
Visual Control for Memory-Based Navigation using the Trifocal Tensor

H. M. Becerra and C. Sagues

Abstract— In this paper, we present a control scheme for
visual path-following of wheeled mobile robots based on a
robust geometric constraint: the trifocal tensor (TT). The
proposed control law only needs one element of the TT as
feedback information, which is computed from the current
and the target images along the sequence of the visual path.
The scheme is valid for images captured by cameras having
approximately a unique center of projection, e.g., conventional,
central catadioptric and some fisheye cameras. The benefits of
the proposed scheme are that explicit pose parameters decom-
position is not required and the rotational velocity is smooth
or eventually piece-wise constant avoiding discontinuities that
generally appear when a new target image must be reached.
Additionally, the translational velocity is adapted as required
for the path. The validity and performance of the approach is
shown through realistic simulations using synthetic images.

I. INTRODUCTION

The locomotion of most of service robots is based on a

wheeled platform, so that, the strategies to improve their

navigation capabilities result of great interest for the robotics

research community. In this sense, machine vision has shown

good advantages as sensor for robot control (visual servoing)

[1] and navigation [2]. In this paper, we present a control

scheme for following a visual path, which is extracted from a

visual memory. The proposed scheme uses the trifocal tensor

(TT) as feedback information.

The concept of visual memory means that there is a

learning stage in which a set of target images are stored.

These key images define the path to be replayed in an

autonomous stage. This strategy has been introduced for om-

nidirectional images in [3]. Recently, there are contributions

toward the development of autonomous vehicles under this

approach. Some of them are position-based approaches, in

which, a 3D reconstruction is carried out either using an

EKF-based SLAM [4] or a structure from motion algorithm

through bundle adjustment [5]. A complete map building is

avoided in [6] by relaxing to a local Euclidean reconstruction

from the essential matrix. In visual control, image-based

approaches generally offer a faster closed loop control with

good performance. The work in [7] propose a qualitative

visual navigation scheme that is based on some heuristic

rules. An approach that uses the centroid of the abscissas of

the feature points for feedback is presented in [8]. Most of the

mentioned approaches suffer the problem of generating dis-

continuous rotational velocities when a new key image must
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be reached. This problem is tackled in [9] for conventional

cameras, where the authors propose a varying reference

instead of constant. The epipolar geometry has been used

as feedback information for mobile robot navigation [10];

however, this geometric constraint is less robust than the TT

and it presents the problem of short baseline.

The proposed control scheme uses the value of one el-

ement of the trifocal tensor as the only required feedback

information. Thus, this approach does not require explicit

pose parameters estimation unlike position-based schemes

[4], [5]. In our proposal, the visual servoing problem is trans-

formed in a reference tracking problem for the selected tensor

element. It avoids the recurrent problem of discontinuous

rotational velocity at key image switching of image-based

schemes [6], [7], [8]. The use of the TT allows the gathering

of many visual features into a single measurement, so that,

undesired pseudoinverse of matrices is not needed. The TT as

visual measurement improves the robustness of the control

scheme against image noise [9] and it avoids the problem

of short baseline [10]. As used in our approach, the TT

gives the possibility of taking into account valuable a priori

information that is available in the visual memory and that

is not exploited in previous image-based approaches. We use

this information to adapt the translational velocity and also

achieve piece-wise constant rotational velocity according to

the taught path. Additionally, the proposed scheme can be

applied not only to conventional cameras but also to any

vision systems having approximately a unique center of

projection, which increase the applicability of the proposal.

The paper is organized as follows. Section II introduces

the robot and camera model, and the TT for generic cameras.

Section III details the proposed control strategy. Section IV

presents the performance of the visual navigation via realistic

simulations using synthetic images and finally, Section V

provides the conclusions.

II. MATHEMATICAL MODELING

A. Robot Kinematics

Let χ = (x, y, φ)T be the state vector of a differential drive

robot (Fig. 1(a)), where x(t) and y(t) are the robot position

coordinates in the plane, and φ(t) is the robot orientation.

