensor as measurement
is ensured according to a nonlinear analysis [19]. In the same
paper can be found a method for the EKF initialization using
the information provided by the tensor.

B. Control Law using the Estimated Robot Pose

In this section, we assume that the robot pose is available,
given by the EKF using three elements of the TT as measure-
ments. The outputs to be controlled are the camera position

coordinates xk and yk. Consequently, the orientation (ϕk) is
left as a DOF which is automatically corrected by tracking
suitable desired trajectories. To take the value of both outputs
to zero in a smooth way, we design a tracking controller. Let
us define the tracking errors as ξ1k = xk −xd

k, ξ2k = yk − ydk .
Thus, the error dynamics ξk = (ξ1k, ξ

2
k)

T obey the following
difference equation:

ξk+1 = ξk + Ts

[
−sϕk −ℓcϕk

cϕk −ℓsϕk

]
uk − Ts

[
ẋd
k

ẏdk

]
. (12)

We can see that the control inputs appear in the first order
difference equation of each output. Then, the system (2) with
outputs (xk, yk) has a vector relative degree {1,1}. Due to the
sum of the indices of the system is less than the order of the
system (n = 3) we have a first order zero dynamics, which
corresponds to the DOF of the control system, the orientation
ϕk. A static state feedback control law that achieves global
stabilization of the system (12) is[

υ̂k
ω̂k

]
=

1

ℓ

[
−ℓsϕ̂k ℓcϕ̂k

−cϕ̂k −sϕ̂k

] [
ν̂1k
ν̂2k

]
, (13)

where ν̂1k = −k1ξ̂
1
k + ẋd

k and ν̂2k = −k2ξ̂
2
k + ẏdk . The error

behavior will be exponentially stable iff k1 > 0, k2 > 0.
Note that this input-output linearization via static feedback
is valid for ℓ ̸= 0. Otherwise, a singular decoupling matrix
is obtained. However, the case of having the camera shifted
from the robot rotation axis over the longitudinal axis is a
common situation. Orientation correction is simultaneously
achieved by tracking a parabolic path in the Cartesian space,
which is demonstrated in [19].

V. EXPERIMENTAL EVALUATION

Both proposed approaches have been tested in real-world
experiments using the robot presented in Fig. 1(a). The
camera acquires images of size 800×600 pixels. The 1D
TT is estimated using the five-point method as described in
Section II.B with estimated projection center (x0 = 404,
y0 = 316) as the only required calibration parameter.
These experiments have been carried out using a tracking
of features as implemented in the OpenCV library.

A. Image-based Approach

The experiment shown in this section corresponds to a
trial of the image-based approach. Fig. 3(a) presents the
resultant path, given by odometry, from the ground truth
initial location (-0.55 m,-1.35 m,-35 deg). The time to
accomplished the pose-regulation task is almost 14 s. The
execution time of the first step is set to 9.4 s through fixing
a number of iterations in which the tracked references reach
zero. Before that, we can see in Fig. 3(b) that the bounded
sliding mode control law is applied when the singularity
appears. Fig. 3(c) shows that the behavior of the outputs is
always close to the desired one but with a small error. The
reason of the remaining error is that our robotic platform is
not able to execute commands at a frequency higher than 10
Hz, and consequently the performance of the sliding mode
control is not the optimum. According to Fig. 4(a) the motion
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Fig. 3. Experimental results with the image-based approach. (a) Resultant path from the data given by the robot odometry. (b) Computed velocities. (c)
Controlled outputs.
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Fig. 4. Behavior of the visual measurements for the experiment using the image-based approach. (a) Motion of the image points. The marker “·”
corresponds to the initial points, the marker “O” to the target points and the marker “+” are the points in the image at the end of the motion. (b) Evolution
of the first four tensor elements. (c) Evolution of the second four tensor elements.

of the image points along the sequence does not exhibit
a damaging noise, in such a way that the tensor elements
evolve smoothly during the task, as presented in Fig. 4(b)-
(c). The robot finally reaches the target with good precision.

B. Position-based Approach

For the evaluation of the position-based approach the
sampling time Ts is set to 0.5 s. The distance from the
camera to the rotation axis of the robot has been roughly set
to ℓ = 10 cm. The ground truth initial location is (-0.6 m,-1.8
m,0 deg). Fig. 5(a) presents the resultant path, given by the
estimated state of the robot, for one of the experimental runs.
The figure also shows the reference path and the one given
by odometry. It can be seen that the estimated path is closer
to the reference than the path obtained from odometry. The
duration of the pose-regulation task is fixed to 40 s, when the
tracked references reach zero. Fig. 5(b) shows the behavior
of the estimated state together with the tracked references
for the position coordinates. According to Fig. 5(c) the robot
velocities behave smoothly along the task, which represent
an improved performance with respect to the image-based
approach. Fig. 6(a) presents the well behaved motion of the
image points along the sequence. The evolution of tensor
elements is shown in Fig. 6(b). It is worth noting that the
tensor estimation is not affected when the robot is reaching
the target, i.e., there is no problem with the short baseline.

VI. CONCLUSIONS

In this paper, we have presented and evaluated experimen-
tally two control schemes that rely on monocular vision to
solve the pose-regulation problem of mobile robots. The pro-
posed schemes are valid for vision systems obeying a central
projection model, so that visibility constraint problems are
avoided with the adequate sensor. In both proposed schemes,
an adequate set of visual measurements are taken from the
1D trifocal tensor (TT). This tensor is estimated from bearing
information of the visual features, which avoids the need
of a complete camera calibration for any type of central
camera and therefore, weakly-calibrated control schemes are
obtained.

The properties of the 1D TT have been exploited in image-
based (IB) and position-based (PB) schemes. The proposed
IB scheme employs the direct feedback of elements of the
1D TT without commuting to any other approach during the
whole task. This scheme is a two-step control law that is
based on the sliding mode control technique. The proposed
PB approach relies on the feedback of the estimated pose for
control in the Cartesian space, with the benefits of reducing
the dependence of the servoing on the visual data and
facilitating the planning of complex tasks. We have shown
that the 1D TT provides enough information to estimate
the robot pose dynamically through a linear observability
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Fig. 5. Experimental results with the position-based approach. (a) Resultant path plotted using the estimated camera-robot state, although the reference
path and the odometry are also shown. (b) Estimated camera-robot state. (c) Computed velocities.
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Fig. 6. Behavior of the extracted information from the images for the experiment with the position-based approach. (a) Motion of the point features.
Initial points - “·”, target points - “O” and final points - “+”. (b) Four normalized tensor elements, three of them are taken as measurements.

analysis. The PB scheme is a single-step control law that
corrects the robot pose using smooth robot velocities.
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[19] H. M. Becerra and C. Sagüés. Exploiting the trifocal tensor in dynamic
pose-estimation for visual control. Submitted for a Journal Paper,
2011.


