Wheeled mobile robots navigation from a visual memory
using wide field of view cameras
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Abstract— In this paper, we propose a visual path following closed loop control with good performance. The work in
control scheme for wheeled mobile robots based on the epi@sl  [8] propose a qualitative visual navigation scheme that is
geometry. The control law only requires the position of the 5564 on some heuristic rules. A Jacobian-based approach

epipole computed between the current and target views along . . .
the sequence of a visual memory. The proposed approach has that uses the centroid of the abscissas of the feature points

two main advantages: explicit pose parameters decomposith is IS presented in [9]. Most of the mentioned approaches suffer
not required and the rotational velocity is smooth or eventally  the problem of generating discontinuous rotational véiesi

piece-wise constant avoiding discontinuities that genelig ap-  when a new key image must be reached. This problem is
pear when the target image changes. The translational veldg — 4cyjeq in [10] for conventional cameras, where the authors

is adapted as required for the path and the approach is - . .
independent of this velocity. Furthermore, our approach is propose a varying reference instead of a constant one using

valid for all cameras obeying the unified model, including the same controller as in [9].

conventional, central catadioptric and some fisheye camesa In this paper, we propose a new image-based approach that

Simulations as .W.e” as real-world experiments with a robot exp|0its the epipo|ar geometry in the context of navigation

illustrate the validity of our approach. with a visual memory. Epipolar geometry has been used in
. INTRODUCTION visual servoing schemes since it has been introduced in this

'ﬁ:ld by [11]. Some epipolar visual servoing schemes have

the attention of the robotics research community. The | veen proposed for mobile robots with conventional cameras

comotion of most of these robots is based on a wheel 82], [13]. In thes_e works a tota_ll correction of orientation
platform, and consequently, the strategies to improver the"f‘nd lateral error is rea_ched while the robot moves always
navigation capabilities result of great interest. It is gatly fowards the target, unike [_14]’ where the rObOt. first goes
accepted that machine vision seems to be a good option dpay and then goes back in a second Step. This last work
sensory modality for navigation (refer to [1] for a review Onhas introduced the idea of feedback of the epipoles for akntr

visual navigation). This paper describes a new approach ?tadmptrlc cameras. However, none of these approaches_ ar
path following based on epipolar geometry and the visu irectly extendable to path following because they deah wit
servoing concept [2] the pose regulation problem where both input velocitiestmus

The navigation scheme proposed herein uses the notiBﬁ computed.
of visual memory. It means that there is a learning stage in The proposed control sqheme uses the_value Of_ the current
which a set of target images (key images) are stored and th ipole as tk;]e donly required feedbaﬁ_k_lnformatlon. Thus,
define the path to be replayed in an autonomous stage. Thi > approac lik 0655 ngt [rer?uwe_z exlp icit pose p%rlamefcers
strategy has been introduced for omnidirectional images timation uniike [5], [6]. The visual servoing probiem 15
[3]. Also a memory—based navigation is proposed in [4] b ansformed in a reference tracking problem for the current

introducing the prerecorded velocities of the learningsta eplp(_)Ie. It av0|_ds the repurrent p.rob!em of discontinuous
in the control law. More recently, there are contribution§0t"jltlonal velocity at key image switching of memory-based

toward the development of autonomous vehicles under th?ghenpesf thg:) |skev|||dent in [7], fohr mstance._ ThTfuse of
approach. Some of them are position-based approaches SfP0'ar feedback allows us to gather many visual features
to a single measurement, which has the advantage of

which, a 3D reconstruction is carried out either using at"o. o
EKF-based SLAM [5] or a structure from motion algorithmgett'ng a squared control system, where stability of theedio

through bundle adjustment [6]. A complete map building i oop can be ensured in contrast to Jacobian-based appsoache

avoided in [7] by relaxing to a local Euclidean reconstroiati 9]’d[l:3m] kor heurisgc_ approaches [8r]]' A_dditio::ally, ep_liga_? f
from the essential matrix using generic cameras. In visu‘f:ﬁ’e ack, as used In our approach, gives the possibility o

control, image-based approaches generally offer a fas

Currently, the development of service robots has attract

ing into account valuable a priori information that is
available in the visual memory and that is not exploited in
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Fig. 1. (a) Robot frame definition, (b) Experimental platfior

