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Abstract— In this paper, we propose a visual path following
control scheme for wheeled mobile robots based on the epipolar
geometry. The control law only requires the position of the
epipole computed between the current and target views along
the sequence of a visual memory. The proposed approach has
two main advantages: explicit pose parameters decomposition is
not required and the rotational velocity is smooth or eventually
piece-wise constant avoiding discontinuities that generally ap-
pear when the target image changes. The translational velocity
is adapted as required for the path and the approach is
independent of this velocity. Furthermore, our approach is
valid for all cameras obeying the unified model, including
conventional, central catadioptric and some fisheye cameras.
Simulations as well as real-world experiments with a robot
illustrate the validity of our approach.

I. INTRODUCTION

Currently, the development of service robots has attracted
the attention of the robotics research community. The lo-
comotion of most of these robots is based on a wheeled
platform, and consequently, the strategies to improve their
navigation capabilities result of great interest. It is generally
accepted that machine vision seems to be a good option of
sensory modality for navigation (refer to [1] for a review on
visual navigation). This paper describes a new approach of
path following based on epipolar geometry and the visual
servoing concept [2].

The navigation scheme proposed herein uses the notion
of visual memory. It means that there is a learning stage in
which a set of target images (key images) are stored and they
define the path to be replayed in an autonomous stage. This
strategy has been introduced for omnidirectional images in
[3]. Also a memory–based navigation is proposed in [4] but
introducing the prerecorded velocities of the learning stage
in the control law. More recently, there are contributions
toward the development of autonomous vehicles under this
approach. Some of them are position-based approaches, in
which, a 3D reconstruction is carried out either using an
EKF-based SLAM [5] or a structure from motion algorithm
through bundle adjustment [6]. A complete map building is
avoided in [7] by relaxing to a local Euclidean reconstruction
from the essential matrix using generic cameras. In visual
control, image-based approaches generally offer a faster
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closed loop control with good performance. The work in
[8] propose a qualitative visual navigation scheme that is
based on some heuristic rules. A Jacobian-based approach
that uses the centroid of the abscissas of the feature points
is presented in [9]. Most of the mentioned approaches suffer
the problem of generating discontinuous rotational velocities
when a new key image must be reached. This problem is
tackled in [10] for conventional cameras, where the authors
propose a varying reference instead of a constant one using
the same controller as in [9].

In this paper, we propose a new image-based approach that
exploits the epipolar geometry in the context of navigation
with a visual memory. Epipolar geometry has been used in
visual servoing schemes since it has been introduced in this
field by [11]. Some epipolar visual servoing schemes have
been proposed for mobile robots with conventional cameras
[12], [13]. In these works a total correction of orientation
and lateral error is reached while the robot moves always
towards the target, unlike [14], where the robot first goes
away and then goes back in a second step. This last work
has introduced the idea of feedback of the epipoles for central
catadioptric cameras. However, none of these approaches are
directly extendable to path following because they deal with
the pose regulation problem where both input velocities must
be computed.

The proposed control scheme uses the value of the current
epipole as the only required feedback information. Thus,
this approach does not require explicit pose parameters
estimation unlike [5], [6]. The visual servoing problem is
transformed in a reference tracking problem for the current
epipole. It avoids the recurrent problem of discontinuous
rotational velocity at key image switching of memory-based
schemes that is evident in [7], for instance. The use of
epipolar feedback allows us to gather many visual features
into a single measurement, which has the advantage of
getting a squared control system, where stability of the closed
loop can be ensured in contrast to Jacobian-based approaches
[9], [10] or heuristic approaches [8]. Additionally, epipolar
feedback, as used in our approach, gives the possibility of
taking into account valuable a priori information that is
available in the visual memory and that is not exploited in
previous image-based approaches. We use this information to
adapt the translational velocity and also achieve piece-wise
constant rotational velocity according to the taught path.

Conventional cameras suffer from a restricted field of
view. Many applications in vision-based robotics, such as the
one proposed in this paper can benefit from the panoramic
field of view provided by omnidirectional or fisheye cameras.
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Fig. 1. (a) Robot frame definition, (b) Experimental platform.

At this aim, the generic camera model introduced in [15] is
exploited to design our control strategy. This means that the
proposed method can be applied not only to conventional
cameras but also to all central catadioptric cameras and to
a large class of fisheye cameras [16], since the epipolar
geometry can be computed from the unified model when
the camera parameters are known (the calibration can be
estimated for instance using the tools described in [17]).

