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Abstract— A pose-estimation-based approach to perform vi- based on the elements of a 2D TT constrained to a planar
sual control for differential-drive robots is presented in this  motion is presented. It shows good performance reaching

paper. Our scheme recovers the camera location (position an ; i ;
orientation) using an Extended Kalman Filter (EKF) algorithm the target location, howeyer, the stability properties fuf t
controller should be studied.

with the 1D trifocal tensor (TT) as measurement model. This - . L
new visual servoing scheme allows knowing the real world ~ In image-based VS approaches there exist an intrinsic
path performed by the robot without the computational load problem because the real world path that is performed by the
introduced by position-based approaches. A state-estimel  robot is unknown. Whereas position-based approaches over-
feedback control law is designed to solve a tracking problem 6 this issue, the control loop is very slow. A possibility
for the lateral and longitudinal robot coordinates. The desred that h tb ' lored f bil bots is t timat
trajectories to be tracked ensure total correction of both a aslno (_een explored for mobile robots Is 993 '_m_ae
position and orientation using a single control law, even tough  the location using an observer scheme from machine vision.
the orientation is a DOF in the control system. The effectiveess  There are two papers in which visual servoing with observer
of our approach is tested via simulations. is introduced for applications with manipulators ([9], [LO
I. INTRODUCTION A visual tracking scheme that includes a kinematic model for
- ' _ the object to be tracked is used. An approach that introduces
A promising sensor-based control of mobile robots cagimation in a visual servoing scheme for mobile robots is
be found on the basis of visual servoing (VS). Vision agesented in [11]. It proposes a method to obtain just depth
the main source of information on a robotic platform haggtimation for point features using a nonlinear observer.
allowed to improve its navigation capabilities in a singleyngther work that is related to camera-motion estimation
robot task or in robot coordination tasks. Recently, in otde ;¢ [12], which presents an EKF algorithm to tackle the
extract matched features from images in a robust way, SOMRjon_hased pose-tracking problem for augmented reality
geometric constraints relating two views have been app“egpplications. A constant velocity motion model is used as

Two of them have been well exploited to control mobileyynamic system and the TT constraint is incorporated into
robots, epipolar geometry (for instance [1], [2]) and th§n. measurement model.

homography model (3], [4]). Nevertheless, these geometri jging the classical teach-by-showing strategy, this paper
constraints have both serious drawbacks. Epipolar gegmelf,on4qes a visual control scheme for differential-driveats
is ill-conditioned with short baseline and with planar se&n ,.caq on the recovery of on-line camera motion with an

while the homography model is not well defined if there arg g g1gorithm. The kinematic motion model of the camera
no dominant planes in the scene or with large baselines. \5nted on the robot is used as dynamic system and the

In this .fieId of-geometric constraint-based control a _Igsqu as measurement model. We concern for the observability
explored is the trifocal tensor (TT). We propose to expisiti 5n4)ysis of the discrete linear approximation of the system

properties in order to overcome the drawbacks of the typiC@lpservability can be assured by selecting a suitable set of

geometric constraints. The TT describes all the geometijge g rements from the TT elements. The kinematic motion
relations between three views and is |nd.ependent of th&odel allows us to design a static state feedback control law
observed scene [5]. In the Qe”‘?ra' case, It BR3 X3 g track desired trajectories for the lateral and longitadli

TT, however, when the mot!on IS constraint to be planat,p g coordinates. Thus, the proposed visual control solve
the TT can be expressed with eight elements. The TT hgge hroblem of not knowing the real world path of image-
proved its effectiveness to recover the robot location i [6,55eq schemes, but without the computational load intro-
and [7]. In the first work cpnvgntional cameras and artificialj,ceg by position-based approaches. Moreover, the defined
landmarks are used, while in the second one both COBath allows to correct position and orientation simultarsip

ventional and omnidirectional cameras are used to analyaging smooth control inputs, regardless of the orientaion
linear approaches of estimating the TT. Both of these works degree of freedom in the control system

propose the TT to be used for initialization of bearing-only 11,4 paper is organized as follows. Sect. Il describes the