Fig. 2. Generic model of the image formation and epipolarngstoy

L . . . .between generic central cameras.
At this aim, the generic camera model introduced in [15] is 9

exploited to design our control strategy. This means that th

proposed method can be applied not only to conventional The unified projection model describes the image forma-

cameras but also to all central catadioptric cameras and g as a composition of two central projections. The first is

a large class of fisheye cameras [16], since the epipolggntral projection of a 3D point onto a virtual unitary spher

geometry can be computed from the unified model whegng the second is a perspective projection onto the image

the camera parameters are known (the calibration can Beyne. In this work we assume that the camera is calibrated

estimated for instance using the tools described in [17]). [17], which allows us to exploit the representation of the
The paper is organized as follows. Section Il introducegoints on the unit sphere. Let denote a 3D poinffasand

the robot and camera model, and the epipolar geometi¢ corresponding coordinates Xs Thus, point coordinates

obeying such model. Section Il details the proposed contrgp the spheréX, can be computed from point coordinates

strategy. Section IV presents the performance of the visugh the normalized image plane (refer to Fig. 2) and the
navigation via simulations and real world experiments angensor parameteras follows

finally, Section V provides the conclusions. .
Xc = (77_ + 5) X, (2)

X = [xX &

Il. MATHEMATICAL MODELING
A. Robot Kinematics

12 2
Lety = (z, 2, #)T be the state vector of a differential drive Wheren = {z(%y;;il) Y= /14 (1 £2) (22 +42).
robot (Fig. 1), wherex(t) and z(t) are the robot position ~ Regarding to Fig. 2, leX be a 3D point and leX.
coordinates in the plane, anilt) is the robot orientation. @nd X be the coordinates of that point projected onto
The kinematic model of the robot expressed in state spaf® unit spheres of the currert. and target framer:.

can be written as follows: The epipolar plane contains the effective viewpoints of the
imaging system®, and O, the 3D pointX and the points

& —sing 0 X. andX;. The coplanarity of these points leads to the well

| = cos¢p 0 [ v ] (1) known epipolar constraint

5 w

é 0 1 X!'E X; =0, ®3)
being v() and w(t) the translational and angular inputbeing E the essential matrix relating the pair of normalized
velocities, respectively. virtual cameras. Normalized means that the effect of the

known calibration matrix has been removed. As typical,
from this geometry it is possible to compute the epipoles
The constrained field of view of conventional cameras caas the points lying on the base line and intersecting the
be enhanced using wide field of view imaging systems suatorresponding virtual image plane. In order to avoid singu-
as fisheye cameras or full view omnidirectional cameras. It arities in the epipolar geometry three views can be used
known that the imaging process performed by conventionb estimate this geometry as proposed in [18]. Fig. 3(a)
and catadioptric cameras can be modeled by a unique repsttows the epipoles of a configuration of the pair of virtual
sentation [15]. Such unified projection model works properlcameras with center of projectid@. and O, respectively.
for imaging systems having a single center of projectiorfig. 3(b) presents an upper view of this configuration, where
Although fisheye cameras do not accomplish such propertie framework of the epipolar geometry constrained to plana
some recent experimental results have shown that the unifigtbtion is defined. A global reference frame centered in the
projection model is able to represent their image formatioarigin O; = (0, 0,0) of the target viewpoint is defined. Then,
process with the required accuracy for robotic applicatiorthe current camera location with respect to this refereace i
[16]. O, = (=, z, ¢). Assuming the described framework in Fig. 1,

B. Epipolar Geometry for Generic Cameras



Fig. 4. Control strategy based on zeroing the current epipol

@) (b) A. Visual Memory Building

Although the scope of the paper is the control strategy,
we briefly outline the procedure to build a visual memory.
The visual memory defines a path to be replayed in the

where the camera location coincides with the robot locatio@uUtonomous navigation stage. A sequence of images are

the epipoles can be written as a function of the robot stafgored from the onboard camera during a learning stage
as follows by manual driving of the robot. We assume that during

learning, the translational velocity is never zero. Frohited
captured images a reduced set is selected as key images by

Fig. 3. (a) 3D epipolar geometry, (b) Planar epipolar geoynieamework.