The kinematic model of the robot expressed in state space

can be written as follows:⎡
⎣ ẋ

ẏ

φ̇

⎤
⎦ =

⎡
⎣ − sinφ 0

cosφ 0
0 1

⎤
⎦[

v
ω

]
(1)

being v(t) and ω(t) the translational and angular input

velocities, respectively.
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Fig. 1. Representation of the robot model and the camera model. (a) Robot frame definition. (b) Example of central catadioptric vision system. (c)
Example of an image captured by a catadioptric system. (d) Generic camera model of central cameras.

B. The Trifocal Tensor (TT) for Generic Cameras
The constrained field of view of conventional cameras

can be enhanced using wide field of view imaging systems

such as fisheye cameras or full view omnidirectional cameras

like the one shown in Fig. 1(b-c). It is known that the

imaging process performed by conventional and catadioptric

cameras can be modeled by a unique representation [11].

Such unified projection model works properly for imaging

systems having approximately a single center of projection.

This representation allows the computation of a geometric

constraint, like the trifocal tensor (TT), in the same way for

any central vision system.
The unified projection model describes the image forma-

tion as a composition of two central projections. The first

is a central projection of a 3D point onto a virtual unitary

sphere and the second is a perspective projection onto the

image plane through a collineation K. Let denote a 3D point

as X, and its corresponding coordinates as X. Thus, point

coordinates on the sphere Xc can be computed from point

coordinates on the normalized image plane x (refer to Fig.

1(d)) and the sensor parameter ξ as follows

Xc =
(
η−1 + ξ

)
x̄, (2)

x̄ =
[
xT 1

1+ξη

]T
,

where η =
−γ−ξ(x2+y2)
ξ2(x2+y2)−1 , γ =

√
1 + (1− ξ2) (x2 + y2). In

this work, we assume that the camera is calibrated, which

allows us to exploit the representation of the points on the

unit sphere.
The TT encapsulates all the geometric relations between

three views independently of the structure of the scene

and depending nonlinearly on the motion parameters among

the three views. The TT has 27 elements and it can be

encapsulated using three 3×3 matrices (T1, T2, T3). There

are, therefore, 26 independent ratios apart from the common

overall scaling of the matrices. In this work, we focus on

the use of points as image features. Consider three corre-

sponding points projected on the unitary sphere p, p′ and

p′′ and expressed in homogeneous coordinates (p1,p2,p3).

The incidence relation between these points is given as

[p′]×

(∑
i

piTi

)
[p′′]× = 03×3,

where [p]× is the common skew symmetric matrix. This

expression provides a set of nine equations, however, only

four of them are linearly independent. Thus, seven triplets

of point correspondences are needed to compute the 27

elements of the tensor. This is done by solving a singular

value decomposition (SVD) problem for the set of linear

equations.
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Fig. 2. Geometry between three camera locations in the plane. (a) Absolute
locations with respect to a reference frame in C3. (b) Relative locations.

In the case in which the three cameras are located in the

same plane, for instance, with the same vertical position from

the ground, several elements of the tensor are zero and only

12 elements are in general non-null. Fig. 2 depicts the upper

view of three cameras with global reference frame in the

third view, in such a way that the corresponding locations

are C1 = (x1, y1, φ1), C2 = (x2, y2, φ2) and C3 = (0, 0, 0).
Analytically, the TT can be deduced for this framework as

done in [12], resulting in that the non-null elements are given

as

Tm
111 = −tx1 cosφ2 + tx2 cosφ1, T

m
113 = tx1 sinφ2 + ty2 cosφ1,

Tm
131 = −ty1 cosφ2 − tx2 sinφ1, T

m
133 = ty1 sinφ2 − ty2 sinφ1,

Tm
212 = −tx1 , T

m
221 = tx2 , T

m
223 = ty2 , T

m
232 = −ty1 ,

Tm
311 = −tx1 sinφ2 + tx2 sinφ1, T

m
313 = −tx1 cosφ2 + ty2 sinφ1,

Tm
331 = −ty1 sinφ2 + tx2 cosφ1, T

m
333 = −ty1 cosφ2 + ty2 cosφ1,

(3)



where txi = −xi cosφi−yi sinφi, tyi = xi sinφi−yi cosφi

for i = 1, 2 and the superscript m states that they are the

tensor elements given by metric information. In practice, the

estimated tensor has an unknown scale factor and this factor

changes as the robot moves. We can fix a common scale

during the navigation by normalizing each element of the

tensor as follows:

Tijk =
Te

ijk

TN
, (4)

where T e
ijk are the estimated TT elements obtained from

point matches, Tijk are the normalized elements and TN is

a suitable normalizing factor, which must be different than

zero. We can see from (3) that T212 and T232 are constant and

non-null, assuming that the camera location C1 is different

to C3. Therefore, any of these elements is good option as

normalizing factor.