SLAM algorithms. In [8], a visual control for mobile robots | ,ematic motion model of the robot-camera and its relation
This work was supported by projects DPI 2006-07928/DP| 208826, Shlp.Wlth the TT. Sect. _I_” details the EKF |mplementat|qn
IST-1-045062-URUS-STP and grants of Banco Santander-\fivagoza and issues on observability. Sect. IV presents the syrstioési
and Conacyt-México. . N the control law. In Sect. V the stability is analyzed. Sedt. V
H.M. Becerra and C. Sagues are with DIIS-I3A, Universidaddegoza shows the control svstem performance throuah simulations
C/ Maria de Luna 1, E-50018 Zaragoza, Spéimect or . becerr a, W Yy p ugh simulat ,

csagues}@mni zar . es and finally, Sect. VII provides conclusions.



I[I. MATHEMATICAL MODELING We can write the state vector &3 = [ = 2z o }T
A. Robot-Camera Model and the input vector as, = [ vr  wy }T. In general, an
increment of input is given byuy, = Tsuy, whereTy is the
fw sampling time. In the sequel, we use the notatiGnr= sin 3,
L ¢ = cos 3.
|{W} w
: ) B. The 1D Trifocal Tensor
: 3 = ef= m The TT relates geometrically three views. It only depends
I on the relative locations of the observed scene in the three
: 5 g images. Let us define a global (world) reference frame as
: b depicted in Fig. 2(a) with the origin in the third camera.
G}J{R} Then, the camera locations with respect to that global

reference areC; = (z1,21,¢1), C2 = (x2,22,¢2) and

C;3 = (0,0,0). We assume that the motion is constrained to
be planar. The relative locations between cameras is defined
by a local reference frame in each camera as is shown in
Fig. 2(b).

This work focuses on controlling a differential-drive rabo
under the framework that is depicted in Fig. 1. The velocity
vector in the robot reference fram&} iss® = 0 v

Fig. 1. Kinematic configuration of the robot.

This velocity in the world reference fram@V'} is given by s
sW = [ & 2]" = Rs", whereR is the rotation ma-
cos¢p —sing

trix relating both reference framdd=

The decomposed linear velocity together with the angular &
velocity gives the relationshipgs = —vsing, 2 = vcos¢

|
|
|
sing cos¢ | :
|
|
|
|

[
and ¢ = w. These equations represent the dynamics of 1 f.ﬁi
the robot reference framéR} with respect to the world | 'J
frame. Now we are interested in knowing the dynamics of J
a point translated a distandealong thezy axis, i.e. the
point c®, where a camera is fixed to the robot. Using a G
general transformation between frames, which ig given as (@) (b)

c = Re' _+ t, Its de.rlvatlve isc - R¢"™ + Re +:,t~' Fig. 2. (a) Global reference definition, (b) Relative looatibetween
Applying this expression to the point® = [ 0 ¢ ] ,  cameras.
which has no relative velocity with respect to the robot

reference fram¢® = 0 0 ]T and knowing that The expression of the tensor as it is obtained from metric
. ) information of the three views is
fz[?]:[_mlflf}and¢:w, ) )
z U COS T, = T111 T1 12 (3)
. —wsing —wcosp | Th21 Tize |
R = , , L
wcos¢  —wsin @ _ by SPo — toySh1  —tz ca + Loy cdn }
it results in the following system | 121002 + by 51 b2y Sh2 — Loy o
i = —wlcosg —vsing, (1) T, — Tonn Tor2
. . | Too1 Ta2o |
z = —wlsing + vcos ¢, -
QS _ — _tmlsd)Q - tZ2C¢1 tzlc¢2 - t225¢1
o L _tﬂﬂlc¢2 + t$20¢1 _tm13¢2 + ths(bl