The paper is organized as follows. Section II introduces
the robot and camera model, and the epipolar geometry
obeying such model. Section III details the proposed control
strategy. Section IV presents the performance of the visual
navigation via simulations and real world experiments and
finally, Section V provides the conclusions.

II. MATHEMATICAL MODELING

A. Robot Kinematics

Letχ = (x, z, φ)T be the state vector of a differential drive
robot (Fig. 1), wherex(t) and z(t) are the robot position
coordinates in the plane, andφ(t) is the robot orientation.
The kinematic model of the robot expressed in state space
can be written as follows:
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being v(t) and ω(t) the translational and angular input
velocities, respectively.

B. Epipolar Geometry for Generic Cameras

The constrained field of view of conventional cameras can
be enhanced using wide field of view imaging systems such
as fisheye cameras or full view omnidirectional cameras. It is
known that the imaging process performed by conventional
and catadioptric cameras can be modeled by a unique repre-
sentation [15]. Such unified projection model works properly
for imaging systems having a single center of projection.
Although fisheye cameras do not accomplish such property,
some recent experimental results have shown that the unified
projection model is able to represent their image formation
process with the required accuracy for robotic applications
[16].

Fig. 2. Generic model of the image formation and epipolar geometry
between generic central cameras.

The unified projection model describes the image forma-
tion as a composition of two central projections. The first isa
central projection of a 3D point onto a virtual unitary sphere
and the second is a perspective projection onto the image
plane. In this work we assume that the camera is calibrated
[17], which allows us to exploit the representation of the
points on the unit sphere. Let denote a 3D point asX, and
its corresponding coordinates asX. Thus, point coordinates
on the sphereXc can be computed from point coordinates
on the normalized image planex (refer to Fig. 2) and the
sensor parameterξ as follows

Xc =
(

η−1 + ξ
)

x̄, (2)

x̄ =
[

x
T 1

1+ξη

]T
,

whereη =
−γ−ξ(x2+y2)
ξ2(x2+y2)−1 , γ =

√

1 + (1 − ξ2) (x2 + y2).
Regarding to Fig. 2, letX be a 3D point and letXc

and Xt be the coordinates of that point projected onto
the unit spheres of the currentFc and target frameFt.
The epipolar plane contains the effective viewpoints of the
imaging systemsOc andOt, the 3D pointX and the points
Xc andXt. The coplanarity of these points leads to the well
known epipolar constraint

X
T
c E Xt = 0, (3)

beingE the essential matrix relating the pair of normalized
virtual cameras. Normalized means that the effect of the
known calibration matrix has been removed. As typical,
from this geometry it is possible to compute the epipoles
as the points lying on the base line and intersecting the
corresponding virtual image plane. In order to avoid singu-
larities in the epipolar geometry three views can be used
to estimate this geometry as proposed in [18]. Fig. 3(a)
shows the epipoles of a configuration of the pair of virtual
cameras with center of projectionOc and Ot respectively.
Fig. 3(b) presents an upper view of this configuration, where
the framework of the epipolar geometry constrained to planar
motion is defined. A global reference frame centered in the
origin Ot = (0, 0, 0) of the target viewpoint is defined. Then,
the current camera location with respect to this reference is
Oc = (x, z, φ). Assuming the described framework in Fig. 1,
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Fig. 3. (a) 3D epipolar geometry, (b) Planar epipolar geometry framework.

where the camera location coincides with the robot location,
the epipoles can be written as a function of the robot state
as follows

ecx = αx
x cosφ+ z sinφ

z cosφ− x sinφ
, (4)

etx = αx
x

z
.

Cartesian coordinatesx and z can be expressed as a
function of the polar coordinatesd andψ as

x = −d sinψ, z = d cosψ, (5)

with ψ = − arctan (etx/αx), φ− ψ = arctan(ecx/αx) and
d2 = x2 + z2. For the case of normalized camerasαx = 1
in (4) and in the subsequent equations.

III. NAVIGATION STRATEGY

There are some works that use the epipoles as direct
feedback in the control law for a pose regulation task [12],
[13], [14]. In the first two works the robot moves directly
toward the target, but the translational velocity computation
suffers of singularity problems, which make non-feasible its
direct application for navigation. In the last work, the effort
to avoid the singularity takes the robot to perform some
inappropriate maneuvers for navigation. We propose to use
only the x-coordinate of the current epipole as feedback
information to modify the robot heading and so, to correct
the lateral deviation. The current epipole gives information
of the translation direction and it is directly related to the
required robot rotation to be aligned with the target. As
can be seen in Fig. 4,ecx = 0 means that the longitudinal
camera axis of the robot is aligned with the baseline and
the camera is looking directly toward the target. Therefore,
the control goal is to take this epipole to zero in a smooth
way, which is achieved by using an appropriate reference.
It allows avoiding discontinuous rotational velocity whena
new target image is required to be reached. Additionally, we
propose to take into account some a priori information of
the shape of the visual path that can be obtained from the
epipoles relating two consecutive key images. This allows us
to adapt the translational velocity and also achieve piece-wise
constant rotational velocity according to the taught path.