T cos ¢ + zsin ¢

ex = Qu $—asing’ (4)  ensuring a minimum number of shared features between two
x consecutive key images. For more details about the memory
€tz = Qg building refer to [7]. We assume thatkey images are chosen

‘ and that these images are separated along the path by a

Cartesian coordinates and z can be expressed as a_. . .
minimum distanced,,;,.

function of the polar coordinatesand as
B. Control Law for Autonomous Navigation

x = —dsiny, z=dcosy, (5)
Let us define a unidimensional task function to be zeroed
with ) = —arctan (eiz/as), ¢ — ¢ = arctan(ecs /o) @nd  that depends on the current epipalg,. This allows us
d*> = x? + 2*. For the case of normalized cameras =1 1o gather many visual features into a single measurement,
in (4) and in the subsequent equations. which has the benefit of getting a squared control system.

1. NAVIGATION STRATEGY So, pqtential stability problems are avoided unlike prasio
) ~ Jacobian approaches [9], [10]. In the sequel, we avoid the us
There are some works that use the epipoles as diregfihe subscript. This function represents the tracking error

feedback in the control law for a pose regulation task [12y the current epipole, with respect to a desired reference
[13], [14]. In the first two works the robot moves directly ed(t)

toward the target, but the translational velocity compatat

suffers of singularity problems, which make non-feasitde i Co = e — el(t). (6)
direct application for navigation. In the last work, theceff ) ) ] ) )

to avoid the singularity takes the robot to perform some 1he tracking error is defined using th@ key image as
inappropriate maneuvers for navigation. We propose to u§arget although it is not indicated explicitly. The follg
only the z-coordinate of the current epipole as feedbackonlinear differential equation represents the rate ohgka

information to modify the robot heading and so, to correc®f the tracking error as given by both input velocities and is
the lateral deviation. The current epipole gives informrati Obtained by taking the time-derivative of (6) and using the
of the translation direction and it is directly related te th Polar coordinates (5)

required robot rotation to be aligned with the target. As

can be seen in Fig. 4., = 0 means that the longitudinal (= O sin (¢ — ﬁ))v n .
camera axis of the robot is aligned with the baseline and ~ dcos? (¢ —) cos? (¢ — )
the camera is looking directly toward the target. Thergfore The subscript of the rotational velocity, refers to the ve-
the control goal is to take this epipole to zero in a smootfycity for reference tracking. We define the desired behavio

way, which is achieved by using an appropriate referencgyrough the following differentiable sinusoidal referenc
It allows avoiding discontinuous rotational velocity whan

new target image is required to be reached. Additionally, we ee(0) -
propose to take into account some a priori information of ed(t) = 02 (1 + cos (—t)) ,0<t<T (8)
the shape of the visual path that can be obtained from the d T

. . . . . el (t) = 0, t>rT
epipoles relating two consecutive key images. This allosvs u ¢

to adapt the translational velocity and also achieve pwise- where e.(0) is the value of the current epipole at the
constant rotational velocity according to the taught path. beginning or at the time of key image switching ands



a suitable time in which the current epipole must reach zerkgy image with respect to thé" one and so, it gives an
before the next switching of key image. Thus, a timer isdea of the curvature of the path.