It is important to keep in mind that such system represents
the dynamics of the point where the camera is fixed to th&N€réte, = —xicoi—zisdi, tz; = zispi—zich; fori =1,2.
robot with respect to the world frame, and thus, any subscriFduations in (3) can be verified as described in [7].
is avoided from now on. Applying an Euler approximation We can note that in the elements of the TT we have

(forward difference) for the continuous derivative, weaibt eight nonlinear relationships relating information of cam
the following discrete time nonlinear system. era locations. From now on, let us define the initial lo-

cation of a camera mounted on a robot as described in
Fig. 1 to be(z1,21,¢1), the target location0,0,0) and
Pk+1 2k, — Owp L sin ¢, + Gy, Cos P, (22 (t), 22 (t),d2 (t)) the current location, which varies as
Okt1 = Ok + dwg. the robot moves. The rates of change of the current location

Th+1 = Tk — 5wk€ COS gf)k — 5vk sin (bk’ (2)



are given by (1). We can obtain the Jacobian of each elementThe update equations to correct the estimates are

of the tensor as follows i Qi1 = HpPrpeHEL + Nipo, @)
—sP18¢2  sprcpe  tricPa +tr28dn K _ p H? Q!
cp1sp2  —cpicpe  t1502 — tracoy A s R R A
—sprcp2  —sP15Q2  —l 1802 + L0501 Keriport = Rnpan + Kit Vi — b (R |
aTijk _ co1cpa cP15¢2 ta1c92 — to2chy Pk+1|k+1 = [I — Kk+1Hk+1] Pk+1|k-
— —t t ' . N .
0% cP1892 ooy 21602 + Lazchr In these equationsty 1, Pxy1x represent am priori
—501502  sp1cr  —lp15P2 + tra501 - - , N
estimate of the state and its covariance, abd |41,
—CP1by —CP150y  La15Pa + Laach P 1541 Provide ana posteriori estimated state for step
| —sP1ch2 —sP15¢2  —tpicpe +128h1 |

It means that the a posteriori information utilizes feedbac

In the sequel, we avoid to use the subscript for the curreRfr in order to improve the state estimation. The required
location. second view. output matrix can be computed as follows

. EKFFORTHE1DTT oh

The elements of the TT are very useful providing infor- %
mation of position and orientation of a camera [7]. In ougnd the resulting matrix from the 1D TT will be specified in
previous work [13], we have introduced the use of the 1lhe next section.

TT in visual servoing by taking the elements of the tensor - )

directly in the control law. In this paper, we propose to maké&" OPservability of the EKF with the TT as output

use of the information provided by the TT to estimate the There are few works concerned about observability when
camera motion according to the nonholonomic motion mod@n estimation based on Kalman filtering is applied. Some of
(2). Once the state estimation is available, we can use suétem are [14] and [15]. To analyze our case, let us consider
model to design a feedback control law. the linear approximationK, Gy, Hj) of the system (2) in

Consider as the framework for the EKF the discrete vethe timek. Due to the matrice¥, andH,, are changing at
sion of the system that describes the kinematic motion of tfeach instant time, observability may be lost, which affects
fixed camera on the robot (2) together with a measuremetite convergence properties of the estimation algorithm. As
model given by some elements of the TT. Due to the robd$ mention in [14], a system that is locally observable over
system (1) is a driftless one, we consider that the contrévery time segmenit,, ¢;.1] in the interval[to, tj1] will
input is the source of noise in the state, which is modeled as¥#s0 be completely observable over the intertal ¢y.1].
Gaussian noise process. Besides, the noisy measurementd hen, the condition to accomplish for evekryto ensure the
can be modeled adding a Gaussian naiseto a nonlinear System to be completely observable is

Hy = ‘

X =Rp 41|k, Wk=0

function & as follows T
rank ([ H;{ (Hka)T (Hsz—l)T ] ) =n.
Xpp1 = f(Xp,ur +vi), (5)
yi = h(xg)+ wy Because of the left superior identity matrix iy, the

rows of the observability matrix become linearly dependent
The only possibility of reaching the full rank condition ig b