III. CONTROL STRATEGY FOR MEMORY-BASED

NAVIGATION

This section describes the proposed control strategy for

wheeled mobile robot navigation based on the visual memory

approach. First, we describe such approach briefly. Next, we

present the way in which the TT is used in this approach

and finally, the proposed control law is described in detail.

A. The Visual Memory

The navigation based on a visual memory consists of two

stages. The first one is a learning stage where the visual

memory is built. In this stage, the user guides the robot

along the place where it is allowed to move. A sequence

of images are stored from the onboard camera during this

stage in order to get a representation of the environment.

We assume that during learning, the translational velocity is

never zero. From all the captured images, a reduced set is

selected as key images by ensuring a minimum number of

shared point features between two images. Thus, the visual

memory defines a path to be replayed in the autonomous

navigation stage. We assume that n key images are chosen

and that these images are separated along the path in the

Cartesian space by a minimum distance dmin. For more

details about the visual memory building and key images

selection refer to [6].

B. The TT for Memory-Based Navigation

The TT has been exploited for the positioning of a mobile

robot in [12] and [13]. In these works, both, the rotational and

the translational velocities are computed from the elements

of the tensor, which are driven to zero in order to accomplish

the positioning task. The visual path-following problem only

requires a rotational velocity to correct the deviation from the

desired path. Consider that we have two images I1(K,C1)
and I3(K,C3) belonging to the visual path and the current

view of the onboard camera I2(K,C2). As can be seen

in Fig. 3, the element T221 of the TT (3) provides direct

information of the lateral deviation of the current location

C2 with respect to the target C3. It is worth emphasizing

that the 1D TT does not provide this particular information

of lateral error, so that, the 2D TT is used.
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Fig. 3. The relative locations between cameras up to a scale are provided
by the trifocal tensor.

Assuming that the center of projection coincides with the

rotational axis of the robot, the element T221 of the tensor

is related to the current location of the robot as follows:

Tm
221 = tx2 = −x2 cosφ2 − y2 sinφ2.

It can be seen that if Tm
221 = 0,

φ2 = φt = − tan

(
x2

y2

)
,

and consequently the current camera C2 is looking directly

toward the target. Thus, we propose to compute the rotational

velocity from feedback information given by the element

T221. The control goal is to drive this element with smooth

evolution from its initial value to zero before reaching the

next key image of the visual path. We can define a reference

tracking control problem in order to avoid discontinuous

rotational velocity in the switching of key images. It is also

possible to exploit the a priori information provided by the

visual path to compute an adequate translational velocity and

a nominal rotational velocity according to the shape of the

path.

Fig. 4. Control strategy based on driving to zero the element of the trifocal
tensor T221.



C. Control Law for Autonomous Navigation

In this section, we describe the proposed control law that

corrects the lateral deviation of the robot with respect to

the taught visual path for each key image. As depicted in

Fig. 4, the control law must take to zero the following one-

dimensional function that represents the tracking error of the

normalized tensor element T221 with respect to a desired

reference T d
221(t):

ζ = T221 − T d
221(t). (5)

The normalization of the TT is done as defined at the end

of section II using TN = T232, which is non-null assuming

that C1 �= C3. The desired evolution of the tensor element

is defined by the differentiable sinusoidal reference

T d
221(t) =

T221(0)

2

(
1 + cos

(π
τ
t
))

, 0 ≤ t ≤ τ, (6)

T d
221(t) = 0, t > τ,

where T221(0) is the initial value of the normalized tensor

element or the value at the time of key image switching,

and τ is a suitable time in which the tensor element must

reach zero, before the next switching of key image. Thus, the

time is restarted at each instant when a change of key image

occurs. This reference trajectory drives the tensor element to

zero in a smooth way from its initial value.