restarted at each instant when a change of key image occursWe propose to use this a priori information to apply an
The time required in the reference can be easily replacedlequate translational velocity and to compute the nomi-
by a number of iterations in the control cycle. Note that thigal rotational velocity that appears in (11). As before, we
reference trajectory provides a smooth zeroing of the atirresuppress the subscript but recall that the epipole* is
epipole from its initial value. Let us express the equatifn ( computed between all consecutive pairings of key images.

depending on the translational velocity. The velocitycan
be found by using Input-Output Linearization of the erroivhereos is a positive parameter that determines the distribu-
dynamics. Thus, the following rotational velocity assigns tion of the velocities. Once a translational velocity isfsem
new dynamics through the auxiliary inpéi the previous equation for each key imagegan be used to
compute the nominal velocity as follows (@ o €*)

as follows The translational velocity is changed smoothly for every
o switching of key images using the following mappiefg —

H x .d

o= Uy — < - ’ 9 min; Umax

Ce=p +cos2(¢>—¢)wt é (9  (Vmins Umax)

_ _ assin(o—v) i m .
where ., = —5=5mG—7yv represents a known disturbance ¥ = U+ Unni - Z8min tanh (1 eg /dm1n|) (12)
g

2 (f _
_ COS (d) w) (_sz +€g+6a) ) &
Oz o= mlem (13)
We define the auxiliary input a&, = —k.,(. to keep the dmin ©

current epipo|e tracking the reference trajectory, Wﬁgre Where/{m < 0 is a constant factor to be tuned. This VelOCity

0 is a control gain. Thus, the resulting rotational velocity i by itself is able to drive the robot along the path, but
correction is introduced in (11) through (10).

sin (¢ — w)v n cos? (¢ — ) (éd ko ) (10) D. Timing Strategy and Key Image Switching
e d g ¢ o It is clear that there is a need to zero the current epipole

This velocity reduces the error dynamicsdo= —k.(,. before reaching the next key image during the navigation,

So, the tracking error exhibits an exponentially stableaeh Which imposes a constraint for the timeThus, a strategy to
ior, with settling timey ~ 5/k.. Since that the control goal define this time is related to the minimum distance between

of this controller is the tracking,; starts and finishes at zero key i_mages dmin) and the translational velocity for each
for every key image. In order to maintain the velocity aroun&ey image as follows:

a constant value we propose to add a term for a nominal donin
rotational velocityw. The next section describes how this =",
nominal velocity is obtained. So, the rotational velocisnc  \we have found that a good approach to relate this time
be eventually computed as with the settling timey of the tracking error is to consider
0.47 = 5/k., from whichk. = 12.5/7.
w = kiwt + 0, (11) By running the controller (9) with the reference (8), the

gtime 7 and the control gairk, as described above, an inter-
controlw;. It is worth emphasizing that the velocity, by ~mediate location determined i, is reached. In the best
itself is able to drive the robot along the path described b§2S€: Whemi, coincides with the real distance between key
the image memory, however, the total input velocity in (11iM29€s, the robot reaches the location of the corresponding
gy image. In order to achieve a good correction of the

behaves more natural around constant values. We will ref e - X

to the only reference tracking contral, (10), as RT and !ongltl_Jdln_aI position for egch .key_|mage, the refer_ence (8)

the complete controly (11), as RT+. is maintained to zero, which implies that =0, uqtll the
image error starts to increase. Timsage error is defined as

C. Exploiting Information from the Memory the mean squared error between theorresponding image

All previous image-based approaches for navigation usirpints of the current imageH{ ;) and points of the next
a visual memory only exploit local information, i.e., the re closest target key image’), i.e.,
quired rotational velocity is only computed from the cutren 1
and the next nearest target images. We propose to exploit €= - Z |P; — Pl (14)
the visual memory in order to have an a priori information et
about the whole path without the need of a 3D reconstruction As shown in [8], the image error decrease monotonically
or representation of the path, unlike [5], [6], [7]. A kind until the robot reaches each target view. In our case, the
of qualitative map of the path can be easily obtained frorthcrement of the image error is the switching condition for
the current epipole relating two consecutive key images afe next key image, which is confirmed by using the current
the memory, which is denoted by!". Thus, e’ shows and the previous difference of instantaneous values of the
qualitatively the orientation of the camera in the— 1)th image error.