H i | 2x
These are the continuous noise processes, Mtk R building H;, of full space. It can be done by taking three
the process noise covariance aNde R*** the measurement glements of the TT as outputs. From (4), we can see that
noise covariance. Under this framework an extended diregtg, itaple selection of measurementdiss, Thiy, Tosz, in

Kalman filter can be designed. The prediction equations t9,., 4 way that
compute the estimates are b1cd 6150 tuicd — fod
coic cQp18 21CQP — 1CP1

K =/ (fckw,u:;;,ﬂ,k), i ©  Hiu= | —cpisd ch10d —tmch+iacor | (8)
Prppe = FePypFp + GiMiGy —5p15¢0  spichd  taichd+ tysy

wherev ~ N (0,M),w ~ N (0,N), and E [v,w!] = 0.

where the linear approximatioy, 1, = FrXy, + Grug, Where¢? _ ¢3k+1\k i, =

J H,. %, of the nonlinear system is used TR LRCO Lk Dk Pk 1k
= HiXx . s . A
Yklk klE 4 te = Bry1 xSkt 1k — Zhr1|kCOk1|ks AN L1, to1 @nd ¢y

are constant values. The output matrix in (8) ensures local

F, = ﬁ _ observability for everyk even for some particular initial
Oxy; Xk =Ry 1, V=0 conditions, for instance; = 0, in which case this matrix
1 0 lowpsér — Sugcor remains full rank due to the cosines in the main diagonal.
— 0 1 —lowycdr — Svisdy ' It is worth noting that the measurement Jacobian requires to
0 0 1 X know the initial locationC;, which can be computed using
Pr=Prix the localization scheme presented in [7]. It can also be used
of —spr. —Leoy for the EKF initialization. As the scale factor is introdace
Gr = ‘(Q)—uk = Cﬁk —ff@c - in the initial location, the normalization of the values bét
Xk =Xk|k

S=brk TT is not required.



IV. NONLINEAR CONTROLLER DESIGN fails to solve the input-output linearization problem. How

We present the design of a static state feedback linearizif§e"> the case of having the camera shifted from the robot
control law that is able to drive the camera on the robot to Ptation axis over the longitudinal axis is a common sitri
desired location without switching to a different contrand ~ B€Sides, the value of can be easily measured.

We solve a tracking problem for the nonlinear system (1§ pegred Trajectories

in order to correctr and z positions. At the same time, by L L
tracking suitable reference signals, orientation coivecis Th_e objective of reference tracking is to take the outputs to
zero in a smooth way and consequently, the robot performs a

also ensured. This controller can be applied consideriag th ooth motion in a desired time. We pronose the followin
the camera location is known, in our case, estimated by {3 lon 1 ! Ime. prop wing

EKF as described previously. references
d _ 20 (T ))
A. Input-Output Linearization S (1 *+ cos (Tt st (12)
The goal is to drive the robot to the target location, which 2t =0, t>T
means to reaclizs, 22, ¢2) = (0,0,0). We will control the ¢ = Z””((O(;)z (z‘i)Q, 0<t<r
location of the point instead of the robot reference frame. 2 0 £
= y 7_

In this section we assume that this location is known and is

given by the EKF estimation by using three elements of th@herer is the time to reach the target. Note that the robot

TT as measurements. The advantage of our proposal wiglways begins over the desired path and the controller has to
respect to previous works is that the state estimation makgsaintain it tracking that path.