The tracking error is computed using information extracted

from the ith key image as I3(K,C3), the (i−2)th key image

as I1(K,C1) and the current image I2(K,C2). According to

the expressions of the trifocal tensor elements (3) and using

the derivatives of the robot state as given by the model of

the unicycle, we have that the time-derivative of T221 is

Ṫm
221 = −ẋ2 cosφ2 + x2φ̇2 sinφ2 − ẏ2 sinφ2 − y2φ̇2 cosφ2,

= (x2 sinφ2 − y2 cosφ2)ω

= Tm
223ω.

This time-derivative is also valid for normalized tensor

elements and therefore, the differential equation relating the

rate of change of the error with the reference tracking (RT)

velocity is as follows:

ζ̇ = T223ωrt − Ṫ d
221. (7)

Thus, the velocity ωrt is worked out from the error

dynamics (7). The following rotational velocity assigns a new

dynamics through the auxiliary input δa:

ωrt =
1

T223

(
Ṫ d
221 + δa

)
.

We define the auxiliary input as δa = −kcζ to keep the

tensor element T221 tracking the reference trajectory, where

kc is a control gain. Thus, the resulting rotational velocity is

ωrt =
1

T223

(
Ṫ d
221 − kcζ

)
. (8)

This velocity yields the error dynamics ζ̇ = −kcζ, which

is exponentially stable for kc > 0. This RT velocity is

continuous with a sinusoidal behavior between key images.

A nominal rotational velocity (ω̄) can be added in order to

obtain an RT+ velocity that is maintained almost constant be-

tween key images, i.e., almost piece-wise constant rotational

velocity during the navigation. So, the complete velocity can

be eventually computed as

ω = ktωrt + ω̄, (9)

where kt > 0 is a weighting factor on the reference tracking

control ωrt.

D. Exploiting Information from the Memory

Previous image-based approaches for navigation using a

visual memory only exploit local information [4], [5], [6],

i.e., the required rotational velocity is computed from the

current and the nearest target images. We propose to exploit

the visual memory in order to have an a priori information

about the whole path without the need of a 3D reconstruction

or representation of the path. A kind of qualitative map

of the path can be obtained from the tensor element T221

using three consecutive key images of the memory. The

value of this element, denoted as T ki
221, shows qualitatively

the orientation of the camera in the (i− 1)
th

key image

with respect to the ith one and so, we can set an adequate

translational velocity according to the curvature of the path

as well as to compute the nominal rotational velocity that

appears in (9). Recall that a priori, the tensor is computed

between all consecutive triplets of key images with target

in the ith one. We propose the following smooth mapping

T ki
221 → (υmin, υmax) to modify the translational velocity

between two limits accordingly:

υ = υmax + υmin + υmax−υmin

2 tanh

(
1−

∣∣T ki
221/dmin

∣∣
σ

)
,

(10)

where σ is a positive parameter that determines the inflection

point of the function. Once the translational velocity is set

from the previous equation for each key image, its value can

be used to compute the nominal velocity ω̄ proportional to

the tensor elements T ki
221 as follows:

ω̄ =
kmυ

dmin
T ki
221, (11)

where km < 0 is a constant factor. This velocity by itself

is able to drive the robot along the path, but correction is

introduced in (9) through (8).

E. Timing Strategy and Key Image Switching

The proposed control method is based on taking to zero

the tensor element T221 before reaching the next key image,

which imposes a constraint for the time τ of the reference.

Thus, a strategy to define this time is related to the minimum

distance between key images (dmin) and the translational

velocity (υ) as follows:

τ =
dmin

υ
.

We have found that a good approach to relate this time

with the settling time γ of the tracking error is to consider

0.4τ = 5/kc, from which kc = 12.5/τ .



By using the controller (8) with the reference (6), the

time τ and the control gain kc as described above, an

intermediate location determined by dmin is reached. In

the best case, when dmin coincides with the real distance

between key images, the robot reaches the location where the

corresponding key image was acquired. In order to achieve

a good correction of the longitudinal position for each key

image, the reference (6) is maintained to zero, which implies

that ω = 0, until the image error starts to increase. The

image error is defined as the mean squared error between

corresponding image points of the current image (pi,j) and

points of the next closest target key image (pj), i.e.,

ε =
1

r

r∑
j=1

‖pj − pi,j‖ (12)

where r is the number of used corresponding points. As

shown in [7], the image error decrease monotonically until

the robot reaches each target view. In our case, the increment

of the image error is the switching condition for the next key

image, which is confirmed by using the current and previous

difference of instantaneous values of the image error.