Fig. 4. Control strategy based on zeroing the current epipole.

A. Visual Memory Building

Although the scope of the paper is the control strategy,
we briefly outline the procedure to build a visual memory.
The visual memory defines a path to be replayed in the
autonomous navigation stage. A sequence of images are
stored from the onboard camera during a learning stage
by manual driving of the robot. We assume that during
learning, the translational velocity is never zero. From all the
captured images a reduced set is selected as key images by
ensuring a minimum number of shared features between two
consecutive key images. For more details about the memory
building refer to [7]. We assume thatn key images are chosen
and that these images are separated along the path by a
minimum distancedmin.

B. Control Law for Autonomous Navigation

Let us define a unidimensional task function to be zeroed
that depends on the current epipoleecx. This allows us
to gather many visual features into a single measurement,
which has the benefit of getting a squared control system.
So, potential stability problems are avoided unlike previous
Jacobian approaches [9], [10]. In the sequel, we avoid the use
of the subscriptx. This function represents the tracking error
of the current epipoleec with respect to a desired reference
edc(t)

ζc = ec − edc(t). (6)

The tracking error is defined using theith key image as
target, although it is not indicated explicitly. The following
nonlinear differential equation represents the rate of change
of the tracking error as given by both input velocities and is
obtained by taking the time-derivative of (6) and using the
polar coordinates (5)

ζ̇c = −
αx sin (φ− ψ)

d cos2 (φ− ψ)
υ +

αx
cos2 (φ− ψ)

ωt − ėdc . (7)

The subscript of the rotational velocityωt refers to the ve-
locity for reference tracking. We define the desired behavior
through the following differentiable sinusoidal reference

edc (t) =
ec(0)

2

(

1 + cos
(π

τ
t
))

, 0 ≤ t ≤ τ (8)

edc (t) = 0, t > τ

where ec(0) is the value of the current epipole at the
beginning or at the time of key image switching andτ is



a suitable time in which the current epipole must reach zero,
before the next switching of key image. Thus, a timer is
restarted at each instant when a change of key image occurs.
The time required in the reference can be easily replaced
by a number of iterations in the control cycle. Note that this
reference trajectory provides a smooth zeroing of the current
epipole from its initial value. Let us express the equation (7)
as follows

ζ̇c = µυ +
αx

cos2 (φ− ψ)
ωt − ėdc , (9)

whereµυ = −αx sin(φ−ψ)
d cos2(φ−ψ)υ represents a known disturbance

depending on the translational velocity. The velocityωt can
be found by using Input-Output Linearization of the error
dynamics. Thus, the following rotational velocity assignsa
new dynamics through the auxiliary inputδa

ωt =
cos2 (φ− ψ)

αx

(

−µυ + ėdc + δa
)

.

We define the auxiliary input asδa = −kci
ζc to keep the

current epipole tracking the reference trajectory, wherekc >
0 is a control gain. Thus, the resulting rotational velocity is

ωt =
sin (φ− ψ)

d
υ +

cos2 (φ− ψ)

αx

(

ėdc − kcζc
)

. (10)

This velocity reduces the error dynamics toζ̇c = −kcζc.
So, the tracking error exhibits an exponentially stable behav-
ior, with settling timeγ ≈ 5/kc. Since that the control goal
of this controller is the tracking,ωt starts and finishes at zero
for every key image. In order to maintain the velocity around
a constant value we propose to add a term for a nominal
rotational velocityω̄. The next section describes how this
nominal velocity is obtained. So, the rotational velocity can
be eventually computed as

ω = ktωt + ω̄, (11)

wherekt > 0 is a weighting factor on the reference tracking
control ωt. It is worth emphasizing that the velocityωt by
itself is able to drive the robot along the path described by
the image memory, however, the total input velocity in (11)
behaves more natural around constant values. We will refer
to the only reference tracking control,ωt (10), as RT and
the complete control,ω (11), as RT+.