possible to tackle the visual servoing problem as a trajgcto

tracking problem. The outputs to be controlled are the camer V. STABILITY ANALYSIS

position coordinateg; = =z, y2 = z. Consequently, the  The controller behavior is based on zeroing the defined

orientation ¢) is left as a DOF which is automatically outputs, therefore, when these outputs reach to zero the so-

corrected by tracking suitable desired trajectories abbweil called zero dynamics in the robot system is achieved. Zero

proven in Section V. dynamics is described by a subset of the state space which
To take the value of both outputs to zero in a smooth waynakes the output to be identically zero [16]. In the partcul

we design a tracking controller. Let us define the trackingase of the robot system (1) with outputs = z, y» = z,

errors ase; = o — %, ey = 2z — 2% Thus, the error system this set is given as follows

is given as
g 7¥ = {[a: z ¢]T|y1£0, yQEO}

é1 | [ —sing —Llcos¢ v ] [ ©) = {[ 00 ¢ }T, ¢ = constank R}.
éa | | cos¢p —Lsing w 3¢ |-
The constant value of is the result of the differential

This system has the forrd = D (¢,/)u — 3%, where equation that characterize the zero dynamics, that in tsie c
D (¢, ¢) corresponds to the decoupling matrix, whose inversig

matrix is given in (10), andy? represents a known distur-
bance for the error dynamics. We can see that the control ¢ = 1 (u1 cos é + ug sin @) = 0

inputs appear in the first derivative of each output. Then the ¢
system (1) with outputsz{ z) has a vector relative degree because:; = 0 andus = 0 wheny; = 0 andy, = 0. Thus,
{1,1}. Due to the sum of the indices of the systett{1) zero dynamics in this control system means that when
is less than the order of the system=£ 3) we have a first and z-coordinates of the robot are corrected, the orientation
order zero dynamics, which will be analyzed in Section V.may be different to zero. Now we focus on proving how
orientation correction is achieved.
D! (¢,0) = 1 { —lsing  Lcos¢ } _ (10) Proposition 1. The control inputs in (11) with complete
’ (| —cos¢ —sing knowledge of the state(x,z,¢)” provided by the 1D
A static state feedback control law that achieved 1-based EKF estimation and using the reference signals
global stabilization of the system (9) has the fornin (12) drive the robot-system (1) to reach the location
u=D"" (ke + y4), which is (r=0,2=0,0=0)", i. e. orientation is also corrected.
Proof: It is clear the global exponential stability of
[ v } 1 { —lsing Lcos¢ } { m ] (1) the error system (9) with the inputs in (11), which drives the
w | €| —cosg —sing U depth and lateral error to zero afteseconds. It only remains
to prove that the orientation is also zero afterseconds.
From the decomposition of the translational velocity vecto
(¢ = —vsing, Z = vcos ), we have that

wherew; = —kje1 + %, andug = —koes + 2% The error
behavior will be exponentially stable iff; > 0, ks > 0.
Note that this input-output linearization via static feadk
is only possible for the system (1) with% 0. Otherwise, a T
singular decoupling matrix is obtained and a static feeklbac ¢ = arctan (__') '



Let us be the parabolic relationship between Cartesian

coordinates = ;((TO))222 according to the desired trajectories.
Its corresponding time-derivative is= 2;((0(;)2 z%. Thus, the

orientation angle can be computed as follows when ithe
and z-coordinates track the desired trajectories

¢ = arctan (—2;((00))2 z) )
As have been mentioned, when the robot has followed the
reference path antd= 7 the position reaches zefa = 0,
z = 0), and consequently = arctan (0) = 0. This proves
that the location(z =0,z =0,¢ = O)T is always reached
in 7 seconds, even though the orientation is a DOF for the
control system. ]

VI. RESULTS

This section presents some simulation results that have
been performed in Matlab by applying the control system
as established in the Proposition 1. These results show that
the main objective of driving the robot to a desired pose is
always attained with good precision. For these simulations
we compute the 1D TT from point correspondences on
virtual images using the approach described in [7]. The
distance from the rotation axis to the camera position on

the robot is set td = 10 cm. For the controllers, the time to 0 b 0 ] & TR Fs
reach the target position) is fixed to120 s and the control Time (s)

gains are set td; = 1, ko = 1. Related to the Kalman (b) State variables of the robot
filtering, the sampling timd’, is set t00.5 s. We have tuned Fig. 3. Resultant paths and state evolution.