wherek; > 0 is a weighting factor on the reference trackin



IV. EXPERIMENTAL EVALUATION

A. Smulations Results

In this section, we present some simulations in Matlab of nitial
our navigation scheme. We use the generic camera model -5r i SFinal
[15] to generate synthetic key images from a 3D scene
according to the robot motion on a predefined path. This

learned path starts in the location (5,45,@nd finishes just ET
before to close the loop of 54 m long. The camera parameters " K12
are o, = 2229, oy = 222.1, 29 = 305.1, yo = 266.9 all 15}

of them in pixels¢ = 2.875 and the size of the images

is 640x480 pixels. These camera parameters are also used

to compute the points on the sphere (2) from the image -20t

coordinates. In these simulations, a typical 8-pointsitigm R

has been used to estimate the essential matrix [19]. The only 8 6 -4 -2 0 2 4 & 8

required feedback informatior ;) is computed as the right

null space of the essential matifX(e.., ecy, e2]" = 0. (a) Resultant path and key images distribution.
The first simulation uses a fix distance between key images 20f ‘ ‘ ‘ ‘ ‘ ‘ =

of one meter, i.e., there are 54 key images. The transldtiona

velocity is bounded betwee2 m/s and0.4 m/s. In order RT

to set the timer and the control gairk,, it is assumed a o 2 2 6 s 10 12 14

= Learned path |
— Replayed path RT
- = Replayed path RT+

!
~N
=]

w (deg/s)
F:

minimum distance between key imagés;, = 0.8 m. We osf—_ ‘ ‘ ‘ Epipole

Reference

present the results for two cases according to (11): 1) only E
reference tracking (RT) and 2) reference tracking + nominal v |
velocity (RT+). The applicability of the last is limited toast o2 4 s (;i o 12
on the path and the former is able to correct an initial positi

out of the path. We can see in Fig. 5(a) that the resultant pat
of the autonomous navigation stage is almost similar to the 04

learned one in both cases. Although the initial location is 0_3M
B 1) L L L L L L L

h(b) Rotational velocity and epipole for the first 4 key images

v (m/s)

out of the learned path for the RT, the robot achieves the
tracking just in the second key image. The first plot of Fig.
5(b) shows the behavior of the rotational velocity for therfo
first key images. On one hand, we can see that this velocity
is smooth for the RT case. The velocity starts to grow always
from zero in the marked points, which correspond to changes
of key image, and returns to zero at the next switching. On =

w (deg/s)

the other hand, we have a constant velocity for the RT+. The o

third plot of the same figure presents the reference tracking —

of the epipole for the RT with a mark when it reaches zero. Time (s)

Fig. 5(c) presents the varying translational velocity aggi (c) Velocities and epipole evolution for the whole path.

by (12) for the whole path. The evolution of this velocity _ , _ y _
. ] Fig. 5. Simulation results using a fix distance between kegges (1

agrees Wlth the level of Cur_vature of th_e path. Fig. 5(c) Sh':'V\{'r‘l), for both cases: only reference tracking (RT) and addivey riominal

the evolution of the rotational velocity and the referenceotational velocity (RT+). In both cases the varying tratishal velocity is

tracking for the epipole along the whole path. The additiothe same.

of the nominal value allows to achieve a piece-wise constant

rotational velocity.