C. Exploiting Information from the Memory

All previous image-based approaches for navigation using
a visual memory only exploit local information, i.e., the re-
quired rotational velocity is only computed from the current
and the next nearest target images. We propose to exploit
the visual memory in order to have an a priori information
about the whole path without the need of a 3D reconstruction
or representation of the path, unlike [5], [6], [7]. A kind
of qualitative map of the path can be easily obtained from
the current epipole relating two consecutive key images of
the memory, which is denoted byemc . Thus, emci

shows
qualitatively the orientation of the camera in the(i− 1)

th

key image with respect to theith one and so, it gives an
idea of the curvature of the path.

We propose to use this a priori information to apply an
adequate translational velocity and to compute the nomi-
nal rotational velocity that appears in (11). As before, we
suppress the subscripti, but recall that the epipoleemc is
computed between all consecutive pairings of key images.
The translational velocity is changed smoothly for every
switching of key images using the following mappingemc →
(υmin, υmax)

υ = υmax+υmin + υmax−υmin

2 tanh

(

1 −
|emc /dmin|

σ

)

(12)

whereσ is a positive parameter that determines the distribu-
tion of the velocities. Once a translational velocity is setfrom
the previous equation for each key image,υ can be used to
compute the nominal velocitȳω as follows (̄ω ∝ emc )

ω̄ =
kmυ

dmin
emc (13)

wherekm < 0 is a constant factor to be tuned. This velocity
by itself is able to drive the robot along the path, but
correction is introduced in (11) through (10).

D. Timing Strategy and Key Image Switching

It is clear that there is a need to zero the current epipole
before reaching the next key image during the navigation,
which imposes a constraint for the timeτ . Thus, a strategy to
define this time is related to the minimum distance between
key images (dmin) and the translational velocity (υ) for each
key image as follows:

τ =
dmin

υ
.

We have found that a good approach to relate this time
with the settling timeγ of the tracking error is to consider
0.4τ = 5/kc, from whichkc = 12.5/τ .

By running the controller (9) with the reference (8), the
time τ and the control gainkc as described above, an inter-
mediate location determined bydmin is reached. In the best
case, whendmin coincides with the real distance between key
images, the robot reaches the location of the corresponding
key image. In order to achieve a good correction of the
longitudinal position for each key image, the reference (8)
is maintained to zero, which implies thatω = 0, until the
image error starts to increase. Theimage error is defined as
the mean squared error between ther corresponding image
points of the current image (Pi,j) and points of the next
closest target key image (Pj), i.e.,

ǫ =
1

r

r
∑

j=1

‖Pj − Pi,j‖ (14)

As shown in [8], the image error decrease monotonically
until the robot reaches each target view. In our case, the
increment of the image error is the switching condition for
the next key image, which is confirmed by using the current
and the previous difference of instantaneous values of the
image error.



IV. EXPERIMENTAL EVALUATION

A. Simulations Results

In this section, we present some simulations in Matlab of
our navigation scheme. We use the generic camera model
[15] to generate synthetic key images from a 3D scene
according to the robot motion on a predefined path. This
learned path starts in the location (5,-5,0o) and finishes just
before to close the loop of 54 m long. The camera parameters
areαx = 222.9, αy = 222.1, x0 = 305.1, y0 = 266.9 all
of them in pixels,ξ = 2.875 and the size of the images
is 640×480 pixels. These camera parameters are also used
to compute the points on the sphere (2) from the image
coordinates. In these simulations, a typical 8-points algorithm
has been used to estimate the essential matrix [19]. The only
required feedback information (ecx) is computed as the right
null space of the essential matrixE [ecx, ecy, ecz]

T = 0.
The first simulation uses a fix distance between key images

of one meter, i.e., there are 54 key images. The translational
velocity is bounded between0.2 m/s and0.4 m/s. In order
to set the timeτ and the control gainkc, it is assumed a
minimum distance between key imagesdmin = 0.8 m. We
present the results for two cases according to (11): 1) only
reference tracking (RT) and 2) reference tracking + nominal
velocity (RT+). The applicability of the last is limited to start
on the path and the former is able to correct an initial position
out of the path. We can see in Fig. 5(a) that the resultant path
of the autonomous navigation stage is almost similar to the
learned one in both cases. Although the initial location is
out of the learned path for the RT, the robot achieves the
tracking just in the second key image. The first plot of Fig.
5(b) shows the behavior of the rotational velocity for the four
first key images. On one hand, we can see that this velocity
is smooth for the RT case. The velocity starts to grow always
from zero in the marked points, which correspond to changes
of key image, and returns to zero at the next switching. On
the other hand, we have a constant velocity for the RT+. The
third plot of the same figure presents the reference tracking
of the epipole for the RT with a mark when it reaches zero.
Fig. 5(c) presents the varying translational velocity as given
by (12) for the whole path. The evolution of this velocity
agrees with the level of curvature of the path. Fig. 5(c) shows
the evolution of the rotational velocity and the reference
tracking for the epipole along the whole path. The addition
of the nominal value allows to achieve a piece-wise constant
rotational velocity.