IV. EVALUATION OF THE PROPOSED CONTROL SCHEME

In this section, we present simulations in Matlab of the

proposed navigation scheme. We use the generic camera

model [11] to generate synthetic key images from the 3D

scene of Fig. 5(a) according to the robot motion on the

predefined path shown in the same figure. This learned path

starts in the location (5,-5,0o) and finishes just before to close

the loop of 54 m long. The vision system is hypercatadioptric

with parameters αx = 950, αy = 954, x0 = 512, y0 = 384
all of them in pixels, ξ = 0.9662 and the size of the images

is 1024×768 pixels. The TT is estimated using the typical

7-point algorithm as introduced in section II and using the

projected points on the sphere. Fig. 5(b) shows an example

of a triplet of catadioptric images projected onto the unitary

sphere.

The performance of the proposed control scheme including

image noise (2 pixels of standard deviation) is evaluated for

a visual path of 36 key images distributed randomly along

the learned path. The random distance between consecutive

key images is between 1.42 m and 1.6 m, in such a way

that a minimum distance dmin = 1.4 m is assumed. The

translational velocity is bounded between 0.2 m/s and 0.4
m/s. We present results for the two cases according to (9):

1) only reference tracking (RT) and 2) reference tracking

+ nominal velocity (RT+). We can see in Fig. 6(a) that

the resultant path of the autonomous navigation stage is

almost similar to the learned one in both cases; however,

as expected, the performance is better for the RT control.

The RT+ control decreases its performance in sharp curves,

but it is better as long as the key images are closer. The

first plot of Fig. 6(b) shows how the translational velocity

effectively changes according to the shape of the path. For

instance, between 55 s and 85 s the higher velocity is applied,

which corresponds to the almost straight part of the path. The

second plot of the same figure shows the behavior of the
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Fig. 5. Virtual scene and example of the synthetic images used. (a)
Tridimensional scene and predefined path. (b) Example of a triplet of images
projected onto the unitary sphere.

rotational velocity. On one hand, the velocity given by the

RT control is smooth, performing cycles that start from zero

and return to zero for each key image. On the other hand,

the piece-wise constant velocity given by the RT+ control

is more adequate. The third plot of the same figure shows

the behavior of the reference tracking of the measurement

T221. It can be seen that the tensor element does not present

unstable behavior when a key image is reached (T221 reaches

zero), which means that the problem of short baseline is not

present. Additionally, although the noise in the image points

is significative, the use of the trifocal tensor reduces such

effect and increases the robustness of the control scheme.

Fig. 7 presents the performance of the approach for the

same experiment. The first plot of Fig. 7(a) shows the

behavior of the image error for the RT case. It can be

seen that the image error exhibits a monotonic decay before

reaching each key image. The largest peaks in the image

error correspond to the sharp curves in the path, which also

causes the highest error in the path following, as can be seen

in the second and third plot of the same figure. Nevertheless,

the path following errors to reach each key image are small

and comparable for both controllers. In order to show the

behavior of the visual information, Fig. 7(b) presents the

motion of the image points along the whole navigation.

Although 12 points are used to compute the tensor, only the

motion of 7 points is shown. It is appreciable the advantage

of using a central catadioptric system looking upward, which

is able to see the same scene during the navigation task.
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Fig. 6. Simulation results for a navigation task. (a) Resultant paths and
key images distribution. (b) Velocities and evolution of the element T221.

V. CONCLUSIONS

In this paper, we have proposed a control scheme for

wheeled mobile robot navigation based on a visual memory,

which exploits the advantages of the trifocal tensor. The

value of one element of the tensor is the unique required

information by the control law. Our proposed image-based

approach does not need pose parameters decomposition.

In this context, the scheme avoids discontinuous rotational

velocity when a new target image must be reached providing

piece-wise constant velocity if desired. The translational

velocity is adapted according to the path and the approach is

independent of its value. We exploit the advantages of wide

field of view cameras, so that the scheme can be applied us-

ing any central camera, which increases its applicability. The

control scheme has presented good performance according to

simulation results using synthetic images.
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