Fig. 6 presents the performance of the approach for tiBis condition of fixed distance between key images. The
same experiment. The first plot of Fig. 6(a) shows th&napshots of Fig. 6(b) show that the points features of key
behavior of the image error for the RT case. During the firdfnages are reached with good precision even in curves.
seconds, the error increases because the robot is out of th&he performance of our navigation scheme including
path. In the subsequent steps, from the second key imagmage noise has been also evaluated. In this case, 35 key
this error exhibits a monotonic decay at each step. After thamages are placed randomly along the predefined path, in
the largest peaks in the image error correspond to the shapch a way that a minimum distanek,;, = 1.40 m is
curves in the path, which also causes the highest error @ssumed. A Gaussian noise with standard deviation of 0.5
the path following. We can see in the plots of the errors tpixels is added to the image coordinates. The path following
reach each key image in the same figure that the RT+ contiigl still good along the whole path for the RT control (Fig.
obtains best tracking performance than the RT control fof(a)) and adequate for the RT+. The RT+ control is slightly
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sensitive to longer and random distance between key images 0 20 4 60 8 100
along sharp curves. The RT performs well in spite of that
the current epipole and the rotational velocity are noisy.(F
7(b)). However, the rotational velocity as obtained frora th N
RT+ result more convenient for a real application. The path ©E RN ey W W

errors to reach each key image are comparable for both
controllers, as can be seen in Fig. 7(c).

B. Real-world Experiments

In order to test the proposed control law we have used the *,\MAAR MW
software platform described in [7]. This software selects a o 20 40 60 0 100
set of key images to be reach from a sequence of images that T T
is acquired in a learning stage. It also extracts featui@s fr
the current view and the next closest key image, matches
the features between these two images at each iteration and
computes the current epipole that relates the two views. The
interest points are detected in each image with Harris ¢corne
detector and then matched by using a Zero Normalized
Cross Correlation score. This method is almost invariant to
illumination changes and its computational cost is smale T
software is implemented in C++ and runs on a common
laptop. Real world experiments have been carried out 9. 7. Simulation including image noise & 0.5 pixels), random distance
indoor navigation along a living room with a Pioneer robo etween key_|mages (from 1.45 to 1.6 m) and varying tramsiati velocity
etween(0.2 — 0.4 m/s.
(Fig. 1(b)). The imaging system consist of a Fujinon fisheye
lens and a Marlin F131B camera looking forward, which
provides a field of view of 185 deg. The size of the images
is 640x480 pixels. A constant translational velocity= 0.1  and followed closely. The computed rotational velocity and
m/s is used and a minimum distance between key imag#se behavior of the current epipole are presented in Fig. 8(b
dmin = 0.6 is assumed. Fig. 8(a) shows the resultant antihe robot follows the visual path until a point where there is
learned paths for one of the experimental runs as given mpt enough number of matched features. In the same figure,
the robot odometry. In this experiment, we test the RT cdntrave depict the nominal rotational velocity as computed adflin
since the initial robot position is out of the learned patle Wonly to show that it agrees the shape of the path. In Fig.
can see that after some time, the reference path is react8{d) we can see that the image error is not reduced initially

(b) Velocities and current epipole evolution.

Ll

T
N

‘
10000 1
I\J\ N
160 180

W,

RT

o
=3
<]
S

Image error (pixels)

o

120 140

=
o
S

) ) = RT+
20 40 60 80 100 120 140 160 180

Lateral error (cm)
o

[
N
o
=]

N
=]
o

—RT
RT+

Angular error (deg)
o

!
n
=]

20 40 60 80 100 120 140 160 180
Time (s)

o

(c) Image error and path following errors.



because the robot is out of the path, but after it is reachedf the current epipole is the unique required information fo
the image error for each key image is reduced. The santige control law. This is an image-based approach because
figure presents a sequence of images as acquired for the robot explicit pose parameters decomposition is carried out.
camera during the navigation. The scheme avoids discontinuous rotational velocity when
a new target image must be reached. Eventually, the this
R velocity can be piece-wise constant. The translational ve-
Learned path locity is adapted according to the path and the approach
— Repleyed panRT || is independent of its value. We exploit the advantages of
wide field of view cameras, in particular fisheye. The camera
calibration parameters are required for the epipolar gégme
of this kind of cameras and can be easily obtained with

E . o
N the available calibration tools. The proposed scheme has
il presented a good performance according to the simulation
it results and real world experiments.
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