Fig. 6 presents the performance of the approach for the
same experiment. The first plot of Fig. 6(a) shows the
behavior of the image error for the RT case. During the first
seconds, the error increases because the robot is out of the
path. In the subsequent steps, from the second key image,
this error exhibits a monotonic decay at each step. After that,
the largest peaks in the image error correspond to the sharp
curves in the path, which also causes the highest error in
the path following. We can see in the plots of the errors to
reach each key image in the same figure that the RT+ control
obtains best tracking performance than the RT control for
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Fig. 5. Simulation results using a fix distance between key images (1
m), for both cases: only reference tracking (RT) and adding the nominal
rotational velocity (RT+). In both cases the varying translational velocity is
the same.

this condition of fixed distance between key images. The
snapshots of Fig. 6(b) show that the points features of key
images are reached with good precision even in curves.

The performance of our navigation scheme including
image noise has been also evaluated. In this case, 35 key
images are placed randomly along the predefined path, in
such a way that a minimum distancedmin = 1.40 m is
assumed. A Gaussian noise with standard deviation of 0.5
pixels is added to the image coordinates. The path following
is still good along the whole path for the RT control (Fig.
7(a)) and adequate for the RT+. The RT+ control is slightly
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Fig. 6. Performance of the navigation task for the results inFig. 5.

sensitive to longer and random distance between key images
along sharp curves. The RT performs well in spite of that
the current epipole and the rotational velocity are noisy (Fig.
7(b)). However, the rotational velocity as obtained from the
RT+ result more convenient for a real application. The path
errors to reach each key image are comparable for both
controllers, as can be seen in Fig. 7(c).

B. Real-world Experiments

In order to test the proposed control law we have used the
software platform described in [7]. This software selects a
set of key images to be reach from a sequence of images that
is acquired in a learning stage. It also extracts features from
the current view and the next closest key image, matches
the features between these two images at each iteration and
computes the current epipole that relates the two views. The
interest points are detected in each image with Harris corner
detector and then matched by using a Zero Normalized
Cross Correlation score. This method is almost invariant to
illumination changes and its computational cost is small. The
software is implemented in C++ and runs on a common
laptop. Real world experiments have been carried out for
indoor navigation along a living room with a Pioneer robot
(Fig. 1(b)). The imaging system consist of a Fujinon fisheye
lens and a Marlin F131B camera looking forward, which
provides a field of view of 185 deg. The size of the images
is 640×480 pixels. A constant translational velocityυ = 0.1
m/s is used and a minimum distance between key images
dmin = 0.6 is assumed. Fig. 8(a) shows the resultant and
learned paths for one of the experimental runs as given by
the robot odometry. In this experiment, we test the RT control
since the initial robot position is out of the learned path. We
can see that after some time, the reference path is reached
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Fig. 7. Simulation including image noise (σ = 0.5 pixels), random distance
between key images (from 1.45 to 1.6 m) and varying translational velocity
between0.2 − 0.4 m/s.

and followed closely. The computed rotational velocity and
the behavior of the current epipole are presented in Fig. 8(b).
The robot follows the visual path until a point where there is
not enough number of matched features. In the same figure,
we depict the nominal rotational velocity as computed offline
only to show that it agrees the shape of the path. In Fig.
8(c) we can see that the image error is not reduced initially



because the robot is out of the path, but after it is reached,
the image error for each key image is reduced. The same
figure presents a sequence of images as acquired for the robot
camera during the navigation.
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Fig. 8. Real world experiment for indoor navigation with a fish eye camera.

V. CONCLUSIONS

Along this paper, we have proposed a control scheme for
wheeled mobile robots that uses the epipolar geometry to
compute velocities in order to follow a visual path. The value

of the current epipole is the unique required information for
the control law. This is an image-based approach because
no explicit pose parameters decomposition is carried out.
The scheme avoids discontinuous rotational velocity when
a new target image must be reached. Eventually, the this
velocity can be piece-wise constant. The translational ve-
locity is adapted according to the path and the approach
is independent of its value. We exploit the advantages of
wide field of view cameras, in particular fisheye. The camera
calibration parameters are required for the epipolar geometry
of this kind of cameras and can be easily obtained with
the available calibration tools. The proposed scheme has
presented a good performance according to the simulation
results and real world experiments.
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