the matricesM and N in such a way that we have more
confidence in the model than in the measurements, otherwise,
the robot motion may be uncertain. This is done by usingrrors are presented in Fig. 4(b). Note that these sigrats st
small standard deviations NI and relatively large standard and end with zero value and they are always well defined.
deviations inN. The standard deviation of the noise affecting In Fig. 5(a) the evolution of the elements of the TT that
the control inputs (related t&M) is set too, = [0.01 are taken as measurements for the EKF is plotted for the
m/s 0.001 rad/d. The standard deviation of the measuremerititial location (4,-18,-8). From these noise measurements
noise process (related M¥) is set tooy, = [20 cm, 30 cm,5  the state estimation errors of Fig. 5(b) are determined. The
cm|. Finally, we suggest initial standard deviation for thefirst plot presents the evolution of theace of the state
state estimation errol® = diag(5? cm, 10 cm, 12 deg). estimation error covariance matrilP). It shows that the

Fig. 3 shows the paths traced by the robot and the sta@XF is converging because the standard deviations of the
variables evolution from four different initial location¥he state estimation error is decreasing at each step. Coma&zge
thick solid line begins from (-8,-6,-50, the solid line from is expected because the discrete linear approximationeof th
(0,-10,0), the long dashed line from (4,-18¢)5and the short nonlinear system remains observable along the navigation.
dashed line from (10,-14,8h We can see that an initial However, the plottrace(P) could increase during short
rotation is performed automatically in order to align thbab periods of time in some cases due to the nonlinearity of
with the parabolic path to be tracked. This kind of path ishe system. The next three plots in Fig. 5(b) show that the
traced except for the case when there is no lateral error éstimation errors are maintained within the confidence
correct. In Fig. 3(b) we can see that both outputsafdz  bounds. The errors are computed from the truth state (avail-
positions) are driven to zero in 120 s and the robot reachesle in simulation) and the estimated state.
the target with the right orientation. Finally, Table | shows that the target location (09,3

An example of the good performance of the trackingeached with good precision, in the order of centimeters for
control law is presented in Fig. 4(a). For the initial locati position and less than one degree for rotation in most of the
(4,-18,-%), both tracking errors are maintained bounded witltases. The final rotation larger than one degree (first column
a bandwidth around 0.5 cm. These errors are used by therresponds to a large initial angle (¥3Gand additionally,
feedback control law and they are computed as the different®e initial depth is less than the initial lateral error, @i
between estimated positions and their reference values. Thorces a large rotation to reach the target. However, in this
smooth control inputs computed from the shown trackingase the depth is corrected better than in any other case.
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TABLE |
FINAL LOCATION FOR THE PATHS INFIG. 3. TARGET LOCATION (0,0,0).

(-8,-6,-50) | (0,-10,0) | (4,-18,-5) | (10,-14,35)
(m,my) (mmp2) | (mme) (m,my)

Z final (CM) 0.69 0.85 0.62 0.18

Z final (CM) 05 173 1.84 133

b final ©0) 2.46 0.84 084 0.84

VII. CONCLUSIONS

In this paper we have presented a new pose-estimations

Fig. 5.

(4

(5]

based visual servoing scheme to perform visual control for

differential-drive robots using a teach-by-showing stgst

This scheme allows knowing the real world path performeom
by the robot without the computational load introduced by
position-based approaches. It recovers the camera locatid8l
(position and orientation) using an Extended Kalman Filter
(EKF) algorithm with the 1D trifocal tensor (TT) as mea- [9]
surements. An observability analysis of the discrete linea

approximation is discussed. We solve a tracking problem f
the lateral and longitudinal robot coordinates with a stati

state-estimated feedback control law. The desired ti@jiest

fo

(11]

to be tracked ensure total correction of lateral error, llept
and orientation using a unique control law, even though thez]
orientation is a DOF in the control system. The performance

of our approach is proven via simulations.
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